src/HOL/Library/FSet.thy
author blanchet
Fri Jan 24 11:51:45 2014 +0100 (2014-01-24)
changeset 55129 26bd1cba3ab5
parent 54258 adfc759263ab
child 55414 eab03e9cee8a
permissions -rw-r--r--
killed 'More_BNFs' by moving its various bits where they (now) belong
kuncar@53953
     1
(*  Title:      HOL/Library/FSet.thy
kuncar@53953
     2
    Author:     Ondrej Kuncar, TU Muenchen
kuncar@53953
     3
    Author:     Cezary Kaliszyk and Christian Urban
blanchet@55129
     4
    Author:     Andrei Popescu, TU Muenchen
kuncar@53953
     5
*)
kuncar@53953
     6
kuncar@53953
     7
header {* Type of finite sets defined as a subtype of sets *}
kuncar@53953
     8
kuncar@53953
     9
theory FSet
blanchet@55129
    10
imports Conditionally_Complete_Lattices
kuncar@53953
    11
begin
kuncar@53953
    12
kuncar@53953
    13
subsection {* Definition of the type *}
kuncar@53953
    14
kuncar@53953
    15
typedef 'a fset = "{A :: 'a set. finite A}"  morphisms fset Abs_fset
kuncar@53953
    16
by auto
kuncar@53953
    17
kuncar@53953
    18
setup_lifting type_definition_fset
kuncar@53953
    19
blanchet@55129
    20
kuncar@53953
    21
subsection {* Basic operations and type class instantiations *}
kuncar@53953
    22
kuncar@53953
    23
(* FIXME transfer and right_total vs. bi_total *)
kuncar@53953
    24
instantiation fset :: (finite) finite
kuncar@53953
    25
begin
kuncar@53953
    26
instance by default (transfer, simp)
kuncar@53953
    27
end
kuncar@53953
    28
kuncar@53953
    29
instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}"
kuncar@53953
    30
begin
kuncar@53953
    31
kuncar@53953
    32
interpretation lifting_syntax .
kuncar@53953
    33
kuncar@53953
    34
lift_definition bot_fset :: "'a fset" is "{}" parametric empty_transfer by simp 
kuncar@53953
    35
kuncar@53953
    36
lift_definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" is subset_eq parametric subset_transfer 
kuncar@53953
    37
  by simp
kuncar@53953
    38
kuncar@53953
    39
definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where "xs < ys \<equiv> xs \<le> ys \<and> xs \<noteq> (ys::'a fset)"
kuncar@53953
    40
kuncar@53953
    41
lemma less_fset_transfer[transfer_rule]:
kuncar@53953
    42
  assumes [transfer_rule]: "bi_unique A" 
kuncar@53953
    43
  shows "((pcr_fset A) ===> (pcr_fset A) ===> op =) op \<subset> op <"
kuncar@53953
    44
  unfolding less_fset_def[abs_def] psubset_eq[abs_def] by transfer_prover
kuncar@53953
    45
  
kuncar@53953
    46
kuncar@53953
    47
lift_definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is union parametric union_transfer
kuncar@53953
    48
  by simp
kuncar@53953
    49
kuncar@53953
    50
lift_definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is inter parametric inter_transfer
kuncar@53953
    51
  by simp
kuncar@53953
    52
kuncar@53953
    53
lift_definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is minus parametric Diff_transfer
kuncar@53953
    54
  by simp
kuncar@53953
    55
kuncar@53953
    56
instance
kuncar@53953
    57
by default (transfer, auto)+
kuncar@53953
    58
kuncar@53953
    59
end
kuncar@53953
    60
kuncar@53953
    61
abbreviation fempty :: "'a fset" ("{||}") where "{||} \<equiv> bot"
kuncar@53953
    62
abbreviation fsubset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subseteq>|" 50) where "xs |\<subseteq>| ys \<equiv> xs \<le> ys"
kuncar@53953
    63
abbreviation fsubset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subset>|" 50) where "xs |\<subset>| ys \<equiv> xs < ys"
kuncar@53953
    64
abbreviation funion :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<union>|" 65) where "xs |\<union>| ys \<equiv> sup xs ys"
kuncar@53953
    65
abbreviation finter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<inter>|" 65) where "xs |\<inter>| ys \<equiv> inf xs ys"
kuncar@53953
    66
abbreviation fminus :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|-|" 65) where "xs |-| ys \<equiv> minus xs ys"
kuncar@53953
    67
traytel@54014
    68
instantiation fset :: (equal) equal
traytel@54014
    69
begin
traytel@54014
    70
definition "HOL.equal A B \<longleftrightarrow> A |\<subseteq>| B \<and> B |\<subseteq>| A"
traytel@54014
    71
instance by intro_classes (auto simp add: equal_fset_def)
traytel@54014
    72
end 
traytel@54014
    73
kuncar@53953
    74
instantiation fset :: (type) conditionally_complete_lattice
kuncar@53953
    75
begin
kuncar@53953
    76
kuncar@53953
    77
interpretation lifting_syntax .
kuncar@53953
    78
kuncar@53953
    79
lemma right_total_Inf_fset_transfer:
kuncar@53953
    80
  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
kuncar@53953
    81
  shows "(set_rel (set_rel A) ===> set_rel A) 
kuncar@53953
    82
    (\<lambda>S. if finite (Inter S \<inter> Collect (Domainp A)) then Inter S \<inter> Collect (Domainp A) else {}) 
kuncar@53953
    83
      (\<lambda>S. if finite (Inf S) then Inf S else {})"
kuncar@53953
    84
    by transfer_prover
kuncar@53953
    85
kuncar@53953
    86
lemma Inf_fset_transfer:
kuncar@53953
    87
  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
kuncar@53953
    88
  shows "(set_rel (set_rel A) ===> set_rel A) (\<lambda>A. if finite (Inf A) then Inf A else {}) 
kuncar@53953
    89
    (\<lambda>A. if finite (Inf A) then Inf A else {})"
kuncar@53953
    90
  by transfer_prover
kuncar@53953
    91
kuncar@53953
    92
lift_definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Inf A) then Inf A else {}" 
kuncar@53953
    93
parametric right_total_Inf_fset_transfer Inf_fset_transfer by simp
kuncar@53953
    94
kuncar@53953
    95
lemma Sup_fset_transfer:
kuncar@53953
    96
  assumes [transfer_rule]: "bi_unique A"
kuncar@53953
    97
  shows "(set_rel (set_rel A) ===> set_rel A) (\<lambda>A. if finite (Sup A) then Sup A else {})
kuncar@53953
    98
  (\<lambda>A. if finite (Sup A) then Sup A else {})" by transfer_prover
kuncar@53953
    99
kuncar@53953
   100
lift_definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Sup A) then Sup A else {}"
kuncar@53953
   101
parametric Sup_fset_transfer by simp
kuncar@53953
   102
kuncar@53953
   103
lemma finite_Sup: "\<exists>z. finite z \<and> (\<forall>a. a \<in> X \<longrightarrow> a \<le> z) \<Longrightarrow> finite (Sup X)"
kuncar@53953
   104
by (auto intro: finite_subset)
kuncar@53953
   105
hoelzl@54258
   106
lemma transfer_bdd_below[transfer_rule]: "(set_rel (pcr_fset op =) ===> op =) bdd_below bdd_below"
hoelzl@54258
   107
  by auto
hoelzl@54258
   108
kuncar@53953
   109
instance
kuncar@53953
   110
proof 
kuncar@53953
   111
  fix x z :: "'a fset"
kuncar@53953
   112
  fix X :: "'a fset set"
kuncar@53953
   113
  {
hoelzl@54258
   114
    assume "x \<in> X" "bdd_below X" 
kuncar@53953
   115
    then show "Inf X |\<subseteq>| x"  by transfer auto
kuncar@53953
   116
  next
kuncar@53953
   117
    assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> z |\<subseteq>| x)"
kuncar@53953
   118
    then show "z |\<subseteq>| Inf X" by transfer (clarsimp, blast)
kuncar@53953
   119
  next
hoelzl@54258
   120
    assume "x \<in> X" "bdd_above X"
hoelzl@54258
   121
    then obtain z where "x \<in> X" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)"
hoelzl@54258
   122
      by (auto simp: bdd_above_def)
hoelzl@54258
   123
    then show "x |\<subseteq>| Sup X"
hoelzl@54258
   124
      by transfer (auto intro!: finite_Sup)
kuncar@53953
   125
  next
kuncar@53953
   126
    assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)"
kuncar@53953
   127
    then show "Sup X |\<subseteq>| z" by transfer (clarsimp, blast)
kuncar@53953
   128
  }
kuncar@53953
   129
qed
kuncar@53953
   130
end
kuncar@53953
   131
kuncar@53953
   132
instantiation fset :: (finite) complete_lattice 
kuncar@53953
   133
begin
kuncar@53953
   134
kuncar@53953
   135
lift_definition top_fset :: "'a fset" is UNIV parametric right_total_UNIV_transfer UNIV_transfer by simp
kuncar@53953
   136
kuncar@53953
   137
instance by default (transfer, auto)+
kuncar@53953
   138
end
kuncar@53953
   139
kuncar@53953
   140
instantiation fset :: (finite) complete_boolean_algebra
kuncar@53953
   141
begin
kuncar@53953
   142
kuncar@53953
   143
lift_definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" is uminus 
kuncar@53953
   144
  parametric right_total_Compl_transfer Compl_transfer by simp
kuncar@53953
   145
kuncar@53953
   146
instance by (default, simp_all only: INF_def SUP_def) (transfer, auto)+
kuncar@53953
   147
kuncar@53953
   148
end
kuncar@53953
   149
kuncar@53953
   150
abbreviation fUNIV :: "'a::finite fset" where "fUNIV \<equiv> top"
kuncar@53953
   151
abbreviation fuminus :: "'a::finite fset \<Rightarrow> 'a fset" ("|-| _" [81] 80) where "|-| x \<equiv> uminus x"
kuncar@53953
   152
blanchet@55129
   153
kuncar@53953
   154
subsection {* Other operations *}
kuncar@53953
   155
kuncar@53953
   156
lift_definition finsert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is insert parametric Lifting_Set.insert_transfer
kuncar@53953
   157
  by simp
kuncar@53953
   158
kuncar@53953
   159
syntax
kuncar@53953
   160
  "_insert_fset"     :: "args => 'a fset"  ("{|(_)|}")
kuncar@53953
   161
kuncar@53953
   162
translations
kuncar@53953
   163
  "{|x, xs|}" == "CONST finsert x {|xs|}"
kuncar@53953
   164
  "{|x|}"     == "CONST finsert x {||}"
kuncar@53953
   165
kuncar@53953
   166
lift_definition fmember :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<in>|" 50) is Set.member 
kuncar@53953
   167
  parametric member_transfer by simp
kuncar@53953
   168
kuncar@53953
   169
abbreviation notin_fset :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<notin>|" 50) where "x |\<notin>| S \<equiv> \<not> (x |\<in>| S)"
kuncar@53953
   170
kuncar@53953
   171
context
kuncar@53953
   172
begin
blanchet@55129
   173
kuncar@53953
   174
interpretation lifting_syntax .
kuncar@53953
   175
kuncar@53953
   176
lift_definition ffilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is Set.filter 
kuncar@53953
   177
  parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp
kuncar@53953
   178
kuncar@53953
   179
lemma compose_rel_to_Domainp:
kuncar@53953
   180
  assumes "left_unique R"
kuncar@53953
   181
  assumes "(R ===> op=) P P'"
kuncar@53953
   182
  shows "(R OO Lifting.invariant P' OO R\<inverse>\<inverse>) x y \<longleftrightarrow> Domainp R x \<and> P x \<and> x = y"
kuncar@53953
   183
using assms unfolding OO_def conversep_iff Domainp_iff left_unique_def fun_rel_def invariant_def
kuncar@53953
   184
by blast
kuncar@53953
   185
kuncar@53953
   186
lift_definition fPow :: "'a fset \<Rightarrow> 'a fset fset" is Pow parametric Pow_transfer 
kuncar@53953
   187
by (subst compose_rel_to_Domainp [OF _ finite_transfer]) (auto intro: transfer_raw finite_subset 
kuncar@53953
   188
  simp add: fset.pcr_cr_eq[symmetric] Domainp_set fset.domain_eq)
kuncar@53953
   189
kuncar@53953
   190
lift_definition fcard :: "'a fset \<Rightarrow> nat" is card parametric card_transfer by simp
kuncar@53953
   191
kuncar@53953
   192
lift_definition fimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" (infixr "|`|" 90) is image 
kuncar@53953
   193
  parametric image_transfer by simp
kuncar@53953
   194
kuncar@53953
   195
lift_definition fthe_elem :: "'a fset \<Rightarrow> 'a" is the_elem ..
kuncar@53953
   196
kuncar@53953
   197
(* FIXME why is not invariant here unfolded ? *)
kuncar@53953
   198
lift_definition fbind :: "'a fset \<Rightarrow> ('a \<Rightarrow> 'b fset) \<Rightarrow> 'b fset" is Set.bind parametric bind_transfer
kuncar@53953
   199
unfolding invariant_def Set.bind_def by clarsimp metis
kuncar@53953
   200
kuncar@53953
   201
lift_definition ffUnion :: "'a fset fset \<Rightarrow> 'a fset" is Union parametric Union_transfer
kuncar@53953
   202
by (subst(asm) compose_rel_to_Domainp [OF _ finite_transfer])
kuncar@53953
   203
  (auto intro: transfer_raw simp add: fset.pcr_cr_eq[symmetric] Domainp_set fset.domain_eq invariant_def)
kuncar@53953
   204
kuncar@53953
   205
lift_definition fBall :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" is Ball parametric Ball_transfer ..
kuncar@53953
   206
lift_definition fBex :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" is Bex parametric Bex_transfer ..
kuncar@53953
   207
kuncar@53963
   208
lift_definition ffold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b" is Finite_Set.fold ..
kuncar@53963
   209
blanchet@55129
   210
kuncar@53953
   211
subsection {* Transferred lemmas from Set.thy *}
kuncar@53953
   212
kuncar@53953
   213
lemmas fset_eqI = set_eqI[Transfer.transferred]
kuncar@53953
   214
lemmas fset_eq_iff[no_atp] = set_eq_iff[Transfer.transferred]
kuncar@53953
   215
lemmas fBallI[intro!] = ballI[Transfer.transferred]
kuncar@53953
   216
lemmas fbspec[dest?] = bspec[Transfer.transferred]
kuncar@53953
   217
lemmas fBallE[elim] = ballE[Transfer.transferred]
kuncar@53953
   218
lemmas fBexI[intro] = bexI[Transfer.transferred]
kuncar@53953
   219
lemmas rev_fBexI[intro?] = rev_bexI[Transfer.transferred]
kuncar@53953
   220
lemmas fBexCI = bexCI[Transfer.transferred]
kuncar@53953
   221
lemmas fBexE[elim!] = bexE[Transfer.transferred]
kuncar@53953
   222
lemmas fBall_triv[simp] = ball_triv[Transfer.transferred]
kuncar@53953
   223
lemmas fBex_triv[simp] = bex_triv[Transfer.transferred]
kuncar@53953
   224
lemmas fBex_triv_one_point1[simp] = bex_triv_one_point1[Transfer.transferred]
kuncar@53953
   225
lemmas fBex_triv_one_point2[simp] = bex_triv_one_point2[Transfer.transferred]
kuncar@53953
   226
lemmas fBex_one_point1[simp] = bex_one_point1[Transfer.transferred]
kuncar@53953
   227
lemmas fBex_one_point2[simp] = bex_one_point2[Transfer.transferred]
kuncar@53953
   228
lemmas fBall_one_point1[simp] = ball_one_point1[Transfer.transferred]
kuncar@53953
   229
lemmas fBall_one_point2[simp] = ball_one_point2[Transfer.transferred]
kuncar@53953
   230
lemmas fBall_conj_distrib = ball_conj_distrib[Transfer.transferred]
kuncar@53953
   231
lemmas fBex_disj_distrib = bex_disj_distrib[Transfer.transferred]
kuncar@53953
   232
lemmas fBall_cong = ball_cong[Transfer.transferred]
kuncar@53953
   233
lemmas fBex_cong = bex_cong[Transfer.transferred]
kuncar@53964
   234
lemmas fsubsetI[intro!] = subsetI[Transfer.transferred]
kuncar@53964
   235
lemmas fsubsetD[elim, intro?] = subsetD[Transfer.transferred]
kuncar@53964
   236
lemmas rev_fsubsetD[no_atp,intro?] = rev_subsetD[Transfer.transferred]
kuncar@53964
   237
lemmas fsubsetCE[no_atp,elim] = subsetCE[Transfer.transferred]
kuncar@53964
   238
lemmas fsubset_eq[no_atp] = subset_eq[Transfer.transferred]
kuncar@53964
   239
lemmas contra_fsubsetD[no_atp] = contra_subsetD[Transfer.transferred]
kuncar@53964
   240
lemmas fsubset_refl = subset_refl[Transfer.transferred]
kuncar@53964
   241
lemmas fsubset_trans = subset_trans[Transfer.transferred]
kuncar@53953
   242
lemmas fset_rev_mp = set_rev_mp[Transfer.transferred]
kuncar@53953
   243
lemmas fset_mp = set_mp[Transfer.transferred]
kuncar@53964
   244
lemmas fsubset_not_fsubset_eq[code] = subset_not_subset_eq[Transfer.transferred]
kuncar@53953
   245
lemmas eq_fmem_trans = eq_mem_trans[Transfer.transferred]
kuncar@53964
   246
lemmas fsubset_antisym[intro!] = subset_antisym[Transfer.transferred]
kuncar@53953
   247
lemmas fequalityD1 = equalityD1[Transfer.transferred]
kuncar@53953
   248
lemmas fequalityD2 = equalityD2[Transfer.transferred]
kuncar@53953
   249
lemmas fequalityE = equalityE[Transfer.transferred]
kuncar@53953
   250
lemmas fequalityCE[elim] = equalityCE[Transfer.transferred]
kuncar@53953
   251
lemmas eqfset_imp_iff = eqset_imp_iff[Transfer.transferred]
kuncar@53953
   252
lemmas eqfelem_imp_iff = eqelem_imp_iff[Transfer.transferred]
kuncar@53953
   253
lemmas fempty_iff[simp] = empty_iff[Transfer.transferred]
kuncar@53964
   254
lemmas fempty_fsubsetI[iff] = empty_subsetI[Transfer.transferred]
kuncar@53953
   255
lemmas equalsffemptyI = equals0I[Transfer.transferred]
kuncar@53953
   256
lemmas equalsffemptyD = equals0D[Transfer.transferred]
kuncar@53953
   257
lemmas fBall_fempty[simp] = ball_empty[Transfer.transferred]
kuncar@53953
   258
lemmas fBex_fempty[simp] = bex_empty[Transfer.transferred]
kuncar@53953
   259
lemmas fPow_iff[iff] = Pow_iff[Transfer.transferred]
kuncar@53953
   260
lemmas fPowI = PowI[Transfer.transferred]
kuncar@53953
   261
lemmas fPowD = PowD[Transfer.transferred]
kuncar@53953
   262
lemmas fPow_bottom = Pow_bottom[Transfer.transferred]
kuncar@53953
   263
lemmas fPow_top = Pow_top[Transfer.transferred]
kuncar@53953
   264
lemmas fPow_not_fempty = Pow_not_empty[Transfer.transferred]
kuncar@53953
   265
lemmas finter_iff[simp] = Int_iff[Transfer.transferred]
kuncar@53953
   266
lemmas finterI[intro!] = IntI[Transfer.transferred]
kuncar@53953
   267
lemmas finterD1 = IntD1[Transfer.transferred]
kuncar@53953
   268
lemmas finterD2 = IntD2[Transfer.transferred]
kuncar@53953
   269
lemmas finterE[elim!] = IntE[Transfer.transferred]
kuncar@53953
   270
lemmas funion_iff[simp] = Un_iff[Transfer.transferred]
kuncar@53953
   271
lemmas funionI1[elim?] = UnI1[Transfer.transferred]
kuncar@53953
   272
lemmas funionI2[elim?] = UnI2[Transfer.transferred]
kuncar@53953
   273
lemmas funionCI[intro!] = UnCI[Transfer.transferred]
kuncar@53953
   274
lemmas funionE[elim!] = UnE[Transfer.transferred]
kuncar@53953
   275
lemmas fminus_iff[simp] = Diff_iff[Transfer.transferred]
kuncar@53953
   276
lemmas fminusI[intro!] = DiffI[Transfer.transferred]
kuncar@53953
   277
lemmas fminusD1 = DiffD1[Transfer.transferred]
kuncar@53953
   278
lemmas fminusD2 = DiffD2[Transfer.transferred]
kuncar@53953
   279
lemmas fminusE[elim!] = DiffE[Transfer.transferred]
kuncar@53953
   280
lemmas finsert_iff[simp] = insert_iff[Transfer.transferred]
kuncar@53953
   281
lemmas finsertI1 = insertI1[Transfer.transferred]
kuncar@53953
   282
lemmas finsertI2 = insertI2[Transfer.transferred]
kuncar@53953
   283
lemmas finsertE[elim!] = insertE[Transfer.transferred]
kuncar@53953
   284
lemmas finsertCI[intro!] = insertCI[Transfer.transferred]
kuncar@53964
   285
lemmas fsubset_finsert_iff = subset_insert_iff[Transfer.transferred]
kuncar@53953
   286
lemmas finsert_ident = insert_ident[Transfer.transferred]
kuncar@53953
   287
lemmas fsingletonI[intro!,no_atp] = singletonI[Transfer.transferred]
kuncar@53953
   288
lemmas fsingletonD[dest!,no_atp] = singletonD[Transfer.transferred]
kuncar@53953
   289
lemmas fsingleton_iff = singleton_iff[Transfer.transferred]
kuncar@53953
   290
lemmas fsingleton_inject[dest!] = singleton_inject[Transfer.transferred]
kuncar@53953
   291
lemmas fsingleton_finsert_inj_eq[iff,no_atp] = singleton_insert_inj_eq[Transfer.transferred]
kuncar@53953
   292
lemmas fsingleton_finsert_inj_eq'[iff,no_atp] = singleton_insert_inj_eq'[Transfer.transferred]
kuncar@53964
   293
lemmas fsubset_fsingletonD = subset_singletonD[Transfer.transferred]
kuncar@53953
   294
lemmas fminus_single_finsert = diff_single_insert[Transfer.transferred]
kuncar@53953
   295
lemmas fdoubleton_eq_iff = doubleton_eq_iff[Transfer.transferred]
kuncar@53953
   296
lemmas funion_fsingleton_iff = Un_singleton_iff[Transfer.transferred]
kuncar@53953
   297
lemmas fsingleton_funion_iff = singleton_Un_iff[Transfer.transferred]
kuncar@53953
   298
lemmas fimage_eqI[simp, intro] = image_eqI[Transfer.transferred]
kuncar@53953
   299
lemmas fimageI = imageI[Transfer.transferred]
kuncar@53953
   300
lemmas rev_fimage_eqI = rev_image_eqI[Transfer.transferred]
kuncar@53953
   301
lemmas fimageE[elim!] = imageE[Transfer.transferred]
kuncar@53953
   302
lemmas Compr_fimage_eq = Compr_image_eq[Transfer.transferred]
kuncar@53953
   303
lemmas fimage_funion = image_Un[Transfer.transferred]
kuncar@53953
   304
lemmas fimage_iff = image_iff[Transfer.transferred]
kuncar@53964
   305
lemmas fimage_fsubset_iff[no_atp] = image_subset_iff[Transfer.transferred]
kuncar@53964
   306
lemmas fimage_fsubsetI = image_subsetI[Transfer.transferred]
kuncar@53953
   307
lemmas fimage_ident[simp] = image_ident[Transfer.transferred]
kuncar@53953
   308
lemmas split_if_fmem1 = split_if_mem1[Transfer.transferred]
kuncar@53953
   309
lemmas split_if_fmem2 = split_if_mem2[Transfer.transferred]
kuncar@53964
   310
lemmas pfsubsetI[intro!,no_atp] = psubsetI[Transfer.transferred]
kuncar@53964
   311
lemmas pfsubsetE[elim!,no_atp] = psubsetE[Transfer.transferred]
kuncar@53964
   312
lemmas pfsubset_finsert_iff = psubset_insert_iff[Transfer.transferred]
kuncar@53964
   313
lemmas pfsubset_eq = psubset_eq[Transfer.transferred]
kuncar@53964
   314
lemmas pfsubset_imp_fsubset = psubset_imp_subset[Transfer.transferred]
kuncar@53964
   315
lemmas pfsubset_trans = psubset_trans[Transfer.transferred]
kuncar@53964
   316
lemmas pfsubsetD = psubsetD[Transfer.transferred]
kuncar@53964
   317
lemmas pfsubset_fsubset_trans = psubset_subset_trans[Transfer.transferred]
kuncar@53964
   318
lemmas fsubset_pfsubset_trans = subset_psubset_trans[Transfer.transferred]
kuncar@53964
   319
lemmas pfsubset_imp_ex_fmem = psubset_imp_ex_mem[Transfer.transferred]
kuncar@53953
   320
lemmas fimage_fPow_mono = image_Pow_mono[Transfer.transferred]
kuncar@53953
   321
lemmas fimage_fPow_surj = image_Pow_surj[Transfer.transferred]
kuncar@53964
   322
lemmas fsubset_finsertI = subset_insertI[Transfer.transferred]
kuncar@53964
   323
lemmas fsubset_finsertI2 = subset_insertI2[Transfer.transferred]
kuncar@53964
   324
lemmas fsubset_finsert = subset_insert[Transfer.transferred]
kuncar@53953
   325
lemmas funion_upper1 = Un_upper1[Transfer.transferred]
kuncar@53953
   326
lemmas funion_upper2 = Un_upper2[Transfer.transferred]
kuncar@53953
   327
lemmas funion_least = Un_least[Transfer.transferred]
kuncar@53953
   328
lemmas finter_lower1 = Int_lower1[Transfer.transferred]
kuncar@53953
   329
lemmas finter_lower2 = Int_lower2[Transfer.transferred]
kuncar@53953
   330
lemmas finter_greatest = Int_greatest[Transfer.transferred]
kuncar@53964
   331
lemmas fminus_fsubset = Diff_subset[Transfer.transferred]
kuncar@53964
   332
lemmas fminus_fsubset_conv = Diff_subset_conv[Transfer.transferred]
kuncar@53964
   333
lemmas fsubset_fempty[simp] = subset_empty[Transfer.transferred]
kuncar@53964
   334
lemmas not_pfsubset_fempty[iff] = not_psubset_empty[Transfer.transferred]
kuncar@53953
   335
lemmas finsert_is_funion = insert_is_Un[Transfer.transferred]
kuncar@53953
   336
lemmas finsert_not_fempty[simp] = insert_not_empty[Transfer.transferred]
kuncar@53953
   337
lemmas fempty_not_finsert = empty_not_insert[Transfer.transferred]
kuncar@53953
   338
lemmas finsert_absorb = insert_absorb[Transfer.transferred]
kuncar@53953
   339
lemmas finsert_absorb2[simp] = insert_absorb2[Transfer.transferred]
kuncar@53953
   340
lemmas finsert_commute = insert_commute[Transfer.transferred]
kuncar@53964
   341
lemmas finsert_fsubset[simp] = insert_subset[Transfer.transferred]
kuncar@53953
   342
lemmas finsert_inter_finsert[simp] = insert_inter_insert[Transfer.transferred]
kuncar@53953
   343
lemmas finsert_disjoint[simp,no_atp] = insert_disjoint[Transfer.transferred]
kuncar@53953
   344
lemmas disjoint_finsert[simp,no_atp] = disjoint_insert[Transfer.transferred]
kuncar@53953
   345
lemmas fimage_fempty[simp] = image_empty[Transfer.transferred]
kuncar@53953
   346
lemmas fimage_finsert[simp] = image_insert[Transfer.transferred]
kuncar@53953
   347
lemmas fimage_constant = image_constant[Transfer.transferred]
kuncar@53953
   348
lemmas fimage_constant_conv = image_constant_conv[Transfer.transferred]
kuncar@53953
   349
lemmas fimage_fimage = image_image[Transfer.transferred]
kuncar@53953
   350
lemmas finsert_fimage[simp] = insert_image[Transfer.transferred]
kuncar@53953
   351
lemmas fimage_is_fempty[iff] = image_is_empty[Transfer.transferred]
kuncar@53953
   352
lemmas fempty_is_fimage[iff] = empty_is_image[Transfer.transferred]
kuncar@53953
   353
lemmas fimage_cong = image_cong[Transfer.transferred]
kuncar@53964
   354
lemmas fimage_finter_fsubset = image_Int_subset[Transfer.transferred]
kuncar@53964
   355
lemmas fimage_fminus_fsubset = image_diff_subset[Transfer.transferred]
kuncar@53953
   356
lemmas finter_absorb = Int_absorb[Transfer.transferred]
kuncar@53953
   357
lemmas finter_left_absorb = Int_left_absorb[Transfer.transferred]
kuncar@53953
   358
lemmas finter_commute = Int_commute[Transfer.transferred]
kuncar@53953
   359
lemmas finter_left_commute = Int_left_commute[Transfer.transferred]
kuncar@53953
   360
lemmas finter_assoc = Int_assoc[Transfer.transferred]
kuncar@53953
   361
lemmas finter_ac = Int_ac[Transfer.transferred]
kuncar@53953
   362
lemmas finter_absorb1 = Int_absorb1[Transfer.transferred]
kuncar@53953
   363
lemmas finter_absorb2 = Int_absorb2[Transfer.transferred]
kuncar@53953
   364
lemmas finter_fempty_left = Int_empty_left[Transfer.transferred]
kuncar@53953
   365
lemmas finter_fempty_right = Int_empty_right[Transfer.transferred]
kuncar@53953
   366
lemmas disjoint_iff_fnot_equal = disjoint_iff_not_equal[Transfer.transferred]
kuncar@53953
   367
lemmas finter_funion_distrib = Int_Un_distrib[Transfer.transferred]
kuncar@53953
   368
lemmas finter_funion_distrib2 = Int_Un_distrib2[Transfer.transferred]
kuncar@53964
   369
lemmas finter_fsubset_iff[no_atp, simp] = Int_subset_iff[Transfer.transferred]
kuncar@53953
   370
lemmas funion_absorb = Un_absorb[Transfer.transferred]
kuncar@53953
   371
lemmas funion_left_absorb = Un_left_absorb[Transfer.transferred]
kuncar@53953
   372
lemmas funion_commute = Un_commute[Transfer.transferred]
kuncar@53953
   373
lemmas funion_left_commute = Un_left_commute[Transfer.transferred]
kuncar@53953
   374
lemmas funion_assoc = Un_assoc[Transfer.transferred]
kuncar@53953
   375
lemmas funion_ac = Un_ac[Transfer.transferred]
kuncar@53953
   376
lemmas funion_absorb1 = Un_absorb1[Transfer.transferred]
kuncar@53953
   377
lemmas funion_absorb2 = Un_absorb2[Transfer.transferred]
kuncar@53953
   378
lemmas funion_fempty_left = Un_empty_left[Transfer.transferred]
kuncar@53953
   379
lemmas funion_fempty_right = Un_empty_right[Transfer.transferred]
kuncar@53953
   380
lemmas funion_finsert_left[simp] = Un_insert_left[Transfer.transferred]
kuncar@53953
   381
lemmas funion_finsert_right[simp] = Un_insert_right[Transfer.transferred]
kuncar@53953
   382
lemmas finter_finsert_left = Int_insert_left[Transfer.transferred]
kuncar@53953
   383
lemmas finter_finsert_left_ifffempty[simp] = Int_insert_left_if0[Transfer.transferred]
kuncar@53953
   384
lemmas finter_finsert_left_if1[simp] = Int_insert_left_if1[Transfer.transferred]
kuncar@53953
   385
lemmas finter_finsert_right = Int_insert_right[Transfer.transferred]
kuncar@53953
   386
lemmas finter_finsert_right_ifffempty[simp] = Int_insert_right_if0[Transfer.transferred]
kuncar@53953
   387
lemmas finter_finsert_right_if1[simp] = Int_insert_right_if1[Transfer.transferred]
kuncar@53953
   388
lemmas funion_finter_distrib = Un_Int_distrib[Transfer.transferred]
kuncar@53953
   389
lemmas funion_finter_distrib2 = Un_Int_distrib2[Transfer.transferred]
kuncar@53953
   390
lemmas funion_finter_crazy = Un_Int_crazy[Transfer.transferred]
kuncar@53964
   391
lemmas fsubset_funion_eq = subset_Un_eq[Transfer.transferred]
kuncar@53953
   392
lemmas funion_fempty[iff] = Un_empty[Transfer.transferred]
kuncar@53964
   393
lemmas funion_fsubset_iff[no_atp, simp] = Un_subset_iff[Transfer.transferred]
kuncar@53953
   394
lemmas funion_fminus_finter = Un_Diff_Int[Transfer.transferred]
kuncar@53953
   395
lemmas fminus_finter2 = Diff_Int2[Transfer.transferred]
kuncar@53953
   396
lemmas funion_finter_assoc_eq = Un_Int_assoc_eq[Transfer.transferred]
kuncar@53953
   397
lemmas fBall_funion = ball_Un[Transfer.transferred]
kuncar@53953
   398
lemmas fBex_funion = bex_Un[Transfer.transferred]
kuncar@53953
   399
lemmas fminus_eq_fempty_iff[simp,no_atp] = Diff_eq_empty_iff[Transfer.transferred]
kuncar@53953
   400
lemmas fminus_cancel[simp] = Diff_cancel[Transfer.transferred]
kuncar@53953
   401
lemmas fminus_idemp[simp] = Diff_idemp[Transfer.transferred]
kuncar@53953
   402
lemmas fminus_triv = Diff_triv[Transfer.transferred]
kuncar@53953
   403
lemmas fempty_fminus[simp] = empty_Diff[Transfer.transferred]
kuncar@53953
   404
lemmas fminus_fempty[simp] = Diff_empty[Transfer.transferred]
kuncar@53953
   405
lemmas fminus_finsertffempty[simp,no_atp] = Diff_insert0[Transfer.transferred]
kuncar@53953
   406
lemmas fminus_finsert = Diff_insert[Transfer.transferred]
kuncar@53953
   407
lemmas fminus_finsert2 = Diff_insert2[Transfer.transferred]
kuncar@53953
   408
lemmas finsert_fminus_if = insert_Diff_if[Transfer.transferred]
kuncar@53953
   409
lemmas finsert_fminus1[simp] = insert_Diff1[Transfer.transferred]
kuncar@53953
   410
lemmas finsert_fminus_single[simp] = insert_Diff_single[Transfer.transferred]
kuncar@53953
   411
lemmas finsert_fminus = insert_Diff[Transfer.transferred]
kuncar@53953
   412
lemmas fminus_finsert_absorb = Diff_insert_absorb[Transfer.transferred]
kuncar@53953
   413
lemmas fminus_disjoint[simp] = Diff_disjoint[Transfer.transferred]
kuncar@53953
   414
lemmas fminus_partition = Diff_partition[Transfer.transferred]
kuncar@53953
   415
lemmas double_fminus = double_diff[Transfer.transferred]
kuncar@53953
   416
lemmas funion_fminus_cancel[simp] = Un_Diff_cancel[Transfer.transferred]
kuncar@53953
   417
lemmas funion_fminus_cancel2[simp] = Un_Diff_cancel2[Transfer.transferred]
kuncar@53953
   418
lemmas fminus_funion = Diff_Un[Transfer.transferred]
kuncar@53953
   419
lemmas fminus_finter = Diff_Int[Transfer.transferred]
kuncar@53953
   420
lemmas funion_fminus = Un_Diff[Transfer.transferred]
kuncar@53953
   421
lemmas finter_fminus = Int_Diff[Transfer.transferred]
kuncar@53953
   422
lemmas fminus_finter_distrib = Diff_Int_distrib[Transfer.transferred]
kuncar@53953
   423
lemmas fminus_finter_distrib2 = Diff_Int_distrib2[Transfer.transferred]
kuncar@53953
   424
lemmas fUNIV_bool[no_atp] = UNIV_bool[Transfer.transferred]
kuncar@53953
   425
lemmas fPow_fempty[simp] = Pow_empty[Transfer.transferred]
kuncar@53953
   426
lemmas fPow_finsert = Pow_insert[Transfer.transferred]
kuncar@53964
   427
lemmas funion_fPow_fsubset = Un_Pow_subset[Transfer.transferred]
kuncar@53953
   428
lemmas fPow_finter_eq[simp] = Pow_Int_eq[Transfer.transferred]
kuncar@53964
   429
lemmas fset_eq_fsubset = set_eq_subset[Transfer.transferred]
kuncar@53964
   430
lemmas fsubset_iff[no_atp] = subset_iff[Transfer.transferred]
kuncar@53964
   431
lemmas fsubset_iff_pfsubset_eq = subset_iff_psubset_eq[Transfer.transferred]
kuncar@53953
   432
lemmas all_not_fin_conv[simp] = all_not_in_conv[Transfer.transferred]
kuncar@53953
   433
lemmas ex_fin_conv = ex_in_conv[Transfer.transferred]
kuncar@53953
   434
lemmas fimage_mono = image_mono[Transfer.transferred]
kuncar@53953
   435
lemmas fPow_mono = Pow_mono[Transfer.transferred]
kuncar@53953
   436
lemmas finsert_mono = insert_mono[Transfer.transferred]
kuncar@53953
   437
lemmas funion_mono = Un_mono[Transfer.transferred]
kuncar@53953
   438
lemmas finter_mono = Int_mono[Transfer.transferred]
kuncar@53953
   439
lemmas fminus_mono = Diff_mono[Transfer.transferred]
kuncar@53953
   440
lemmas fin_mono = in_mono[Transfer.transferred]
kuncar@53953
   441
lemmas fthe_felem_eq[simp] = the_elem_eq[Transfer.transferred]
kuncar@53953
   442
lemmas fLeast_mono = Least_mono[Transfer.transferred]
kuncar@53953
   443
lemmas fbind_fbind = bind_bind[Transfer.transferred]
kuncar@53953
   444
lemmas fempty_fbind[simp] = empty_bind[Transfer.transferred]
kuncar@53953
   445
lemmas nonfempty_fbind_const = nonempty_bind_const[Transfer.transferred]
kuncar@53953
   446
lemmas fbind_const = bind_const[Transfer.transferred]
kuncar@53953
   447
lemmas ffmember_filter[simp] = member_filter[Transfer.transferred]
kuncar@53953
   448
lemmas fequalityI = equalityI[Transfer.transferred]
kuncar@53953
   449
blanchet@55129
   450
kuncar@53953
   451
subsection {* Additional lemmas*}
kuncar@53953
   452
wenzelm@53969
   453
subsubsection {* @{text fsingleton} *}
kuncar@53953
   454
kuncar@53953
   455
lemmas fsingletonE = fsingletonD [elim_format]
kuncar@53953
   456
blanchet@55129
   457
wenzelm@53969
   458
subsubsection {* @{text femepty} *}
kuncar@53953
   459
kuncar@53953
   460
lemma fempty_ffilter[simp]: "ffilter (\<lambda>_. False) A = {||}"
kuncar@53953
   461
by transfer auto
kuncar@53953
   462
kuncar@53953
   463
(* FIXME, transferred doesn't work here *)
kuncar@53953
   464
lemma femptyE [elim!]: "a |\<in>| {||} \<Longrightarrow> P"
kuncar@53953
   465
  by simp
kuncar@53953
   466
blanchet@55129
   467
wenzelm@53969
   468
subsubsection {* @{text fset} *}
kuncar@53953
   469
kuncar@53963
   470
lemmas fset_simps[simp] = bot_fset.rep_eq finsert.rep_eq
kuncar@53953
   471
kuncar@53953
   472
lemma finite_fset [simp]: 
kuncar@53953
   473
  shows "finite (fset S)"
kuncar@53953
   474
  by transfer simp
kuncar@53953
   475
kuncar@53963
   476
lemmas fset_cong = fset_inject
kuncar@53953
   477
kuncar@53953
   478
lemma filter_fset [simp]:
kuncar@53953
   479
  shows "fset (ffilter P xs) = Collect P \<inter> fset xs"
kuncar@53953
   480
  by transfer auto
kuncar@53953
   481
kuncar@53963
   482
lemma notin_fset: "x |\<notin>| S \<longleftrightarrow> x \<notin> fset S" by (simp add: fmember.rep_eq)
kuncar@53963
   483
kuncar@53963
   484
lemmas inter_fset[simp] = inf_fset.rep_eq
kuncar@53953
   485
kuncar@53963
   486
lemmas union_fset[simp] = sup_fset.rep_eq
kuncar@53953
   487
kuncar@53963
   488
lemmas minus_fset[simp] = minus_fset.rep_eq
kuncar@53953
   489
blanchet@55129
   490
wenzelm@53969
   491
subsubsection {* @{text filter_fset} *}
kuncar@53953
   492
kuncar@53953
   493
lemma subset_ffilter: 
kuncar@53953
   494
  "ffilter P A |\<subseteq>| ffilter Q A = (\<forall> x. x |\<in>| A \<longrightarrow> P x \<longrightarrow> Q x)"
kuncar@53953
   495
  by transfer auto
kuncar@53953
   496
kuncar@53953
   497
lemma eq_ffilter: 
kuncar@53953
   498
  "(ffilter P A = ffilter Q A) = (\<forall>x. x |\<in>| A \<longrightarrow> P x = Q x)"
kuncar@53953
   499
  by transfer auto
kuncar@53953
   500
kuncar@53964
   501
lemma pfsubset_ffilter:
kuncar@53953
   502
  "(\<And>x. x |\<in>| A \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> (x |\<in>| A & \<not> P x & Q x) \<Longrightarrow> 
kuncar@53953
   503
    ffilter P A |\<subset>| ffilter Q A"
kuncar@53953
   504
  unfolding less_fset_def by (auto simp add: subset_ffilter eq_ffilter)
kuncar@53953
   505
blanchet@55129
   506
wenzelm@53969
   507
subsubsection {* @{text finsert} *}
kuncar@53953
   508
kuncar@53953
   509
(* FIXME, transferred doesn't work here *)
kuncar@53953
   510
lemma set_finsert:
kuncar@53953
   511
  assumes "x |\<in>| A"
kuncar@53953
   512
  obtains B where "A = finsert x B" and "x |\<notin>| B"
kuncar@53953
   513
using assms by transfer (metis Set.set_insert finite_insert)
kuncar@53953
   514
kuncar@53953
   515
lemma mk_disjoint_finsert: "a |\<in>| A \<Longrightarrow> \<exists>B. A = finsert a B \<and> a |\<notin>| B"
kuncar@53953
   516
  by (rule_tac x = "A |-| {|a|}" in exI, blast)
kuncar@53953
   517
blanchet@55129
   518
wenzelm@53969
   519
subsubsection {* @{text fimage} *}
kuncar@53953
   520
kuncar@53953
   521
lemma subset_fimage_iff: "(B |\<subseteq>| f|`|A) = (\<exists> AA. AA |\<subseteq>| A \<and> B = f|`|AA)"
kuncar@53953
   522
by transfer (metis mem_Collect_eq rev_finite_subset subset_image_iff)
kuncar@53953
   523
blanchet@55129
   524
kuncar@53953
   525
subsubsection {* bounded quantification *}
kuncar@53953
   526
kuncar@53953
   527
lemma bex_simps [simp, no_atp]:
kuncar@53953
   528
  "\<And>A P Q. fBex A (\<lambda>x. P x \<and> Q) = (fBex A P \<and> Q)" 
kuncar@53953
   529
  "\<And>A P Q. fBex A (\<lambda>x. P \<and> Q x) = (P \<and> fBex A Q)"
kuncar@53953
   530
  "\<And>P. fBex {||} P = False" 
kuncar@53953
   531
  "\<And>a B P. fBex (finsert a B) P = (P a \<or> fBex B P)"
kuncar@53953
   532
  "\<And>A P f. fBex (f |`| A) P = fBex A (\<lambda>x. P (f x))"
kuncar@53953
   533
  "\<And>A P. (\<not> fBex A P) = fBall A (\<lambda>x. \<not> P x)"
kuncar@53953
   534
by auto
kuncar@53953
   535
kuncar@53953
   536
lemma ball_simps [simp, no_atp]:
kuncar@53953
   537
  "\<And>A P Q. fBall A (\<lambda>x. P x \<or> Q) = (fBall A P \<or> Q)"
kuncar@53953
   538
  "\<And>A P Q. fBall A (\<lambda>x. P \<or> Q x) = (P \<or> fBall A Q)"
kuncar@53953
   539
  "\<And>A P Q. fBall A (\<lambda>x. P \<longrightarrow> Q x) = (P \<longrightarrow> fBall A Q)"
kuncar@53953
   540
  "\<And>A P Q. fBall A (\<lambda>x. P x \<longrightarrow> Q) = (fBex A P \<longrightarrow> Q)"
kuncar@53953
   541
  "\<And>P. fBall {||} P = True"
kuncar@53953
   542
  "\<And>a B P. fBall (finsert a B) P = (P a \<and> fBall B P)"
kuncar@53953
   543
  "\<And>A P f. fBall (f |`| A) P = fBall A (\<lambda>x. P (f x))"
kuncar@53953
   544
  "\<And>A P. (\<not> fBall A P) = fBex A (\<lambda>x. \<not> P x)"
kuncar@53953
   545
by auto
kuncar@53953
   546
kuncar@53953
   547
lemma atomize_fBall:
kuncar@53953
   548
    "(\<And>x. x |\<in>| A ==> P x) == Trueprop (fBall A (\<lambda>x. P x))"
kuncar@53953
   549
apply (simp only: atomize_all atomize_imp)
kuncar@53953
   550
apply (rule equal_intr_rule)
kuncar@53953
   551
by (transfer, simp)+
kuncar@53953
   552
kuncar@53963
   553
end
kuncar@53963
   554
blanchet@55129
   555
wenzelm@53969
   556
subsubsection {* @{text fcard} *}
kuncar@53963
   557
kuncar@53964
   558
(* FIXME: improve transferred to handle bounded meta quantification *)
kuncar@53964
   559
kuncar@53963
   560
lemma fcard_fempty:
kuncar@53963
   561
  "fcard {||} = 0"
kuncar@53963
   562
  by transfer (rule card_empty)
kuncar@53963
   563
kuncar@53963
   564
lemma fcard_finsert_disjoint:
kuncar@53963
   565
  "x |\<notin>| A \<Longrightarrow> fcard (finsert x A) = Suc (fcard A)"
kuncar@53963
   566
  by transfer (rule card_insert_disjoint)
kuncar@53963
   567
kuncar@53963
   568
lemma fcard_finsert_if:
kuncar@53963
   569
  "fcard (finsert x A) = (if x |\<in>| A then fcard A else Suc (fcard A))"
kuncar@53963
   570
  by transfer (rule card_insert_if)
kuncar@53963
   571
kuncar@53963
   572
lemma card_0_eq [simp, no_atp]:
kuncar@53963
   573
  "fcard A = 0 \<longleftrightarrow> A = {||}"
kuncar@53963
   574
  by transfer (rule card_0_eq)
kuncar@53963
   575
kuncar@53963
   576
lemma fcard_Suc_fminus1:
kuncar@53963
   577
  "x |\<in>| A \<Longrightarrow> Suc (fcard (A |-| {|x|})) = fcard A"
kuncar@53963
   578
  by transfer (rule card_Suc_Diff1)
kuncar@53963
   579
kuncar@53963
   580
lemma fcard_fminus_fsingleton:
kuncar@53963
   581
  "x |\<in>| A \<Longrightarrow> fcard (A |-| {|x|}) = fcard A - 1"
kuncar@53963
   582
  by transfer (rule card_Diff_singleton)
kuncar@53963
   583
kuncar@53963
   584
lemma fcard_fminus_fsingleton_if:
kuncar@53963
   585
  "fcard (A |-| {|x|}) = (if x |\<in>| A then fcard A - 1 else fcard A)"
kuncar@53963
   586
  by transfer (rule card_Diff_singleton_if)
kuncar@53963
   587
kuncar@53963
   588
lemma fcard_fminus_finsert[simp]:
kuncar@53963
   589
  assumes "a |\<in>| A" and "a |\<notin>| B"
kuncar@53963
   590
  shows "fcard (A |-| finsert a B) = fcard (A |-| B) - 1"
kuncar@53963
   591
using assms by transfer (rule card_Diff_insert)
kuncar@53963
   592
kuncar@53963
   593
lemma fcard_finsert: "fcard (finsert x A) = Suc (fcard (A |-| {|x|}))"
kuncar@53963
   594
by transfer (rule card_insert)
kuncar@53963
   595
kuncar@53963
   596
lemma fcard_finsert_le: "fcard A \<le> fcard (finsert x A)"
kuncar@53963
   597
by transfer (rule card_insert_le)
kuncar@53963
   598
kuncar@53963
   599
lemma fcard_mono:
kuncar@53963
   600
  "A |\<subseteq>| B \<Longrightarrow> fcard A \<le> fcard B"
kuncar@53963
   601
by transfer (rule card_mono)
kuncar@53963
   602
kuncar@53963
   603
lemma fcard_seteq: "A |\<subseteq>| B \<Longrightarrow> fcard B \<le> fcard A \<Longrightarrow> A = B"
kuncar@53963
   604
by transfer (rule card_seteq)
kuncar@53963
   605
kuncar@53963
   606
lemma pfsubset_fcard_mono: "A |\<subset>| B \<Longrightarrow> fcard A < fcard B"
kuncar@53963
   607
by transfer (rule psubset_card_mono)
kuncar@53963
   608
kuncar@53963
   609
lemma fcard_funion_finter: 
kuncar@53963
   610
  "fcard A + fcard B = fcard (A |\<union>| B) + fcard (A |\<inter>| B)"
kuncar@53963
   611
by transfer (rule card_Un_Int)
kuncar@53963
   612
kuncar@53963
   613
lemma fcard_funion_disjoint:
kuncar@53963
   614
  "A |\<inter>| B = {||} \<Longrightarrow> fcard (A |\<union>| B) = fcard A + fcard B"
kuncar@53963
   615
by transfer (rule card_Un_disjoint)
kuncar@53963
   616
kuncar@53963
   617
lemma fcard_funion_fsubset:
kuncar@53963
   618
  "B |\<subseteq>| A \<Longrightarrow> fcard (A |-| B) = fcard A - fcard B"
kuncar@53963
   619
by transfer (rule card_Diff_subset)
kuncar@53963
   620
kuncar@53963
   621
lemma diff_fcard_le_fcard_fminus:
kuncar@53963
   622
  "fcard A - fcard B \<le> fcard(A |-| B)"
kuncar@53963
   623
by transfer (rule diff_card_le_card_Diff)
kuncar@53963
   624
kuncar@53963
   625
lemma fcard_fminus1_less: "x |\<in>| A \<Longrightarrow> fcard (A |-| {|x|}) < fcard A"
kuncar@53963
   626
by transfer (rule card_Diff1_less)
kuncar@53963
   627
kuncar@53963
   628
lemma fcard_fminus2_less:
kuncar@53963
   629
  "x |\<in>| A \<Longrightarrow> y |\<in>| A \<Longrightarrow> fcard (A |-| {|x|} |-| {|y|}) < fcard A"
kuncar@53963
   630
by transfer (rule card_Diff2_less)
kuncar@53963
   631
kuncar@53963
   632
lemma fcard_fminus1_le: "fcard (A |-| {|x|}) \<le> fcard A"
kuncar@53963
   633
by transfer (rule card_Diff1_le)
kuncar@53963
   634
kuncar@53963
   635
lemma fcard_pfsubset: "A |\<subseteq>| B \<Longrightarrow> fcard A < fcard B \<Longrightarrow> A < B"
kuncar@53963
   636
by transfer (rule card_psubset)
kuncar@53963
   637
blanchet@55129
   638
wenzelm@53969
   639
subsubsection {* @{text ffold} *}
kuncar@53963
   640
kuncar@53963
   641
(* FIXME: improve transferred to handle bounded meta quantification *)
kuncar@53963
   642
kuncar@53963
   643
context comp_fun_commute
kuncar@53963
   644
begin
kuncar@53963
   645
  lemmas ffold_empty[simp] = fold_empty[Transfer.transferred]
kuncar@53963
   646
kuncar@53963
   647
  lemma ffold_finsert [simp]:
kuncar@53963
   648
    assumes "x |\<notin>| A"
kuncar@53963
   649
    shows "ffold f z (finsert x A) = f x (ffold f z A)"
kuncar@53963
   650
    using assms by (transfer fixing: f) (rule fold_insert)
kuncar@53963
   651
kuncar@53963
   652
  lemma ffold_fun_left_comm:
kuncar@53963
   653
    "f x (ffold f z A) = ffold f (f x z) A"
kuncar@53963
   654
    by (transfer fixing: f) (rule fold_fun_left_comm)
kuncar@53963
   655
kuncar@53963
   656
  lemma ffold_finsert2:
kuncar@53963
   657
    "x |\<notin>| A \<Longrightarrow> ffold f z (finsert x A)  = ffold f (f x z) A"
kuncar@53963
   658
    by (transfer fixing: f) (rule fold_insert2)
kuncar@53963
   659
kuncar@53963
   660
  lemma ffold_rec:
kuncar@53963
   661
    assumes "x |\<in>| A"
kuncar@53963
   662
    shows "ffold f z A = f x (ffold f z (A |-| {|x|}))"
kuncar@53963
   663
    using assms by (transfer fixing: f) (rule fold_rec)
kuncar@53963
   664
  
kuncar@53963
   665
  lemma ffold_finsert_fremove:
kuncar@53963
   666
    "ffold f z (finsert x A) = f x (ffold f z (A |-| {|x|}))"
kuncar@53963
   667
     by (transfer fixing: f) (rule fold_insert_remove)
kuncar@53963
   668
end
kuncar@53963
   669
kuncar@53963
   670
lemma ffold_fimage:
kuncar@53963
   671
  assumes "inj_on g (fset A)"
kuncar@53963
   672
  shows "ffold f z (g |`| A) = ffold (f \<circ> g) z A"
kuncar@53963
   673
using assms by transfer' (rule fold_image)
kuncar@53963
   674
kuncar@53963
   675
lemma ffold_cong:
kuncar@53963
   676
  assumes "comp_fun_commute f" "comp_fun_commute g"
kuncar@53963
   677
  "\<And>x. x |\<in>| A \<Longrightarrow> f x = g x"
kuncar@53963
   678
    and "s = t" and "A = B"
kuncar@53963
   679
  shows "ffold f s A = ffold g t B"
kuncar@53963
   680
using assms by transfer (metis Finite_Set.fold_cong)
kuncar@53963
   681
kuncar@53963
   682
context comp_fun_idem
kuncar@53963
   683
begin
kuncar@53963
   684
kuncar@53963
   685
  lemma ffold_finsert_idem:
kuncar@53963
   686
    "ffold f z (finsert x A)  = f x (ffold f z A)"
kuncar@53963
   687
    by (transfer fixing: f) (rule fold_insert_idem)
kuncar@53963
   688
  
kuncar@53963
   689
  declare ffold_finsert [simp del] ffold_finsert_idem [simp]
kuncar@53963
   690
  
kuncar@53963
   691
  lemma ffold_finsert_idem2:
kuncar@53963
   692
    "ffold f z (finsert x A) = ffold f (f x z) A"
kuncar@53963
   693
    by (transfer fixing: f) (rule fold_insert_idem2)
kuncar@53963
   694
kuncar@53963
   695
end
kuncar@53963
   696
blanchet@55129
   697
kuncar@53953
   698
subsection {* Choice in fsets *}
kuncar@53953
   699
kuncar@53953
   700
lemma fset_choice: 
kuncar@53953
   701
  assumes "\<forall>x. x |\<in>| A \<longrightarrow> (\<exists>y. P x y)"
kuncar@53953
   702
  shows "\<exists>f. \<forall>x. x |\<in>| A \<longrightarrow> P x (f x)"
kuncar@53953
   703
  using assms by transfer metis
kuncar@53953
   704
blanchet@55129
   705
kuncar@53953
   706
subsection {* Induction and Cases rules for fsets *}
kuncar@53953
   707
kuncar@53953
   708
lemma fset_exhaust [case_names empty insert, cases type: fset]:
kuncar@53953
   709
  assumes fempty_case: "S = {||} \<Longrightarrow> P" 
kuncar@53953
   710
  and     finsert_case: "\<And>x S'. S = finsert x S' \<Longrightarrow> P"
kuncar@53953
   711
  shows "P"
kuncar@53953
   712
  using assms by transfer blast
kuncar@53953
   713
kuncar@53953
   714
lemma fset_induct [case_names empty insert]:
kuncar@53953
   715
  assumes fempty_case: "P {||}"
kuncar@53953
   716
  and     finsert_case: "\<And>x S. P S \<Longrightarrow> P (finsert x S)"
kuncar@53953
   717
  shows "P S"
kuncar@53953
   718
proof -
kuncar@53953
   719
  (* FIXME transfer and right_total vs. bi_total *)
kuncar@53953
   720
  note Domainp_forall_transfer[transfer_rule]
kuncar@53953
   721
  show ?thesis
kuncar@53953
   722
  using assms by transfer (auto intro: finite_induct)
kuncar@53953
   723
qed
kuncar@53953
   724
kuncar@53953
   725
lemma fset_induct_stronger [case_names empty insert, induct type: fset]:
kuncar@53953
   726
  assumes empty_fset_case: "P {||}"
kuncar@53953
   727
  and     insert_fset_case: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
kuncar@53953
   728
  shows "P S"
kuncar@53953
   729
proof -
kuncar@53953
   730
  (* FIXME transfer and right_total vs. bi_total *)
kuncar@53953
   731
  note Domainp_forall_transfer[transfer_rule]
kuncar@53953
   732
  show ?thesis
kuncar@53953
   733
  using assms by transfer (auto intro: finite_induct)
kuncar@53953
   734
qed
kuncar@53953
   735
kuncar@53953
   736
lemma fset_card_induct:
kuncar@53953
   737
  assumes empty_fset_case: "P {||}"
kuncar@53953
   738
  and     card_fset_Suc_case: "\<And>S T. Suc (fcard S) = (fcard T) \<Longrightarrow> P S \<Longrightarrow> P T"
kuncar@53953
   739
  shows "P S"
kuncar@53953
   740
proof (induct S)
kuncar@53953
   741
  case empty
kuncar@53953
   742
  show "P {||}" by (rule empty_fset_case)
kuncar@53953
   743
next
kuncar@53953
   744
  case (insert x S)
kuncar@53953
   745
  have h: "P S" by fact
kuncar@53953
   746
  have "x |\<notin>| S" by fact
kuncar@53953
   747
  then have "Suc (fcard S) = fcard (finsert x S)" 
kuncar@53953
   748
    by transfer auto
kuncar@53953
   749
  then show "P (finsert x S)" 
kuncar@53953
   750
    using h card_fset_Suc_case by simp
kuncar@53953
   751
qed
kuncar@53953
   752
kuncar@53953
   753
lemma fset_strong_cases:
kuncar@53953
   754
  obtains "xs = {||}"
kuncar@53953
   755
    | ys x where "x |\<notin>| ys" and "xs = finsert x ys"
kuncar@53953
   756
by transfer blast
kuncar@53953
   757
kuncar@53953
   758
lemma fset_induct2:
kuncar@53953
   759
  "P {||} {||} \<Longrightarrow>
kuncar@53953
   760
  (\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
kuncar@53953
   761
  (\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
kuncar@53953
   762
  (\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow>
kuncar@53953
   763
  P xsa ysa"
kuncar@53953
   764
  apply (induct xsa arbitrary: ysa)
kuncar@53953
   765
  apply (induct_tac x rule: fset_induct_stronger)
kuncar@53953
   766
  apply simp_all
kuncar@53953
   767
  apply (induct_tac xa rule: fset_induct_stronger)
kuncar@53953
   768
  apply simp_all
kuncar@53953
   769
  done
kuncar@53953
   770
blanchet@55129
   771
kuncar@53953
   772
subsection {* Setup for Lifting/Transfer *}
kuncar@53953
   773
kuncar@53953
   774
subsubsection {* Relator and predicator properties *}
kuncar@53953
   775
kuncar@53953
   776
lift_definition fset_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'b fset \<Rightarrow> bool" is set_rel
kuncar@53953
   777
parametric set_rel_transfer ..
kuncar@53953
   778
kuncar@53953
   779
lemma fset_rel_alt_def: "fset_rel R = (\<lambda>A B. (\<forall>x.\<exists>y. x|\<in>|A \<longrightarrow> y|\<in>|B \<and> R x y) 
kuncar@53953
   780
  \<and> (\<forall>y. \<exists>x. y|\<in>|B \<longrightarrow> x|\<in>|A \<and> R x y))"
kuncar@53953
   781
apply (rule ext)+
kuncar@53953
   782
apply transfer'
kuncar@53953
   783
apply (subst set_rel_def[unfolded fun_eq_iff]) 
kuncar@53953
   784
by blast
kuncar@53953
   785
kuncar@53953
   786
lemma fset_rel_conversep: "fset_rel (conversep R) = conversep (fset_rel R)"
kuncar@53953
   787
  unfolding fset_rel_alt_def by auto
kuncar@53953
   788
kuncar@53953
   789
lemmas fset_rel_eq [relator_eq] = set_rel_eq[Transfer.transferred]
kuncar@53953
   790
kuncar@53953
   791
lemma fset_rel_mono[relator_mono]: "A \<le> B \<Longrightarrow> fset_rel A \<le> fset_rel B"
kuncar@53953
   792
unfolding fset_rel_alt_def by blast
kuncar@53953
   793
kuncar@53953
   794
lemma finite_set_rel:
kuncar@53953
   795
  assumes fin: "finite X" "finite Z"
kuncar@53953
   796
  assumes R_S: "set_rel (R OO S) X Z"
kuncar@53953
   797
  shows "\<exists>Y. finite Y \<and> set_rel R X Y \<and> set_rel S Y Z"
kuncar@53953
   798
proof -
kuncar@53953
   799
  obtain f where f: "\<forall>x\<in>X. R x (f x) \<and> (\<exists>z\<in>Z. S (f x) z)"
kuncar@53953
   800
  apply atomize_elim
kuncar@53953
   801
  apply (subst bchoice_iff[symmetric])
kuncar@53953
   802
  using R_S[unfolded set_rel_def OO_def] by blast
kuncar@53953
   803
  
kuncar@53953
   804
  obtain g where g: "\<forall>z\<in>Z. S (g z) z \<and> (\<exists>x\<in>X. R  x (g z))"
kuncar@53953
   805
  apply atomize_elim
kuncar@53953
   806
  apply (subst bchoice_iff[symmetric])
kuncar@53953
   807
  using R_S[unfolded set_rel_def OO_def] by blast
kuncar@53953
   808
  
kuncar@53953
   809
  let ?Y = "f ` X \<union> g ` Z"
kuncar@53953
   810
  have "finite ?Y" by (simp add: fin)
kuncar@53953
   811
  moreover have "set_rel R X ?Y"
kuncar@53953
   812
    unfolding set_rel_def
kuncar@53953
   813
    using f g by clarsimp blast
kuncar@53953
   814
  moreover have "set_rel S ?Y Z"
kuncar@53953
   815
    unfolding set_rel_def
kuncar@53953
   816
    using f g by clarsimp blast
kuncar@53953
   817
  ultimately show ?thesis by metis
kuncar@53953
   818
qed
kuncar@53953
   819
kuncar@53953
   820
lemma fset_rel_OO[relator_distr]: "fset_rel R OO fset_rel S = fset_rel (R OO S)"
kuncar@53953
   821
apply (rule ext)+
kuncar@53953
   822
by transfer (auto intro: finite_set_rel set_rel_OO[unfolded fun_eq_iff, rule_format, THEN iffD1])
kuncar@53953
   823
kuncar@53953
   824
lemma Domainp_fset[relator_domain]:
kuncar@53953
   825
  assumes "Domainp T = P"
kuncar@53953
   826
  shows "Domainp (fset_rel T) = (\<lambda>A. fBall A P)"
kuncar@53953
   827
proof -
kuncar@53953
   828
  from assms obtain f where f: "\<forall>x\<in>Collect P. T x (f x)"
kuncar@53953
   829
    unfolding Domainp_iff[abs_def]
kuncar@53953
   830
    apply atomize_elim
kuncar@53953
   831
    by (subst bchoice_iff[symmetric]) auto
kuncar@53953
   832
  from assms f show ?thesis
kuncar@53953
   833
    unfolding fun_eq_iff fset_rel_alt_def Domainp_iff
kuncar@53953
   834
    apply clarify
kuncar@53953
   835
    apply (rule iffI)
kuncar@53953
   836
      apply blast
kuncar@53953
   837
    by (rename_tac A, rule_tac x="f |`| A" in exI, blast)
kuncar@53953
   838
qed
kuncar@53953
   839
kuncar@53953
   840
lemmas reflp_fset_rel[reflexivity_rule] = reflp_set_rel[Transfer.transferred]
kuncar@53953
   841
kuncar@53953
   842
lemma right_total_fset_rel[transfer_rule]: "right_total A \<Longrightarrow> right_total (fset_rel A)"
kuncar@53953
   843
unfolding right_total_def 
kuncar@53953
   844
apply transfer
kuncar@53953
   845
apply (subst(asm) choice_iff)
kuncar@53953
   846
apply clarsimp
kuncar@53953
   847
apply (rename_tac A f y, rule_tac x = "f ` y" in exI)
kuncar@53953
   848
by (auto simp add: set_rel_def)
kuncar@53953
   849
kuncar@53953
   850
lemma left_total_fset_rel[reflexivity_rule]: "left_total A \<Longrightarrow> left_total (fset_rel A)"
kuncar@53953
   851
unfolding left_total_def 
kuncar@53953
   852
apply transfer
kuncar@53953
   853
apply (subst(asm) choice_iff)
kuncar@53953
   854
apply clarsimp
kuncar@53953
   855
apply (rename_tac A f y, rule_tac x = "f ` y" in exI)
kuncar@53953
   856
by (auto simp add: set_rel_def)
kuncar@53953
   857
kuncar@53953
   858
lemmas right_unique_fset_rel[transfer_rule] = right_unique_set_rel[Transfer.transferred]
kuncar@53953
   859
lemmas left_unique_fset_rel[reflexivity_rule] = left_unique_set_rel[Transfer.transferred]
kuncar@53953
   860
kuncar@53953
   861
thm right_unique_fset_rel left_unique_fset_rel
kuncar@53953
   862
kuncar@53953
   863
lemma bi_unique_fset_rel[transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (fset_rel A)"
kuncar@53953
   864
by (auto intro: right_unique_fset_rel left_unique_fset_rel iff: bi_unique_iff)
kuncar@53953
   865
kuncar@53953
   866
lemma bi_total_fset_rel[transfer_rule]: "bi_total A \<Longrightarrow> bi_total (fset_rel A)"
kuncar@53953
   867
by (auto intro: right_total_fset_rel left_total_fset_rel iff: bi_total_iff)
kuncar@53953
   868
kuncar@53953
   869
lemmas fset_invariant_commute [invariant_commute] = set_invariant_commute[Transfer.transferred]
kuncar@53953
   870
blanchet@55129
   871
kuncar@53953
   872
subsubsection {* Quotient theorem for the Lifting package *}
kuncar@53953
   873
kuncar@53953
   874
lemma Quotient_fset_map[quot_map]:
kuncar@53953
   875
  assumes "Quotient R Abs Rep T"
kuncar@53953
   876
  shows "Quotient (fset_rel R) (fimage Abs) (fimage Rep) (fset_rel T)"
kuncar@53953
   877
  using assms unfolding Quotient_alt_def4
kuncar@53953
   878
  by (simp add: fset_rel_OO[symmetric] fset_rel_conversep) (simp add: fset_rel_alt_def, blast)
kuncar@53953
   879
blanchet@55129
   880
kuncar@53953
   881
subsubsection {* Transfer rules for the Transfer package *}
kuncar@53953
   882
kuncar@53953
   883
text {* Unconditional transfer rules *}
kuncar@53953
   884
kuncar@53963
   885
context
kuncar@53963
   886
begin
kuncar@53963
   887
kuncar@53963
   888
interpretation lifting_syntax .
kuncar@53963
   889
kuncar@53953
   890
lemmas fempty_transfer [transfer_rule] = empty_transfer[Transfer.transferred]
kuncar@53953
   891
kuncar@53953
   892
lemma finsert_transfer [transfer_rule]:
kuncar@53953
   893
  "(A ===> fset_rel A ===> fset_rel A) finsert finsert"
kuncar@53953
   894
  unfolding fun_rel_def fset_rel_alt_def by blast
kuncar@53953
   895
kuncar@53953
   896
lemma funion_transfer [transfer_rule]:
kuncar@53953
   897
  "(fset_rel A ===> fset_rel A ===> fset_rel A) funion funion"
kuncar@53953
   898
  unfolding fun_rel_def fset_rel_alt_def by blast
kuncar@53953
   899
kuncar@53953
   900
lemma ffUnion_transfer [transfer_rule]:
kuncar@53953
   901
  "(fset_rel (fset_rel A) ===> fset_rel A) ffUnion ffUnion"
kuncar@53953
   902
  unfolding fun_rel_def fset_rel_alt_def by transfer (simp, fast)
kuncar@53953
   903
kuncar@53953
   904
lemma fimage_transfer [transfer_rule]:
kuncar@53953
   905
  "((A ===> B) ===> fset_rel A ===> fset_rel B) fimage fimage"
kuncar@53953
   906
  unfolding fun_rel_def fset_rel_alt_def by simp blast
kuncar@53953
   907
kuncar@53953
   908
lemma fBall_transfer [transfer_rule]:
kuncar@53953
   909
  "(fset_rel A ===> (A ===> op =) ===> op =) fBall fBall"
kuncar@53953
   910
  unfolding fset_rel_alt_def fun_rel_def by blast
kuncar@53953
   911
kuncar@53953
   912
lemma fBex_transfer [transfer_rule]:
kuncar@53953
   913
  "(fset_rel A ===> (A ===> op =) ===> op =) fBex fBex"
kuncar@53953
   914
  unfolding fset_rel_alt_def fun_rel_def by blast
kuncar@53953
   915
kuncar@53953
   916
(* FIXME transfer doesn't work here *)
kuncar@53953
   917
lemma fPow_transfer [transfer_rule]:
kuncar@53953
   918
  "(fset_rel A ===> fset_rel (fset_rel A)) fPow fPow"
kuncar@53953
   919
  unfolding fun_rel_def
kuncar@53953
   920
  using Pow_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred]
kuncar@53953
   921
  by blast
kuncar@53953
   922
kuncar@53953
   923
lemma fset_rel_transfer [transfer_rule]:
kuncar@53953
   924
  "((A ===> B ===> op =) ===> fset_rel A ===> fset_rel B ===> op =)
kuncar@53953
   925
    fset_rel fset_rel"
kuncar@53953
   926
  unfolding fun_rel_def
kuncar@53953
   927
  using set_rel_transfer[unfolded fun_rel_def,rule_format, Transfer.transferred, where A = A and B = B]
kuncar@53953
   928
  by simp
kuncar@53953
   929
kuncar@53953
   930
lemma bind_transfer [transfer_rule]:
kuncar@53953
   931
  "(fset_rel A ===> (A ===> fset_rel B) ===> fset_rel B) fbind fbind"
kuncar@53953
   932
  using assms unfolding fun_rel_def
kuncar@53953
   933
  using bind_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
kuncar@53953
   934
kuncar@53953
   935
text {* Rules requiring bi-unique, bi-total or right-total relations *}
kuncar@53953
   936
kuncar@53953
   937
lemma fmember_transfer [transfer_rule]:
kuncar@53953
   938
  assumes "bi_unique A"
kuncar@53953
   939
  shows "(A ===> fset_rel A ===> op =) (op |\<in>|) (op |\<in>|)"
kuncar@53953
   940
  using assms unfolding fun_rel_def fset_rel_alt_def bi_unique_def by metis
kuncar@53953
   941
kuncar@53953
   942
lemma finter_transfer [transfer_rule]:
kuncar@53953
   943
  assumes "bi_unique A"
kuncar@53953
   944
  shows "(fset_rel A ===> fset_rel A ===> fset_rel A) finter finter"
kuncar@53953
   945
  using assms unfolding fun_rel_def
kuncar@53953
   946
  using inter_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
kuncar@53953
   947
kuncar@53963
   948
lemma fminus_transfer [transfer_rule]:
kuncar@53953
   949
  assumes "bi_unique A"
kuncar@53953
   950
  shows "(fset_rel A ===> fset_rel A ===> fset_rel A) (op |-|) (op |-|)"
kuncar@53953
   951
  using assms unfolding fun_rel_def
kuncar@53953
   952
  using Diff_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
kuncar@53953
   953
kuncar@53953
   954
lemma fsubset_transfer [transfer_rule]:
kuncar@53953
   955
  assumes "bi_unique A"
kuncar@53953
   956
  shows "(fset_rel A ===> fset_rel A ===> op =) (op |\<subseteq>|) (op |\<subseteq>|)"
kuncar@53953
   957
  using assms unfolding fun_rel_def
kuncar@53953
   958
  using subset_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
kuncar@53953
   959
kuncar@53953
   960
lemma fSup_transfer [transfer_rule]:
kuncar@53953
   961
  "bi_unique A \<Longrightarrow> (set_rel (fset_rel A) ===> fset_rel A) Sup Sup"
kuncar@53953
   962
  using assms unfolding fun_rel_def
kuncar@53953
   963
  apply clarify
kuncar@53953
   964
  apply transfer'
kuncar@53953
   965
  using Sup_fset_transfer[unfolded fun_rel_def] by blast
kuncar@53953
   966
kuncar@53953
   967
(* FIXME: add right_total_fInf_transfer *)
kuncar@53953
   968
kuncar@53953
   969
lemma fInf_transfer [transfer_rule]:
kuncar@53953
   970
  assumes "bi_unique A" and "bi_total A"
kuncar@53953
   971
  shows "(set_rel (fset_rel A) ===> fset_rel A) Inf Inf"
kuncar@53953
   972
  using assms unfolding fun_rel_def
kuncar@53953
   973
  apply clarify
kuncar@53953
   974
  apply transfer'
kuncar@53953
   975
  using Inf_fset_transfer[unfolded fun_rel_def] by blast
kuncar@53953
   976
kuncar@53953
   977
lemma ffilter_transfer [transfer_rule]:
kuncar@53953
   978
  assumes "bi_unique A"
kuncar@53953
   979
  shows "((A ===> op=) ===> fset_rel A ===> fset_rel A) ffilter ffilter"
kuncar@53953
   980
  using assms unfolding fun_rel_def
kuncar@53953
   981
  using Lifting_Set.filter_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
kuncar@53953
   982
kuncar@53953
   983
lemma card_transfer [transfer_rule]:
kuncar@53953
   984
  "bi_unique A \<Longrightarrow> (fset_rel A ===> op =) fcard fcard"
kuncar@53953
   985
  using assms unfolding fun_rel_def
kuncar@53953
   986
  using card_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
kuncar@53953
   987
kuncar@53953
   988
end
kuncar@53953
   989
kuncar@53953
   990
lifting_update fset.lifting
kuncar@53953
   991
lifting_forget fset.lifting
kuncar@53953
   992
blanchet@55129
   993
blanchet@55129
   994
subsection {* BNF setup *}
blanchet@55129
   995
blanchet@55129
   996
context
blanchet@55129
   997
includes fset.lifting
blanchet@55129
   998
begin
blanchet@55129
   999
blanchet@55129
  1000
lemma fset_rel_alt:
blanchet@55129
  1001
  "fset_rel R a b \<longleftrightarrow> (\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>t \<in> fset b. \<exists>u \<in> fset a. R u t)"
blanchet@55129
  1002
by transfer (simp add: set_rel_def)
blanchet@55129
  1003
blanchet@55129
  1004
lemma fset_to_fset: "finite A \<Longrightarrow> fset (the_inv fset A) = A"
blanchet@55129
  1005
apply (rule f_the_inv_into_f[unfolded inj_on_def])
blanchet@55129
  1006
apply (simp add: fset_inject)
blanchet@55129
  1007
apply (rule range_eqI Abs_fset_inverse[symmetric] CollectI)+
blanchet@55129
  1008
.
blanchet@55129
  1009
blanchet@55129
  1010
lemma fset_rel_aux:
blanchet@55129
  1011
"(\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>u \<in> fset b. \<exists>t \<in> fset a. R t u) \<longleftrightarrow>
blanchet@55129
  1012
 ((BNF_Util.Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage fst))\<inverse>\<inverse> OO
blanchet@55129
  1013
  BNF_Util.Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage snd)) a b" (is "?L = ?R")
blanchet@55129
  1014
proof
blanchet@55129
  1015
  assume ?L
blanchet@55129
  1016
  def R' \<equiv> "the_inv fset (Collect (split R) \<inter> (fset a \<times> fset b))" (is "the_inv fset ?L'")
blanchet@55129
  1017
  have "finite ?L'" by (intro finite_Int[OF disjI2] finite_cartesian_product) (transfer, simp)+
blanchet@55129
  1018
  hence *: "fset R' = ?L'" unfolding R'_def by (intro fset_to_fset)
blanchet@55129
  1019
  show ?R unfolding Grp_def relcompp.simps conversep.simps
blanchet@55129
  1020
  proof (intro CollectI prod_caseI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl)
blanchet@55129
  1021
    from * show "a = fimage fst R'" using conjunct1[OF `?L`]
blanchet@55129
  1022
      by (transfer, auto simp add: image_def Int_def split: prod.splits)
blanchet@55129
  1023
    from * show "b = fimage snd R'" using conjunct2[OF `?L`]
blanchet@55129
  1024
      by (transfer, auto simp add: image_def Int_def split: prod.splits)
blanchet@55129
  1025
  qed (auto simp add: *)
blanchet@55129
  1026
next
blanchet@55129
  1027
  assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps
blanchet@55129
  1028
  apply (simp add: subset_eq Ball_def)
blanchet@55129
  1029
  apply (rule conjI)
blanchet@55129
  1030
  apply (transfer, clarsimp, metis snd_conv)
blanchet@55129
  1031
  by (transfer, clarsimp, metis fst_conv)
blanchet@55129
  1032
qed
blanchet@55129
  1033
blanchet@55129
  1034
bnf "'a fset"
blanchet@55129
  1035
  map: fimage
blanchet@55129
  1036
  sets: fset 
blanchet@55129
  1037
  bd: natLeq
blanchet@55129
  1038
  wits: "{||}"
blanchet@55129
  1039
  rel: fset_rel
blanchet@55129
  1040
apply -
blanchet@55129
  1041
          apply transfer' apply simp
blanchet@55129
  1042
         apply transfer' apply force
blanchet@55129
  1043
        apply transfer apply force
blanchet@55129
  1044
       apply transfer' apply force
blanchet@55129
  1045
      apply (rule natLeq_card_order)
blanchet@55129
  1046
     apply (rule natLeq_cinfinite)
blanchet@55129
  1047
    apply transfer apply (metis ordLess_imp_ordLeq finite_iff_ordLess_natLeq)
blanchet@55129
  1048
   apply (fastforce simp: fset_rel_alt)
blanchet@55129
  1049
 apply (simp add: Grp_def relcompp.simps conversep.simps fun_eq_iff fset_rel_alt fset_rel_aux) 
blanchet@55129
  1050
apply transfer apply simp
blanchet@55129
  1051
done
blanchet@55129
  1052
blanchet@55129
  1053
lemma fset_rel_fset: "set_rel \<chi> (fset A1) (fset A2) = fset_rel \<chi> A1 A2"
blanchet@55129
  1054
  by transfer (rule refl)
blanchet@55129
  1055
kuncar@53953
  1056
end
blanchet@55129
  1057
blanchet@55129
  1058
lemmas [simp] = fset.map_comp fset.map_id fset.set_map
blanchet@55129
  1059
blanchet@55129
  1060
blanchet@55129
  1061
subsection {* Advanced relator customization *}
blanchet@55129
  1062
blanchet@55129
  1063
(* Set vs. sum relators: *)
blanchet@55129
  1064
blanchet@55129
  1065
lemma set_rel_sum_rel[simp]: 
blanchet@55129
  1066
"set_rel (sum_rel \<chi> \<phi>) A1 A2 \<longleftrightarrow> 
blanchet@55129
  1067
 set_rel \<chi> (Inl -` A1) (Inl -` A2) \<and> set_rel \<phi> (Inr -` A1) (Inr -` A2)"
blanchet@55129
  1068
(is "?L \<longleftrightarrow> ?Rl \<and> ?Rr")
blanchet@55129
  1069
proof safe
blanchet@55129
  1070
  assume L: "?L"
blanchet@55129
  1071
  show ?Rl unfolding set_rel_def Bex_def vimage_eq proof safe
blanchet@55129
  1072
    fix l1 assume "Inl l1 \<in> A1"
blanchet@55129
  1073
    then obtain a2 where a2: "a2 \<in> A2" and "sum_rel \<chi> \<phi> (Inl l1) a2"
blanchet@55129
  1074
    using L unfolding set_rel_def by auto
blanchet@55129
  1075
    then obtain l2 where "a2 = Inl l2 \<and> \<chi> l1 l2" by (cases a2, auto)
blanchet@55129
  1076
    thus "\<exists> l2. Inl l2 \<in> A2 \<and> \<chi> l1 l2" using a2 by auto
blanchet@55129
  1077
  next
blanchet@55129
  1078
    fix l2 assume "Inl l2 \<in> A2"
blanchet@55129
  1079
    then obtain a1 where a1: "a1 \<in> A1" and "sum_rel \<chi> \<phi> a1 (Inl l2)"
blanchet@55129
  1080
    using L unfolding set_rel_def by auto
blanchet@55129
  1081
    then obtain l1 where "a1 = Inl l1 \<and> \<chi> l1 l2" by (cases a1, auto)
blanchet@55129
  1082
    thus "\<exists> l1. Inl l1 \<in> A1 \<and> \<chi> l1 l2" using a1 by auto
blanchet@55129
  1083
  qed
blanchet@55129
  1084
  show ?Rr unfolding set_rel_def Bex_def vimage_eq proof safe
blanchet@55129
  1085
    fix r1 assume "Inr r1 \<in> A1"
blanchet@55129
  1086
    then obtain a2 where a2: "a2 \<in> A2" and "sum_rel \<chi> \<phi> (Inr r1) a2"
blanchet@55129
  1087
    using L unfolding set_rel_def by auto
blanchet@55129
  1088
    then obtain r2 where "a2 = Inr r2 \<and> \<phi> r1 r2" by (cases a2, auto)
blanchet@55129
  1089
    thus "\<exists> r2. Inr r2 \<in> A2 \<and> \<phi> r1 r2" using a2 by auto
blanchet@55129
  1090
  next
blanchet@55129
  1091
    fix r2 assume "Inr r2 \<in> A2"
blanchet@55129
  1092
    then obtain a1 where a1: "a1 \<in> A1" and "sum_rel \<chi> \<phi> a1 (Inr r2)"
blanchet@55129
  1093
    using L unfolding set_rel_def by auto
blanchet@55129
  1094
    then obtain r1 where "a1 = Inr r1 \<and> \<phi> r1 r2" by (cases a1, auto)
blanchet@55129
  1095
    thus "\<exists> r1. Inr r1 \<in> A1 \<and> \<phi> r1 r2" using a1 by auto
blanchet@55129
  1096
  qed
blanchet@55129
  1097
next
blanchet@55129
  1098
  assume Rl: "?Rl" and Rr: "?Rr"
blanchet@55129
  1099
  show ?L unfolding set_rel_def Bex_def vimage_eq proof safe
blanchet@55129
  1100
    fix a1 assume a1: "a1 \<in> A1"
blanchet@55129
  1101
    show "\<exists> a2. a2 \<in> A2 \<and> sum_rel \<chi> \<phi> a1 a2"
blanchet@55129
  1102
    proof(cases a1)
blanchet@55129
  1103
      case (Inl l1) then obtain l2 where "Inl l2 \<in> A2 \<and> \<chi> l1 l2"
blanchet@55129
  1104
      using Rl a1 unfolding set_rel_def by blast
blanchet@55129
  1105
      thus ?thesis unfolding Inl by auto
blanchet@55129
  1106
    next
blanchet@55129
  1107
      case (Inr r1) then obtain r2 where "Inr r2 \<in> A2 \<and> \<phi> r1 r2"
blanchet@55129
  1108
      using Rr a1 unfolding set_rel_def by blast
blanchet@55129
  1109
      thus ?thesis unfolding Inr by auto
blanchet@55129
  1110
    qed
blanchet@55129
  1111
  next
blanchet@55129
  1112
    fix a2 assume a2: "a2 \<in> A2"
blanchet@55129
  1113
    show "\<exists> a1. a1 \<in> A1 \<and> sum_rel \<chi> \<phi> a1 a2"
blanchet@55129
  1114
    proof(cases a2)
blanchet@55129
  1115
      case (Inl l2) then obtain l1 where "Inl l1 \<in> A1 \<and> \<chi> l1 l2"
blanchet@55129
  1116
      using Rl a2 unfolding set_rel_def by blast
blanchet@55129
  1117
      thus ?thesis unfolding Inl by auto
blanchet@55129
  1118
    next
blanchet@55129
  1119
      case (Inr r2) then obtain r1 where "Inr r1 \<in> A1 \<and> \<phi> r1 r2"
blanchet@55129
  1120
      using Rr a2 unfolding set_rel_def by blast
blanchet@55129
  1121
      thus ?thesis unfolding Inr by auto
blanchet@55129
  1122
    qed
blanchet@55129
  1123
  qed
blanchet@55129
  1124
qed
blanchet@55129
  1125
blanchet@55129
  1126
end