src/HOL/simpdata.ML
author wenzelm
Sun Nov 12 21:14:49 2006 +0100 (2006-11-12)
changeset 21313 26fc3a45547c
parent 21163 6860f161111c
child 21551 d276e7d25017
permissions -rw-r--r--
mk_atomize: careful matching against rules admits overloading;
haftmann@21163
     1
(*  Title:      HOL/simpdata.ML
haftmann@21163
     2
    ID:         $Id$
haftmann@21163
     3
    Author:     Tobias Nipkow
haftmann@21163
     4
    Copyright   1991  University of Cambridge
haftmann@21163
     5
haftmann@21163
     6
Instantiation of the generic simplifier for HOL.
haftmann@21163
     7
*)
haftmann@21163
     8
haftmann@21163
     9
(** tools setup **)
haftmann@21163
    10
haftmann@21163
    11
structure Quantifier1 = Quantifier1Fun
haftmann@21163
    12
(struct
haftmann@21163
    13
  (*abstract syntax*)
haftmann@21163
    14
  fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    15
    | dest_eq _ = NONE;
haftmann@21163
    16
  fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    17
    | dest_conj _ = NONE;
haftmann@21163
    18
  fun dest_imp ((c as Const("op -->",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    19
    | dest_imp _ = NONE;
haftmann@21163
    20
  val conj = HOLogic.conj
haftmann@21163
    21
  val imp  = HOLogic.imp
haftmann@21163
    22
  (*rules*)
haftmann@21163
    23
  val iff_reflection = HOL.eq_reflection
haftmann@21163
    24
  val iffI = HOL.iffI
haftmann@21163
    25
  val iff_trans = HOL.trans
haftmann@21163
    26
  val conjI= HOL.conjI
haftmann@21163
    27
  val conjE= HOL.conjE
haftmann@21163
    28
  val impI = HOL.impI
haftmann@21163
    29
  val mp   = HOL.mp
haftmann@21163
    30
  val uncurry = thm "uncurry"
haftmann@21163
    31
  val exI  = HOL.exI
haftmann@21163
    32
  val exE  = HOL.exE
haftmann@21163
    33
  val iff_allI = thm "iff_allI"
haftmann@21163
    34
  val iff_exI = thm "iff_exI"
haftmann@21163
    35
  val all_comm = thm "all_comm"
haftmann@21163
    36
  val ex_comm = thm "ex_comm"
haftmann@21163
    37
end);
haftmann@21163
    38
haftmann@21163
    39
structure HOL =
haftmann@21163
    40
struct
haftmann@21163
    41
haftmann@21163
    42
open HOL;
haftmann@21163
    43
haftmann@21163
    44
val Eq_FalseI = thm "Eq_FalseI";
haftmann@21163
    45
val Eq_TrueI = thm "Eq_TrueI";
haftmann@21163
    46
val simp_implies_def = thm "simp_implies_def";
haftmann@21163
    47
val simp_impliesI = thm "simp_impliesI";
haftmann@21163
    48
haftmann@21163
    49
fun mk_meta_eq r = r RS eq_reflection;
haftmann@21163
    50
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
haftmann@21163
    51
haftmann@21163
    52
fun mk_eq thm = case concl_of thm
haftmann@21163
    53
  (*expects Trueprop if not == *)
haftmann@21163
    54
  of Const ("==",_) $ _ $ _ => thm
haftmann@21163
    55
   | _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq thm
haftmann@21163
    56
   | _ $ (Const ("Not", _) $ _) => thm RS Eq_FalseI
haftmann@21163
    57
   | _ => thm RS Eq_TrueI;
haftmann@21163
    58
haftmann@21163
    59
fun mk_eq_True r =
haftmann@21163
    60
  SOME (r RS meta_eq_to_obj_eq RS Eq_TrueI) handle Thm.THM _ => NONE;
haftmann@21163
    61
haftmann@21163
    62
(* Produce theorems of the form
haftmann@21163
    63
  (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
haftmann@21163
    64
*)
haftmann@21163
    65
fun lift_meta_eq_to_obj_eq i st =
haftmann@21163
    66
  let
haftmann@21163
    67
    fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
haftmann@21163
    68
      | count_imp _ = 0;
haftmann@21163
    69
    val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
haftmann@21163
    70
  in if j = 0 then meta_eq_to_obj_eq
haftmann@21163
    71
    else
haftmann@21163
    72
      let
haftmann@21163
    73
        val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
haftmann@21163
    74
        fun mk_simp_implies Q = foldr (fn (R, S) =>
haftmann@21163
    75
          Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Q Ps
haftmann@21163
    76
        val aT = TFree ("'a", HOLogic.typeS);
haftmann@21163
    77
        val x = Free ("x", aT);
haftmann@21163
    78
        val y = Free ("y", aT)
haftmann@21163
    79
      in Goal.prove_global (Thm.theory_of_thm st) []
haftmann@21163
    80
        [mk_simp_implies (Logic.mk_equals (x, y))]
haftmann@21163
    81
        (mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))
haftmann@21163
    82
        (fn prems => EVERY
haftmann@21163
    83
         [rewrite_goals_tac [simp_implies_def],
haftmann@21163
    84
          REPEAT (ares_tac (meta_eq_to_obj_eq :: map (rewrite_rule [simp_implies_def]) prems) 1)])
haftmann@21163
    85
      end
haftmann@21163
    86
  end;
haftmann@21163
    87
haftmann@21163
    88
(*Congruence rules for = (instead of ==)*)
haftmann@21163
    89
fun mk_meta_cong rl = zero_var_indexes
haftmann@21163
    90
  (let val rl' = Seq.hd (TRYALL (fn i => fn st =>
haftmann@21163
    91
     rtac (lift_meta_eq_to_obj_eq i st) i st) rl)
haftmann@21163
    92
   in mk_meta_eq rl' handle THM _ =>
haftmann@21163
    93
     if can Logic.dest_equals (concl_of rl') then rl'
haftmann@21163
    94
     else error "Conclusion of congruence rules must be =-equality"
haftmann@21163
    95
   end);
haftmann@21163
    96
haftmann@21163
    97
fun mk_atomize pairs =
haftmann@21163
    98
  let
wenzelm@21313
    99
    fun atoms thm =
wenzelm@21313
   100
      let
wenzelm@21313
   101
        fun res th = map (fn rl => th RS rl);   (*exception THM*)
wenzelm@21313
   102
        fun res_fixed rls =
wenzelm@21313
   103
          if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls
wenzelm@21313
   104
          else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm];
wenzelm@21313
   105
      in
wenzelm@21313
   106
        case concl_of thm
wenzelm@21313
   107
          of Const ("Trueprop", _) $ p => (case head_of p
wenzelm@21313
   108
            of Const (a, _) => (case AList.lookup (op =) pairs a
wenzelm@21313
   109
              of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm])
wenzelm@21313
   110
              | NONE => [thm])
wenzelm@21313
   111
            | _ => [thm])
wenzelm@21313
   112
          | _ => [thm]
wenzelm@21313
   113
      end;
haftmann@21163
   114
  in atoms end;
haftmann@21163
   115
haftmann@21163
   116
fun mksimps pairs =
wenzelm@21313
   117
  map_filter (try mk_eq) o mk_atomize pairs o gen_all;
haftmann@21163
   118
haftmann@21163
   119
fun unsafe_solver_tac prems =
haftmann@21163
   120
  (fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
haftmann@21163
   121
  FIRST'[resolve_tac(reflexive_thm :: TrueI :: refl :: prems), atac, etac FalseE];
haftmann@21163
   122
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
haftmann@21163
   123
haftmann@21163
   124
(*No premature instantiation of variables during simplification*)
haftmann@21163
   125
fun safe_solver_tac prems =
haftmann@21163
   126
  (fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
haftmann@21163
   127
  FIRST'[match_tac(reflexive_thm :: TrueI :: refl :: prems),
haftmann@21163
   128
         eq_assume_tac, ematch_tac [FalseE]];
haftmann@21163
   129
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
haftmann@21163
   130
haftmann@21163
   131
end;
haftmann@21163
   132
haftmann@21163
   133
structure SplitterData =
haftmann@21163
   134
struct
haftmann@21163
   135
  structure Simplifier = Simplifier
haftmann@21163
   136
  val mk_eq           = HOL.mk_eq
haftmann@21163
   137
  val meta_eq_to_iff  = HOL.meta_eq_to_obj_eq
haftmann@21163
   138
  val iffD            = HOL.iffD2
haftmann@21163
   139
  val disjE           = HOL.disjE
haftmann@21163
   140
  val conjE           = HOL.conjE
haftmann@21163
   141
  val exE             = HOL.exE
haftmann@21163
   142
  val contrapos       = HOL.contrapos_nn
haftmann@21163
   143
  val contrapos2      = HOL.contrapos_pp
haftmann@21163
   144
  val notnotD         = HOL.notnotD
haftmann@21163
   145
end;
haftmann@21163
   146
haftmann@21163
   147
structure Splitter = SplitterFun(SplitterData);
haftmann@21163
   148
wenzelm@21313
   149
haftmann@21163
   150
(* integration of simplifier with classical reasoner *)
haftmann@21163
   151
haftmann@21163
   152
structure Clasimp = ClasimpFun
haftmann@21163
   153
 (structure Simplifier = Simplifier and Splitter = Splitter
haftmann@21163
   154
  and Classical  = Classical and Blast = Blast
haftmann@21163
   155
  val iffD1 = HOL.iffD1 val iffD2 = HOL.iffD2 val notE = HOL.notE);
haftmann@21163
   156
haftmann@21163
   157
structure HOL =
haftmann@21163
   158
struct
haftmann@21163
   159
haftmann@21163
   160
open HOL;
haftmann@21163
   161
haftmann@21163
   162
val mksimps_pairs =
haftmann@21163
   163
  [("op -->", [mp]), ("op &", [thm "conjunct1", thm "conjunct2"]),
haftmann@21163
   164
   ("All", [spec]), ("True", []), ("False", []),
haftmann@21163
   165
   ("HOL.If", [thm "if_bool_eq_conj" RS iffD1])];
haftmann@21163
   166
haftmann@21163
   167
val simpset_basic =
haftmann@21163
   168
  Simplifier.theory_context (the_context ()) empty_ss
haftmann@21163
   169
    setsubgoaler asm_simp_tac
haftmann@21163
   170
    setSSolver safe_solver
haftmann@21163
   171
    setSolver unsafe_solver
haftmann@21163
   172
    setmksimps (mksimps mksimps_pairs)
haftmann@21163
   173
    setmkeqTrue mk_eq_True
haftmann@21163
   174
    setmkcong mk_meta_cong;
haftmann@21163
   175
haftmann@21163
   176
fun simplify rews = Simplifier.full_simplify (simpset_basic addsimps rews);
haftmann@21163
   177
haftmann@21163
   178
fun unfold_tac ths =
haftmann@21163
   179
  let val ss0 = Simplifier.clear_ss simpset_basic addsimps ths
haftmann@21163
   180
  in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end;
haftmann@21163
   181
wenzelm@21313
   182
wenzelm@21313
   183
haftmann@21163
   184
(** simprocs **)
haftmann@21163
   185
haftmann@21163
   186
(* simproc for proving "(y = x) == False" from premise "~(x = y)" *)
haftmann@21163
   187
haftmann@21163
   188
val use_neq_simproc = ref true;
haftmann@21163
   189
haftmann@21163
   190
local
haftmann@21163
   191
  val thy = the_context ();
haftmann@21163
   192
  val neq_to_EQ_False = thm "not_sym" RS HOL.Eq_FalseI;
haftmann@21163
   193
  fun neq_prover sg ss (eq $ lhs $ rhs) =
haftmann@21163
   194
    let
haftmann@21163
   195
      fun test thm = (case #prop (rep_thm thm) of
haftmann@21163
   196
                    _ $ (Not $ (eq' $ l' $ r')) =>
haftmann@21163
   197
                      Not = HOLogic.Not andalso eq' = eq andalso
haftmann@21163
   198
                      r' aconv lhs andalso l' aconv rhs
haftmann@21163
   199
                  | _ => false)
haftmann@21163
   200
    in if !use_neq_simproc then case find_first test (prems_of_ss ss)
haftmann@21163
   201
     of NONE => NONE
haftmann@21163
   202
      | SOME thm => SOME (thm RS neq_to_EQ_False)
haftmann@21163
   203
     else NONE
haftmann@21163
   204
    end
haftmann@21163
   205
in
haftmann@21163
   206
haftmann@21163
   207
val neq_simproc = Simplifier.simproc thy "neq_simproc" ["x = y"] neq_prover;
haftmann@21163
   208
wenzelm@21313
   209
end;
haftmann@21163
   210
haftmann@21163
   211
haftmann@21163
   212
(* simproc for Let *)
haftmann@21163
   213
haftmann@21163
   214
val use_let_simproc = ref true;
haftmann@21163
   215
haftmann@21163
   216
local
haftmann@21163
   217
  val thy = the_context ();
haftmann@21163
   218
  val Let_folded = thm "Let_folded";
haftmann@21163
   219
  val Let_unfold = thm "Let_unfold";
haftmann@21163
   220
  val (f_Let_unfold, x_Let_unfold) =
haftmann@21163
   221
      let val [(_$(f$x)$_)] = prems_of Let_unfold
haftmann@21163
   222
      in (cterm_of thy f, cterm_of thy x) end
haftmann@21163
   223
  val (f_Let_folded, x_Let_folded) =
haftmann@21163
   224
      let val [(_$(f$x)$_)] = prems_of Let_folded
haftmann@21163
   225
      in (cterm_of thy f, cterm_of thy x) end;
haftmann@21163
   226
  val g_Let_folded =
haftmann@21163
   227
      let val [(_$_$(g$_))] = prems_of Let_folded in cterm_of thy g end;
haftmann@21163
   228
in
haftmann@21163
   229
haftmann@21163
   230
val let_simproc =
haftmann@21163
   231
  Simplifier.simproc thy "let_simp" ["Let x f"]
haftmann@21163
   232
   (fn sg => fn ss => fn t =>
haftmann@21163
   233
     let val ctxt = Simplifier.the_context ss;
haftmann@21163
   234
         val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
haftmann@21163
   235
     in Option.map (hd o Variable.export ctxt' ctxt o single)
haftmann@21163
   236
      (case t' of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
haftmann@21163
   237
         if not (!use_let_simproc) then NONE
haftmann@21163
   238
         else if is_Free x orelse is_Bound x orelse is_Const x
haftmann@21163
   239
         then SOME (thm "Let_def")
haftmann@21163
   240
         else
haftmann@21163
   241
          let
haftmann@21163
   242
             val n = case f of (Abs (x,_,_)) => x | _ => "x";
haftmann@21163
   243
             val cx = cterm_of sg x;
haftmann@21163
   244
             val {T=xT,...} = rep_cterm cx;
haftmann@21163
   245
             val cf = cterm_of sg f;
haftmann@21163
   246
             val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
haftmann@21163
   247
             val (_$_$g) = prop_of fx_g;
haftmann@21163
   248
             val g' = abstract_over (x,g);
haftmann@21163
   249
           in (if (g aconv g')
haftmann@21163
   250
               then
haftmann@21163
   251
                  let
haftmann@21163
   252
                    val rl = cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] Let_unfold;
haftmann@21163
   253
                  in SOME (rl OF [fx_g]) end
haftmann@21163
   254
               else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*)
haftmann@21163
   255
               else let
haftmann@21163
   256
                     val abs_g'= Abs (n,xT,g');
haftmann@21163
   257
                     val g'x = abs_g'$x;
haftmann@21163
   258
                     val g_g'x = symmetric (beta_conversion false (cterm_of sg g'x));
haftmann@21163
   259
                     val rl = cterm_instantiate
haftmann@21163
   260
                               [(f_Let_folded,cterm_of sg f),(x_Let_folded,cx),
haftmann@21163
   261
                                (g_Let_folded,cterm_of sg abs_g')]
haftmann@21163
   262
                               Let_folded;
haftmann@21163
   263
                   in SOME (rl OF [transitive fx_g g_g'x])
haftmann@21163
   264
                   end)
haftmann@21163
   265
           end
haftmann@21163
   266
        | _ => NONE)
haftmann@21163
   267
     end)
haftmann@21163
   268
wenzelm@21313
   269
end;
wenzelm@21313
   270
haftmann@21163
   271
haftmann@21163
   272
(* generic refutation procedure *)
haftmann@21163
   273
haftmann@21163
   274
(* parameters:
haftmann@21163
   275
haftmann@21163
   276
   test: term -> bool
haftmann@21163
   277
   tests if a term is at all relevant to the refutation proof;
haftmann@21163
   278
   if not, then it can be discarded. Can improve performance,
haftmann@21163
   279
   esp. if disjunctions can be discarded (no case distinction needed!).
haftmann@21163
   280
haftmann@21163
   281
   prep_tac: int -> tactic
haftmann@21163
   282
   A preparation tactic to be applied to the goal once all relevant premises
haftmann@21163
   283
   have been moved to the conclusion.
haftmann@21163
   284
haftmann@21163
   285
   ref_tac: int -> tactic
haftmann@21163
   286
   the actual refutation tactic. Should be able to deal with goals
haftmann@21163
   287
   [| A1; ...; An |] ==> False
haftmann@21163
   288
   where the Ai are atomic, i.e. no top-level &, | or EX
haftmann@21163
   289
*)
haftmann@21163
   290
haftmann@21163
   291
local
haftmann@21163
   292
  val nnf_simpset =
haftmann@21163
   293
    empty_ss setmkeqTrue mk_eq_True
haftmann@21163
   294
    setmksimps (mksimps mksimps_pairs)
haftmann@21163
   295
    addsimps [thm "imp_conv_disj", thm "iff_conv_conj_imp", thm "de_Morgan_disj", thm "de_Morgan_conj",
haftmann@21163
   296
      thm "not_all", thm "not_ex", thm "not_not"];
haftmann@21163
   297
  fun prem_nnf_tac i st =
haftmann@21163
   298
    full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st;
haftmann@21163
   299
in
haftmann@21163
   300
fun refute_tac test prep_tac ref_tac =
haftmann@21163
   301
  let val refute_prems_tac =
haftmann@21163
   302
        REPEAT_DETERM
haftmann@21163
   303
              (eresolve_tac [conjE, exE] 1 ORELSE
haftmann@21163
   304
               filter_prems_tac test 1 ORELSE
haftmann@21163
   305
               etac disjE 1) THEN
haftmann@21163
   306
        ((etac notE 1 THEN eq_assume_tac 1) ORELSE
haftmann@21163
   307
         ref_tac 1);
haftmann@21163
   308
  in EVERY'[TRY o filter_prems_tac test,
haftmann@21163
   309
            REPEAT_DETERM o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
haftmann@21163
   310
            SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
haftmann@21163
   311
  end;
wenzelm@21313
   312
end;
haftmann@21163
   313
haftmann@21163
   314
val defALL_regroup =
haftmann@21163
   315
  Simplifier.simproc (the_context ())
haftmann@21163
   316
    "defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
haftmann@21163
   317
haftmann@21163
   318
val defEX_regroup =
haftmann@21163
   319
  Simplifier.simproc (the_context ())
haftmann@21163
   320
    "defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;
haftmann@21163
   321
haftmann@21163
   322
haftmann@21163
   323
val simpset_simprocs = simpset_basic
haftmann@21163
   324
  addsimprocs [defALL_regroup, defEX_regroup, neq_simproc, let_simproc]
haftmann@21163
   325
wenzelm@21313
   326
end;