src/HOL/Map.thy
author nipkow
Sun Sep 14 17:53:27 2003 +0200 (2003-09-14)
changeset 14187 26dfcd0ac436
parent 14186 6d2a494e33be
child 14208 144f45277d5a
permissions -rw-r--r--
Added new theorems
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
webertj@13908
    11
theory Map = List:
nipkow@3981
    12
webertj@13908
    13
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
oheimb@14100
    14
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    15
nipkow@3981
    16
consts
oheimb@5300
    17
chg_map	:: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
oheimb@14100
    18
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
oheimb@14100
    19
map_image::"('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixr "`>" 90)
oheimb@14100
    20
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90)
oheimb@5300
    21
dom	:: "('a ~=> 'b) => 'a set"
oheimb@5300
    22
ran	:: "('a ~=> 'b) => 'b set"
oheimb@5300
    23
map_of	:: "('a * 'b)list => 'a ~=> 'b"
oheimb@5300
    24
map_upds:: "('a ~=> 'b) => 'a list => 'b list => 
nipkow@14180
    25
	    ('a ~=> 'b)"
oheimb@14100
    26
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
oheimb@14100
    27
	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
oheimb@14100
    28
map_subst::"('a ~=> 'b) => 'b => 'b => 
oheimb@14100
    29
	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
nipkow@13910
    30
map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
nipkow@13910
    31
nipkow@14180
    32
nonterminals
nipkow@14180
    33
  maplets maplet
nipkow@14180
    34
oheimb@5300
    35
syntax
nipkow@14180
    36
  empty	    ::  "'a ~=> 'b"
nipkow@14180
    37
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    38
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    39
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    40
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    41
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    42
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    43
wenzelm@12114
    44
syntax (xsymbols)
nipkow@14180
    45
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    46
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    47
nipkow@14134
    48
  "~=>"     :: "[type, type] => type"    (infixr "\<rightharpoonup>" 0)
oheimb@14100
    49
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90)
oheimb@14100
    50
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
oheimb@14100
    51
				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
oheimb@14100
    52
  map_subst :: "('a ~=> 'b) => 'b => 'b => 
oheimb@14100
    53
	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
oheimb@14100
    54
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
oheimb@14100
    55
					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
oheimb@5300
    56
oheimb@5300
    57
translations
nipkow@13890
    58
  "empty"    => "_K None"
nipkow@13890
    59
  "empty"    <= "%x. None"
oheimb@5300
    60
oheimb@14100
    61
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
nipkow@3981
    62
nipkow@14180
    63
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    64
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    65
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
nipkow@14180
    66
  "_Map ms"                     == "_MapUpd empty ms"
nipkow@14180
    67
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    68
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    69
nipkow@3981
    70
defs
webertj@13908
    71
chg_map_def:  "chg_map f a m == case m a of None => m | Some b => m(a|->f b)"
nipkow@3981
    72
oheimb@14100
    73
map_add_def:   "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y"
oheimb@14100
    74
map_image_def: "f`>m == option_map f o m"
oheimb@14100
    75
restrict_map_def: "m|_A == %x. if x : A then m x else None"
nipkow@14025
    76
nipkow@14025
    77
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
oheimb@14100
    78
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
oheimb@14100
    79
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
nipkow@3981
    80
webertj@13908
    81
dom_def: "dom(m) == {a. m a ~= None}"
nipkow@14025
    82
ran_def: "ran(m) == {b. EX a. m a = Some b}"
nipkow@3981
    83
nipkow@13910
    84
map_le_def: "m1 \<subseteq>\<^sub>m m2  ==  ALL a : dom m1. m1 a = m2 a"
nipkow@13910
    85
berghofe@5183
    86
primrec
berghofe@5183
    87
  "map_of [] = empty"
oheimb@5300
    88
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    89
webertj@13908
    90
oheimb@14100
    91
subsection {* @{term empty} *}
webertj@13908
    92
nipkow@13910
    93
lemma empty_upd_none[simp]: "empty(x := None) = empty"
webertj@13908
    94
apply (rule ext)
webertj@13908
    95
apply (simp (no_asm))
webertj@13908
    96
done
nipkow@13910
    97
webertj@13908
    98
webertj@13908
    99
(* FIXME: what is this sum_case nonsense?? *)
nipkow@13910
   100
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
webertj@13908
   101
apply (rule ext)
webertj@13908
   102
apply (simp (no_asm) split add: sum.split)
webertj@13908
   103
done
webertj@13908
   104
oheimb@14100
   105
subsection {* @{term map_upd} *}
webertj@13908
   106
webertj@13908
   107
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
webertj@13908
   108
apply (rule ext)
webertj@13908
   109
apply (simp (no_asm_simp))
webertj@13908
   110
done
webertj@13908
   111
nipkow@13910
   112
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty"
webertj@13908
   113
apply safe
webertj@13908
   114
apply (drule_tac x = "k" in fun_cong)
webertj@13908
   115
apply (simp (no_asm_use))
webertj@13908
   116
done
webertj@13908
   117
oheimb@14100
   118
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y"
oheimb@14100
   119
by (drule fun_cong [of _ _ a], auto)
oheimb@14100
   120
oheimb@14100
   121
lemma map_upd_Some_unfold: 
oheimb@14100
   122
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
oheimb@14100
   123
by auto
oheimb@14100
   124
webertj@13908
   125
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
webertj@13908
   126
apply (unfold image_def)
webertj@13908
   127
apply (simp (no_asm_use) add: full_SetCompr_eq)
webertj@13908
   128
apply (rule finite_subset)
webertj@13908
   129
prefer 2 apply (assumption)
webertj@13908
   130
apply auto
webertj@13908
   131
done
webertj@13908
   132
webertj@13908
   133
webertj@13908
   134
(* FIXME: what is this sum_case nonsense?? *)
oheimb@14100
   135
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *}
webertj@13908
   136
nipkow@13910
   137
lemma sum_case_map_upd_empty[simp]:
nipkow@13910
   138
 "sum_case (m(k|->y)) empty =  (sum_case m empty)(Inl k|->y)"
webertj@13908
   139
apply (rule ext)
webertj@13908
   140
apply (simp (no_asm) split add: sum.split)
webertj@13908
   141
done
webertj@13908
   142
nipkow@13910
   143
lemma sum_case_empty_map_upd[simp]:
nipkow@13910
   144
 "sum_case empty (m(k|->y)) =  (sum_case empty m)(Inr k|->y)"
webertj@13908
   145
apply (rule ext)
webertj@13908
   146
apply (simp (no_asm) split add: sum.split)
webertj@13908
   147
done
webertj@13908
   148
nipkow@13910
   149
lemma sum_case_map_upd_map_upd[simp]:
nipkow@13910
   150
 "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
webertj@13908
   151
apply (rule ext)
webertj@13908
   152
apply (simp (no_asm) split add: sum.split)
webertj@13908
   153
done
webertj@13908
   154
webertj@13908
   155
oheimb@14100
   156
subsection {* @{term chg_map} *}
webertj@13908
   157
nipkow@13910
   158
lemma chg_map_new[simp]: "m a = None   ==> chg_map f a m = m"
webertj@13908
   159
apply (unfold chg_map_def)
webertj@13908
   160
apply auto
webertj@13908
   161
done
webertj@13908
   162
nipkow@13910
   163
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)"
webertj@13908
   164
apply (unfold chg_map_def)
webertj@13908
   165
apply auto
webertj@13908
   166
done
webertj@13908
   167
webertj@13908
   168
oheimb@14100
   169
subsection {* @{term map_of} *}
webertj@13908
   170
webertj@13908
   171
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs"
webertj@13908
   172
apply (induct_tac "xs")
webertj@13908
   173
apply  auto
webertj@13908
   174
done
webertj@13908
   175
webertj@13908
   176
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x -->  
webertj@13908
   177
   map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
webertj@13908
   178
apply (induct_tac "t")
webertj@13908
   179
apply  (auto simp add: inj_eq)
webertj@13908
   180
done
webertj@13908
   181
webertj@13908
   182
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)"
webertj@13908
   183
apply (induct_tac "l")
webertj@13908
   184
apply  auto
webertj@13908
   185
done
webertj@13908
   186
webertj@13908
   187
lemma map_of_filter_in: 
webertj@13908
   188
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z"
webertj@13908
   189
apply (rule mp)
webertj@13908
   190
prefer 2 apply (assumption)
webertj@13908
   191
apply (erule thin_rl)
webertj@13908
   192
apply (induct_tac "xs")
webertj@13908
   193
apply  auto
webertj@13908
   194
done
webertj@13908
   195
webertj@13908
   196
lemma finite_range_map_of: "finite (range (map_of l))"
webertj@13908
   197
apply (induct_tac "l")
webertj@13908
   198
apply  (simp_all (no_asm) add: image_constant)
webertj@13908
   199
apply (rule finite_subset)
webertj@13908
   200
prefer 2 apply (assumption)
webertj@13908
   201
apply auto
webertj@13908
   202
done
webertj@13908
   203
webertj@13908
   204
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
webertj@13908
   205
apply (induct_tac "xs")
webertj@13908
   206
apply auto
webertj@13908
   207
done
webertj@13908
   208
webertj@13908
   209
oheimb@14100
   210
subsection {* @{term option_map} related *}
webertj@13908
   211
nipkow@13910
   212
lemma option_map_o_empty[simp]: "option_map f o empty = empty"
webertj@13908
   213
apply (rule ext)
webertj@13908
   214
apply (simp (no_asm))
webertj@13908
   215
done
webertj@13908
   216
nipkow@13910
   217
lemma option_map_o_map_upd[simp]:
nipkow@13910
   218
 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
webertj@13908
   219
apply (rule ext)
webertj@13908
   220
apply (simp (no_asm))
webertj@13908
   221
done
webertj@13908
   222
webertj@13908
   223
oheimb@14100
   224
subsection {* @{text "++"} *}
webertj@13908
   225
nipkow@14025
   226
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@14025
   227
apply (unfold map_add_def)
webertj@13908
   228
apply (simp (no_asm))
webertj@13908
   229
done
webertj@13908
   230
nipkow@14025
   231
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@14025
   232
apply (unfold map_add_def)
webertj@13908
   233
apply (rule ext)
webertj@13908
   234
apply (simp split add: option.split)
webertj@13908
   235
done
webertj@13908
   236
nipkow@14025
   237
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@14025
   238
apply(rule ext)
nipkow@14025
   239
apply(simp add: map_add_def split:option.split)
nipkow@14025
   240
done
nipkow@14025
   241
nipkow@14025
   242
lemma map_add_Some_iff: 
webertj@13908
   243
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@14025
   244
apply (unfold map_add_def)
webertj@13908
   245
apply (simp (no_asm) split add: option.split)
webertj@13908
   246
done
webertj@13908
   247
nipkow@14025
   248
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard]
nipkow@14025
   249
declare map_add_SomeD [dest!]
webertj@13908
   250
nipkow@14025
   251
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
nipkow@14025
   252
apply (subst map_add_Some_iff)
webertj@13908
   253
apply fast
webertj@13908
   254
done
webertj@13908
   255
nipkow@14025
   256
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@14025
   257
apply (unfold map_add_def)
webertj@13908
   258
apply (simp (no_asm) split add: option.split)
webertj@13908
   259
done
webertj@13908
   260
nipkow@14025
   261
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@14025
   262
apply (unfold map_add_def)
webertj@13908
   263
apply (rule ext)
webertj@13908
   264
apply auto
webertj@13908
   265
done
webertj@13908
   266
nipkow@14186
   267
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@14186
   268
by(simp add:map_upds_def)
nipkow@14186
   269
nipkow@14025
   270
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs"
nipkow@14025
   271
apply (unfold map_add_def)
webertj@13908
   272
apply (induct_tac "xs")
webertj@13908
   273
apply (simp (no_asm))
webertj@13908
   274
apply (rule ext)
webertj@13908
   275
apply (simp (no_asm_simp) split add: option.split)
webertj@13908
   276
done
webertj@13908
   277
webertj@13908
   278
declare fun_upd_apply [simp del]
nipkow@14025
   279
lemma finite_range_map_of_map_add:
nipkow@14025
   280
 "finite (range f) ==> finite (range (f ++ map_of l))"
webertj@13908
   281
apply (induct_tac "l")
webertj@13908
   282
apply  auto
webertj@13908
   283
apply (erule finite_range_updI)
webertj@13908
   284
done
webertj@13908
   285
declare fun_upd_apply [simp]
webertj@13908
   286
oheimb@14100
   287
subsection {* @{term map_image} *}
webertj@13908
   288
oheimb@14100
   289
lemma map_image_empty [simp]: "f`>empty = empty" 
oheimb@14100
   290
by (auto simp: map_image_def empty_def)
oheimb@14100
   291
oheimb@14100
   292
lemma map_image_upd [simp]: "f`>m(a|->b) = (f`>m)(a|->f b)" 
oheimb@14100
   293
apply (auto simp: map_image_def fun_upd_def)
oheimb@14100
   294
by (rule ext, auto)
oheimb@14100
   295
oheimb@14100
   296
subsection {* @{term restrict_map} *}
oheimb@14100
   297
nipkow@14186
   298
lemma restrict_map_to_empty[simp]: "m\<lfloor>{} = empty"
nipkow@14186
   299
by(simp add: restrict_map_def)
nipkow@14186
   300
nipkow@14186
   301
lemma restrict_map_empty[simp]: "empty\<lfloor>D = empty"
nipkow@14186
   302
by(simp add: restrict_map_def)
nipkow@14186
   303
oheimb@14100
   304
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x"
oheimb@14100
   305
by (auto simp: restrict_map_def)
oheimb@14100
   306
oheimb@14100
   307
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None"
oheimb@14100
   308
by (auto simp: restrict_map_def)
oheimb@14100
   309
oheimb@14100
   310
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
oheimb@14100
   311
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   312
nipkow@14186
   313
lemma dom_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A"
oheimb@14100
   314
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   315
oheimb@14100
   316
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})"
oheimb@14100
   317
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   318
oheimb@14100
   319
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)"
oheimb@14100
   320
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   321
nipkow@14186
   322
lemma restrict_fun_upd[simp]:
nipkow@14186
   323
 "m(x := y)\<lfloor>D = (if x \<in> D then (m\<lfloor>(D-{x}))(x := y) else m\<lfloor>D)"
nipkow@14186
   324
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   325
nipkow@14186
   326
lemma fun_upd_None_restrict[simp]:
nipkow@14186
   327
  "(m\<lfloor>D)(x := None) = (if x:D then m\<lfloor>(D - {x}) else m\<lfloor>D)"
nipkow@14186
   328
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   329
nipkow@14186
   330
lemma fun_upd_restrict:
nipkow@14186
   331
 "(m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
nipkow@14186
   332
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   333
nipkow@14186
   334
lemma fun_upd_restrict_conv[simp]:
nipkow@14186
   335
 "x \<in> D \<Longrightarrow> (m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
nipkow@14186
   336
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   337
oheimb@14100
   338
oheimb@14100
   339
subsection {* @{term map_upds} *}
nipkow@14025
   340
nipkow@14025
   341
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m"
nipkow@14025
   342
by(simp add:map_upds_def)
nipkow@14025
   343
nipkow@14025
   344
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m"
nipkow@14025
   345
by(simp add:map_upds_def)
nipkow@14025
   346
nipkow@14025
   347
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@14025
   348
by(simp add:map_upds_def)
nipkow@14025
   349
nipkow@14187
   350
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@14187
   351
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@14187
   352
apply(induct xs)
nipkow@14187
   353
 apply(clarsimp simp add:neq_Nil_conv)
nipkow@14187
   354
apply(case_tac ys)
nipkow@14187
   355
 apply simp
nipkow@14187
   356
apply simp
nipkow@14187
   357
done
nipkow@14187
   358
nipkow@14187
   359
lemma map_upds_list_update2_drop[simp]:
nipkow@14187
   360
 "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
nipkow@14187
   361
     \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
nipkow@14187
   362
apply(induct xs)
nipkow@14187
   363
 apply simp
nipkow@14187
   364
apply(case_tac ys)
nipkow@14187
   365
 apply simp
nipkow@14187
   366
apply(simp split:nat.split)
nipkow@14187
   367
done
nipkow@14025
   368
nipkow@14025
   369
lemma map_upd_upds_conv_if: "!!x y ys f.
nipkow@14025
   370
 (f(x|->y))(xs [|->] ys) =
nipkow@14025
   371
 (if x : set(take (length ys) xs) then f(xs [|->] ys)
nipkow@14025
   372
                                  else (f(xs [|->] ys))(x|->y))"
nipkow@14025
   373
apply(induct xs)
nipkow@14025
   374
 apply simp
nipkow@14025
   375
apply(case_tac ys)
nipkow@14025
   376
 apply(auto split:split_if simp:fun_upd_twist)
nipkow@14025
   377
done
nipkow@14025
   378
nipkow@14025
   379
lemma map_upds_twist [simp]:
nipkow@14025
   380
 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@14025
   381
apply(insert set_take_subset)
nipkow@14025
   382
apply (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   383
done
nipkow@14025
   384
nipkow@14025
   385
lemma map_upds_apply_nontin[simp]:
nipkow@14025
   386
 "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x"
nipkow@14025
   387
apply(induct xs)
nipkow@14025
   388
 apply simp
nipkow@14025
   389
apply(case_tac ys)
nipkow@14025
   390
 apply(auto simp: map_upd_upds_conv_if)
nipkow@14025
   391
done
nipkow@14025
   392
nipkow@14186
   393
lemma restrict_map_upds[simp]: "!!m ys.
nipkow@14186
   394
 \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
nipkow@14186
   395
 \<Longrightarrow> m(xs [\<mapsto>] ys)\<lfloor>D = (m\<lfloor>(D - set xs))(xs [\<mapsto>] ys)"
nipkow@14186
   396
apply(induct xs)
nipkow@14186
   397
 apply simp
nipkow@14186
   398
apply(case_tac ys)
nipkow@14186
   399
 apply simp
nipkow@14186
   400
apply(simp add:Diff_insert[symmetric] insert_absorb)
nipkow@14186
   401
apply(simp add: map_upd_upds_conv_if)
nipkow@14186
   402
done
nipkow@14186
   403
nipkow@14186
   404
oheimb@14100
   405
subsection {* @{term map_upd_s} *}
oheimb@14100
   406
oheimb@14100
   407
lemma map_upd_s_apply [simp]: 
oheimb@14100
   408
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
oheimb@14100
   409
by (simp add: map_upd_s_def)
oheimb@14100
   410
oheimb@14100
   411
lemma map_subst_apply [simp]: 
oheimb@14100
   412
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)" 
oheimb@14100
   413
by (simp add: map_subst_def)
oheimb@14100
   414
oheimb@14100
   415
subsection {* @{term dom} *}
webertj@13908
   416
webertj@13908
   417
lemma domI: "m a = Some b ==> a : dom m"
webertj@13908
   418
apply (unfold dom_def)
webertj@13908
   419
apply auto
webertj@13908
   420
done
oheimb@14100
   421
(* declare domI [intro]? *)
webertj@13908
   422
webertj@13908
   423
lemma domD: "a : dom m ==> ? b. m a = Some b"
webertj@13908
   424
apply (unfold dom_def)
webertj@13908
   425
apply auto
webertj@13908
   426
done
webertj@13908
   427
nipkow@13910
   428
lemma domIff[iff]: "(a : dom m) = (m a ~= None)"
webertj@13908
   429
apply (unfold dom_def)
webertj@13908
   430
apply auto
webertj@13908
   431
done
webertj@13908
   432
declare domIff [simp del]
webertj@13908
   433
nipkow@13910
   434
lemma dom_empty[simp]: "dom empty = {}"
webertj@13908
   435
apply (unfold dom_def)
webertj@13908
   436
apply (simp (no_asm))
webertj@13908
   437
done
webertj@13908
   438
nipkow@13910
   439
lemma dom_fun_upd[simp]:
nipkow@13910
   440
 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@13910
   441
by (simp add:dom_def) blast
webertj@13908
   442
nipkow@13937
   443
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@13937
   444
apply(induct xys)
nipkow@13937
   445
apply(auto simp del:fun_upd_apply)
nipkow@13937
   446
done
nipkow@13937
   447
webertj@13908
   448
lemma finite_dom_map_of: "finite (dom (map_of l))"
webertj@13908
   449
apply (unfold dom_def)
webertj@13908
   450
apply (induct_tac "l")
webertj@13908
   451
apply (auto simp add: insert_Collect [symmetric])
webertj@13908
   452
done
webertj@13908
   453
nipkow@14025
   454
lemma dom_map_upds[simp]:
nipkow@14025
   455
 "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
nipkow@14025
   456
apply(induct xs)
nipkow@14025
   457
 apply simp
nipkow@14025
   458
apply(case_tac ys)
nipkow@14025
   459
 apply auto
nipkow@14025
   460
done
nipkow@13910
   461
nipkow@14025
   462
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m"
webertj@13908
   463
apply (unfold dom_def)
webertj@13908
   464
apply auto
webertj@13908
   465
done
nipkow@13910
   466
nipkow@13910
   467
lemma dom_overwrite[simp]:
nipkow@13910
   468
 "dom(f(g|A)) = (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@13910
   469
by(auto simp add: dom_def overwrite_def)
webertj@13908
   470
nipkow@14027
   471
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@14027
   472
apply(rule ext)
nipkow@14027
   473
apply(fastsimp simp:map_add_def split:option.split)
nipkow@14027
   474
done
nipkow@14027
   475
oheimb@14100
   476
subsection {* @{term ran} *}
oheimb@14100
   477
oheimb@14100
   478
lemma ranI: "m a = Some b ==> b : ran m" 
oheimb@14100
   479
by (auto simp add: ran_def)
oheimb@14100
   480
(* declare ranI [intro]? *)
webertj@13908
   481
nipkow@13910
   482
lemma ran_empty[simp]: "ran empty = {}"
webertj@13908
   483
apply (unfold ran_def)
webertj@13908
   484
apply (simp (no_asm))
webertj@13908
   485
done
webertj@13908
   486
nipkow@13910
   487
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
webertj@13908
   488
apply (unfold ran_def)
webertj@13908
   489
apply auto
webertj@13908
   490
apply (subgoal_tac "~ (aa = a) ")
webertj@13908
   491
apply auto
webertj@13908
   492
done
nipkow@13910
   493
oheimb@14100
   494
subsection {* @{text "map_le"} *}
nipkow@13910
   495
kleing@13912
   496
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@13910
   497
by(simp add:map_le_def)
nipkow@13910
   498
nipkow@14187
   499
lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@14187
   500
by(force simp add:map_le_def)
nipkow@14187
   501
nipkow@13910
   502
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@13910
   503
by(fastsimp simp add:map_le_def)
nipkow@13910
   504
nipkow@14187
   505
lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@14187
   506
by(force simp add:map_le_def)
nipkow@14187
   507
nipkow@13910
   508
lemma map_le_upds[simp]:
nipkow@13910
   509
 "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
nipkow@14025
   510
apply(induct as)
nipkow@14025
   511
 apply simp
nipkow@14025
   512
apply(case_tac bs)
nipkow@14025
   513
 apply auto
nipkow@14025
   514
done
webertj@13908
   515
webertj@14033
   516
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
webertj@14033
   517
  by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   518
webertj@14033
   519
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
webertj@14033
   520
  by (simp add: map_le_def)
webertj@14033
   521
nipkow@14187
   522
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
nipkow@14187
   523
by(force simp add:map_le_def)
webertj@14033
   524
webertj@14033
   525
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
webertj@14033
   526
  apply (unfold map_le_def)
webertj@14033
   527
  apply (rule ext)
webertj@14033
   528
  apply (case_tac "x \<in> dom f")
webertj@14033
   529
    apply simp
webertj@14033
   530
  apply (case_tac "x \<in> dom g")
webertj@14033
   531
    apply simp
webertj@14033
   532
  apply fastsimp
webertj@14033
   533
done
webertj@14033
   534
webertj@14033
   535
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
webertj@14033
   536
  by (fastsimp simp add: map_le_def)
webertj@14033
   537
nipkow@3981
   538
end