src/Pure/proofterm.ML
author haftmann
Tue Sep 06 08:30:43 2005 +0200 (2005-09-06)
changeset 17271 2756a73f63a5
parent 17221 6cd180204582
child 17314 04e21a27c0ad
permissions -rw-r--r--
introduced some new-style AList operations
berghofe@11519
     1
(*  Title:      Pure/proofterm.ML
berghofe@11519
     2
    ID:         $Id$
wenzelm@11540
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@11519
     4
wenzelm@11540
     5
LF style proof terms.
berghofe@11519
     6
*)
berghofe@11519
     7
berghofe@11615
     8
infix 8 % %% %>;
berghofe@11519
     9
berghofe@11519
    10
signature BASIC_PROOFTERM =
berghofe@11519
    11
sig
wenzelm@11543
    12
  val proofs: int ref
berghofe@11519
    13
berghofe@11519
    14
  datatype proof =
berghofe@11519
    15
     PBound of int
berghofe@11519
    16
   | Abst of string * typ option * proof
berghofe@11519
    17
   | AbsP of string * term option * proof
gagern@15632
    18
   | op % of proof * term option
gagern@15632
    19
   | op %% of proof * proof
berghofe@11519
    20
   | Hyp of term
berghofe@11519
    21
   | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
    22
   | PAxm of string * term * typ list option
berghofe@11519
    23
   | Oracle of string * term * typ list option
berghofe@17017
    24
   | MinProof of ((string * term) * proof) list * (string * term) list * (string * term) list;
berghofe@11519
    25
berghofe@11615
    26
  val %> : proof * term -> proof
berghofe@11519
    27
end;
berghofe@11519
    28
berghofe@11519
    29
signature PROOFTERM =
berghofe@11519
    30
sig
berghofe@11519
    31
  include BASIC_PROOFTERM
berghofe@11519
    32
berghofe@11519
    33
  val infer_derivs : (proof -> proof -> proof) -> bool * proof -> bool * proof -> bool * proof
berghofe@11519
    34
  val infer_derivs' : (proof -> proof) -> (bool * proof -> bool * proof)
berghofe@11519
    35
berghofe@11519
    36
  (** primitive operations **)
berghofe@11519
    37
  val proof_combt : proof * term list -> proof
berghofe@11519
    38
  val proof_combt' : proof * term option list -> proof
berghofe@11519
    39
  val proof_combP : proof * proof list -> proof
berghofe@11519
    40
  val strip_combt : proof -> proof * term option list
berghofe@11519
    41
  val strip_combP : proof -> proof * proof list
berghofe@11519
    42
  val strip_thm : proof -> proof
berghofe@11519
    43
  val map_proof_terms : (term -> term) -> (typ -> typ) -> proof -> proof
berghofe@11519
    44
  val fold_proof_terms : (term * 'a -> 'a) -> (typ * 'a -> 'a) -> 'a * proof -> 'a
berghofe@11519
    45
  val add_prf_names : string list * proof -> string list
berghofe@11519
    46
  val add_prf_tfree_names : string list * proof -> string list
berghofe@11519
    47
  val add_prf_tvar_ixns : indexname list * proof -> indexname list
berghofe@12868
    48
  val maxidx_of_proof : proof -> int
berghofe@13744
    49
  val size_of_proof : proof -> int
berghofe@12907
    50
  val change_type : typ list option -> proof -> proof
berghofe@11519
    51
  val prf_abstract_over : term -> proof -> proof
berghofe@11519
    52
  val prf_incr_bv : int -> int -> int -> int -> proof -> proof
berghofe@11519
    53
  val incr_pboundvars : int -> int -> proof -> proof
berghofe@11519
    54
  val prf_loose_bvar1 : proof -> int -> bool
berghofe@11519
    55
  val prf_loose_Pbvar1 : proof -> int -> bool
berghofe@12279
    56
  val prf_add_loose_bnos : int -> int -> proof ->
berghofe@12279
    57
    int list * int list -> int list * int list
berghofe@11519
    58
  val norm_proof : Envir.env -> proof -> proof
berghofe@11519
    59
  val norm_proof' : Envir.env -> proof -> proof
berghofe@11519
    60
  val prf_subst_bounds : term list -> proof -> proof
berghofe@11519
    61
  val prf_subst_pbounds : proof list -> proof -> proof
berghofe@11519
    62
  val freeze_thaw_prf : proof -> proof * (proof -> proof)
berghofe@17017
    63
  val proof_of_min_axm : string * term -> proof
berghofe@17017
    64
  val proof_of_min_thm : (string * term) * proof -> proof
berghofe@11519
    65
berghofe@17017
    66
  val thms_of_proof : proof -> (term * proof) list Symtab.table ->
berghofe@11519
    67
    (term * proof) list Symtab.table
berghofe@17017
    68
  val axms_of_proof : proof -> proof Symtab.table -> proof Symtab.table
berghofe@17017
    69
  val oracles_of_proof : (string * term) list -> proof -> (string * term) list
berghofe@11519
    70
berghofe@11519
    71
  (** proof terms for specific inference rules **)
berghofe@11519
    72
  val implies_intr_proof : term -> proof -> proof
berghofe@11519
    73
  val forall_intr_proof : term -> string -> proof -> proof
berghofe@15797
    74
  val varify_proof : term -> (string * sort) list -> proof -> proof
berghofe@11519
    75
  val freezeT : term -> proof -> proof
berghofe@11519
    76
  val rotate_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    77
  val permute_prems_prf : term list -> int -> int -> proof -> proof
wenzelm@16880
    78
  val instantiate : ((indexname * sort) * typ) list * ((indexname * typ) * term) list
wenzelm@16880
    79
    -> proof -> proof
berghofe@11519
    80
  val lift_proof : term -> int -> term -> proof -> proof
berghofe@11519
    81
  val assumption_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    82
  val bicompose_proof : term list -> term list -> term list -> term option ->
berghofe@11519
    83
    int -> proof -> proof -> proof
berghofe@11519
    84
  val equality_axms : (string * term) list
berghofe@11519
    85
  val reflexive_axm : proof
berghofe@11519
    86
  val symmetric_axm : proof
berghofe@11519
    87
  val transitive_axm : proof
berghofe@11519
    88
  val equal_intr_axm : proof
berghofe@11519
    89
  val equal_elim_axm : proof
berghofe@11519
    90
  val abstract_rule_axm : proof
berghofe@11519
    91
  val combination_axm : proof
berghofe@11519
    92
  val reflexive : proof
berghofe@11519
    93
  val symmetric : proof -> proof
berghofe@11519
    94
  val transitive : term -> typ -> proof -> proof -> proof
berghofe@11519
    95
  val abstract_rule : term -> string -> proof -> proof
berghofe@11519
    96
  val combination : term -> term -> term -> term -> typ -> proof -> proof -> proof
berghofe@11519
    97
  val equal_intr : term -> term -> proof -> proof -> proof
berghofe@11519
    98
  val equal_elim : term -> term -> proof -> proof -> proof
berghofe@11519
    99
  val axm_proof : string -> term -> proof
berghofe@11519
   100
  val oracle_proof : string -> term -> proof
wenzelm@16458
   101
  val thm_proof : theory -> string * (string * string list) list ->
berghofe@11519
   102
    term list -> term -> proof -> proof
wenzelm@12923
   103
  val get_name_tags : term list -> term -> proof -> string * (string * string list) list
berghofe@11519
   104
berghofe@11519
   105
  (** rewriting on proof terms **)
berghofe@12233
   106
  val add_prf_rrules : (proof * proof) list -> theory -> theory
berghofe@12233
   107
  val add_prf_rprocs : (string * (Term.typ list -> proof -> proof option)) list ->
berghofe@12233
   108
    theory -> theory
wenzelm@17203
   109
  val rewrite_proof : theory -> (proof * proof) list *
berghofe@11519
   110
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
berghofe@11615
   111
  val rewrite_proof_notypes : (proof * proof) list *
berghofe@11615
   112
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
wenzelm@16536
   113
  val init_data: theory -> theory
berghofe@11519
   114
  
berghofe@11519
   115
end
berghofe@11519
   116
berghofe@11519
   117
structure Proofterm : PROOFTERM =
berghofe@11519
   118
struct
berghofe@11519
   119
berghofe@11715
   120
open Envir;
berghofe@11715
   121
berghofe@11519
   122
datatype proof =
berghofe@11519
   123
   PBound of int
berghofe@11519
   124
 | Abst of string * typ option * proof
berghofe@11519
   125
 | AbsP of string * term option * proof
wenzelm@12497
   126
 | op % of proof * term option
wenzelm@12497
   127
 | op %% of proof * proof
berghofe@11519
   128
 | Hyp of term
berghofe@11519
   129
 | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
   130
 | PAxm of string * term * typ list option
berghofe@11519
   131
 | Oracle of string * term * typ list option
berghofe@17017
   132
 | MinProof of ((string * term) * proof) list * (string * term) list * (string * term) list;
berghofe@11519
   133
berghofe@17017
   134
fun proof_of_min_axm (s, prop) = PAxm (s, prop, NONE);
berghofe@17017
   135
fun proof_of_min_thm ((s, prop), prf) = PThm ((s, []), prf, prop, NONE);
berghofe@17017
   136
berghofe@17017
   137
val string_term_ord = prod_ord fast_string_ord Term.fast_term_ord;
berghofe@17017
   138
berghofe@17017
   139
fun oracles_of_proof oras prf =
berghofe@11519
   140
  let
berghofe@17017
   141
    fun oras_of (Abst (_, _, prf)) = oras_of prf
berghofe@17017
   142
      | oras_of (AbsP (_, _, prf)) = oras_of prf
berghofe@17017
   143
      | oras_of (prf % _) = oras_of prf
berghofe@17017
   144
      | oras_of (prf1 %% prf2) = oras_of prf1 #> oras_of prf2
berghofe@17017
   145
      | oras_of (PThm ((name, _), prf, prop, _)) = (fn tabs as (thms, oras) =>
wenzelm@17221
   146
          case Symtab.curried_lookup thms name of
wenzelm@17221
   147
            NONE => oras_of prf (Symtab.curried_update (name, [prop]) thms, oras)
berghofe@17017
   148
          | SOME ps => if prop mem ps then tabs else
wenzelm@17221
   149
              oras_of prf (Symtab.curried_update (name, prop::ps) thms, oras))
berghofe@17017
   150
      | oras_of (Oracle (s, prop, _)) =
berghofe@17017
   151
          apsnd (OrdList.insert string_term_ord (s, prop))
berghofe@17017
   152
      | oras_of (MinProof (thms, _, oras)) =
berghofe@17017
   153
          apsnd (OrdList.union string_term_ord oras) #>
berghofe@17017
   154
          fold (oras_of o proof_of_min_thm) thms
berghofe@17017
   155
      | oras_of _ = I
berghofe@11519
   156
  in
berghofe@17017
   157
    snd (oras_of prf (Symtab.empty, oras))
berghofe@11519
   158
  end;
berghofe@11519
   159
berghofe@17017
   160
fun thms_of_proof (Abst (_, _, prf)) = thms_of_proof prf
berghofe@17017
   161
  | thms_of_proof (AbsP (_, _, prf)) = thms_of_proof prf
berghofe@17017
   162
  | thms_of_proof (prf1 %% prf2) = thms_of_proof prf1 #> thms_of_proof prf2
berghofe@17017
   163
  | thms_of_proof (prf % _) = thms_of_proof prf
berghofe@17017
   164
  | thms_of_proof (prf' as PThm ((s, _), prf, prop, _)) = (fn tab =>
wenzelm@17221
   165
      case Symtab.curried_lookup tab s of
wenzelm@17221
   166
        NONE => thms_of_proof prf (Symtab.curried_update (s, [(prop, prf')]) tab)
berghofe@17017
   167
      | SOME ps => if exists (equal prop o fst) ps then tab else
wenzelm@17221
   168
          thms_of_proof prf (Symtab.curried_update (s, (prop, prf')::ps) tab))
berghofe@17017
   169
  | thms_of_proof (MinProof (prfs, _, _)) = fold (thms_of_proof o proof_of_min_thm) prfs
berghofe@17017
   170
  | thms_of_proof _ = I;
berghofe@11519
   171
berghofe@17017
   172
fun axms_of_proof (Abst (_, _, prf)) = axms_of_proof prf
berghofe@17017
   173
  | axms_of_proof (AbsP (_, _, prf)) = axms_of_proof prf
berghofe@17017
   174
  | axms_of_proof (prf1 %% prf2) = axms_of_proof prf1 #> axms_of_proof prf2
berghofe@17017
   175
  | axms_of_proof (prf % _) = axms_of_proof prf
wenzelm@17221
   176
  | axms_of_proof (prf as PAxm (s, _, _)) = Symtab.curried_update (s, prf)
berghofe@17017
   177
  | axms_of_proof (MinProof (_, prfs, _)) = fold (axms_of_proof o proof_of_min_axm) prfs
berghofe@17017
   178
  | axms_of_proof _ = I;
berghofe@11519
   179
berghofe@11519
   180
(** collect all theorems, axioms and oracles **)
berghofe@11519
   181
berghofe@17017
   182
fun map3 f g h (thms, axms, oras) = (f thms, g axms, h oras);
berghofe@17017
   183
berghofe@17017
   184
fun mk_min_proof (Abst (_, _, prf)) = mk_min_proof prf
berghofe@17017
   185
  | mk_min_proof (AbsP (_, _, prf)) = mk_min_proof prf
berghofe@17017
   186
  | mk_min_proof (prf % _) = mk_min_proof prf
berghofe@17017
   187
  | mk_min_proof (prf1 %% prf2) = mk_min_proof prf1 #> mk_min_proof prf2
berghofe@17017
   188
  | mk_min_proof (PThm ((s, _), prf, prop, _)) =
berghofe@17017
   189
      map3 (OrdList.insert (string_term_ord o pairself fst) ((s, prop), prf)) I I
berghofe@17017
   190
  | mk_min_proof (PAxm (s, prop, _)) =
berghofe@17017
   191
      map3 I (OrdList.insert string_term_ord (s, prop)) I
berghofe@17017
   192
  | mk_min_proof (Oracle (s, prop, _)) =
berghofe@17017
   193
      map3 I I (OrdList.insert string_term_ord (s, prop))
berghofe@17017
   194
  | mk_min_proof (MinProof (thms, axms, oras)) =
berghofe@17017
   195
      map3 (OrdList.union (string_term_ord o pairself fst) thms)
berghofe@17017
   196
        (OrdList.union string_term_ord axms) (OrdList.union string_term_ord oras)
berghofe@17017
   197
  | mk_min_proof _ = I;
berghofe@11519
   198
berghofe@11519
   199
(** proof objects with different levels of detail **)
berghofe@11519
   200
wenzelm@11543
   201
val proofs = ref 2;
berghofe@11519
   202
wenzelm@11543
   203
fun err_illegal_level i =
wenzelm@11543
   204
  error ("Illegal level of detail for proof objects: " ^ string_of_int i);
berghofe@11519
   205
berghofe@11519
   206
fun if_ora b = if b then oracles_of_proof else K;
berghofe@11519
   207
berghofe@11519
   208
fun infer_derivs f (ora1, prf1) (ora2, prf2) =
berghofe@11519
   209
  (ora1 orelse ora2, 
wenzelm@11543
   210
   case !proofs of
wenzelm@11543
   211
     2 => f prf1 prf2
berghofe@17017
   212
   | 1 => MinProof (([], [], []) |> mk_min_proof prf1 |> mk_min_proof prf2)
berghofe@17017
   213
   | 0 => MinProof ([], [], if_ora ora2 (if_ora ora1 [] prf1) prf2)
wenzelm@11543
   214
   | i => err_illegal_level i);
berghofe@11519
   215
berghofe@17017
   216
fun infer_derivs' f = infer_derivs (K f) (false, MinProof ([], [], []));
berghofe@11519
   217
skalberg@15531
   218
fun (prf %> t) = prf % SOME t;
berghofe@11519
   219
skalberg@15570
   220
val proof_combt = Library.foldl (op %>);
skalberg@15570
   221
val proof_combt' = Library.foldl (op %);
skalberg@15570
   222
val proof_combP = Library.foldl (op %%);
berghofe@11519
   223
berghofe@11519
   224
fun strip_combt prf = 
berghofe@11615
   225
    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
berghofe@11519
   226
          | stripc  x =  x 
berghofe@11519
   227
    in  stripc (prf, [])  end;
berghofe@11519
   228
berghofe@11519
   229
fun strip_combP prf = 
berghofe@11615
   230
    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
berghofe@11519
   231
          | stripc  x =  x
berghofe@11519
   232
    in  stripc (prf, [])  end;
berghofe@11519
   233
berghofe@11519
   234
fun strip_thm prf = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
   235
      (PThm (_, prf', _, _), _) => prf'
berghofe@11519
   236
    | _ => prf);
berghofe@11519
   237
skalberg@15574
   238
val mk_Abst = foldr (fn ((s, T:typ), prf) => Abst (s, NONE, prf));
skalberg@15531
   239
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", NONE, prf)) prf;
berghofe@11519
   240
skalberg@15531
   241
fun apsome' f NONE = raise SAME
skalberg@15531
   242
  | apsome' f (SOME x) = SOME (f x);
berghofe@11715
   243
berghofe@11715
   244
fun same f x =
berghofe@11715
   245
  let val x' = f x
berghofe@11715
   246
  in if x = x' then raise SAME else x' end;
berghofe@11715
   247
berghofe@11715
   248
fun map_proof_terms f g =
berghofe@11715
   249
  let
berghofe@11715
   250
    fun mapp (Abst (s, T, prf)) = (Abst (s, apsome' (same g) T, mapph prf)
berghofe@11715
   251
          handle SAME => Abst (s, T, mapp prf))
berghofe@11715
   252
      | mapp (AbsP (s, t, prf)) = (AbsP (s, apsome' (same f) t, mapph prf)
berghofe@11715
   253
          handle SAME => AbsP (s, t, mapp prf))
skalberg@15570
   254
      | mapp (prf % t) = (mapp prf % Option.map f t
berghofe@11715
   255
          handle SAME => prf % apsome' (same f) t)
berghofe@11715
   256
      | mapp (prf1 %% prf2) = (mapp prf1 %% mapph prf2
berghofe@11715
   257
          handle SAME => prf1 %% mapp prf2)
skalberg@15531
   258
      | mapp (PThm (a, prf, prop, SOME Ts)) =
skalberg@15531
   259
          PThm (a, prf, prop, SOME (same (map g) Ts))
skalberg@15531
   260
      | mapp (PAxm (a, prop, SOME Ts)) =
skalberg@15531
   261
          PAxm (a, prop, SOME (same (map g) Ts))
berghofe@11715
   262
      | mapp _ = raise SAME
berghofe@11715
   263
    and mapph prf = (mapp prf handle SAME => prf)
berghofe@11715
   264
berghofe@11715
   265
  in mapph end;
berghofe@11519
   266
skalberg@15531
   267
fun fold_proof_terms f g (a, Abst (_, SOME T, prf)) = fold_proof_terms f g (g (T, a), prf)
skalberg@15531
   268
  | fold_proof_terms f g (a, Abst (_, NONE, prf)) = fold_proof_terms f g (a, prf)
skalberg@15531
   269
  | fold_proof_terms f g (a, AbsP (_, SOME t, prf)) = fold_proof_terms f g (f (t, a), prf)
skalberg@15531
   270
  | fold_proof_terms f g (a, AbsP (_, NONE, prf)) = fold_proof_terms f g (a, prf)
skalberg@15531
   271
  | fold_proof_terms f g (a, prf % SOME t) = f (t, fold_proof_terms f g (a, prf))
skalberg@15531
   272
  | fold_proof_terms f g (a, prf % NONE) = fold_proof_terms f g (a, prf)
berghofe@11615
   273
  | fold_proof_terms f g (a, prf1 %% prf2) = fold_proof_terms f g
berghofe@11519
   274
      (fold_proof_terms f g (a, prf1), prf2)
skalberg@15574
   275
  | fold_proof_terms _ g (a, PThm (_, _, _, SOME Ts)) = foldr g a Ts
skalberg@15574
   276
  | fold_proof_terms _ g (a, PAxm (_, prop, SOME Ts)) = foldr g a Ts
berghofe@11519
   277
  | fold_proof_terms _ _ (a, _) = a;
berghofe@11519
   278
berghofe@11519
   279
val add_prf_names = fold_proof_terms add_term_names ((uncurry K) o swap);
berghofe@11519
   280
val add_prf_tfree_names = fold_proof_terms add_term_tfree_names add_typ_tfree_names;
berghofe@11519
   281
val add_prf_tvar_ixns = fold_proof_terms add_term_tvar_ixns (add_typ_ixns o swap);
berghofe@11519
   282
berghofe@12868
   283
fun maxidx_of_proof prf = fold_proof_terms
berghofe@12868
   284
  (Int.max o apfst maxidx_of_term) (Int.max o apfst maxidx_of_typ) (~1, prf); 
berghofe@12868
   285
berghofe@13744
   286
fun size_of_proof (Abst (_, _, prf)) = 1 + size_of_proof prf
berghofe@13749
   287
  | size_of_proof (AbsP (_, t, prf)) = 1 + size_of_proof prf
berghofe@13744
   288
  | size_of_proof (prf1 %% prf2) = size_of_proof prf1 + size_of_proof prf2
berghofe@13749
   289
  | size_of_proof (prf % _) = 1 + size_of_proof prf
berghofe@13744
   290
  | size_of_proof _ = 1;
berghofe@13744
   291
berghofe@12907
   292
fun change_type opTs (PThm (name, prf, prop, _)) = PThm (name, prf, prop, opTs)
berghofe@12907
   293
  | change_type opTs (PAxm (name, prop, _)) = PAxm (name, prop, opTs)
berghofe@12907
   294
  | change_type opTs (Oracle (name, prop, _)) = Oracle (name, prop, opTs)
berghofe@12907
   295
  | change_type _ prf = prf;
berghofe@12907
   296
berghofe@11519
   297
berghofe@11519
   298
(***** utilities *****)
berghofe@11519
   299
berghofe@11519
   300
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
berghofe@11519
   301
  | strip_abs _ t = t;
berghofe@11519
   302
skalberg@15570
   303
fun mk_abs Ts t = Library.foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
berghofe@11519
   304
berghofe@11519
   305
berghofe@11519
   306
(*Abstraction of a proof term over its occurrences of v, 
berghofe@11519
   307
    which must contain no loose bound variables.
berghofe@11519
   308
  The resulting proof term is ready to become the body of an Abst.*)
berghofe@11519
   309
berghofe@11519
   310
fun prf_abstract_over v =
berghofe@11519
   311
  let
berghofe@11715
   312
    fun abst' lev u = if v aconv u then Bound lev else
berghofe@11715
   313
      (case u of
berghofe@11715
   314
         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
berghofe@11715
   315
       | f $ t => (abst' lev f $ absth' lev t handle SAME => f $ abst' lev t)
berghofe@11715
   316
       | _ => raise SAME)
berghofe@11715
   317
    and absth' lev t = (abst' lev t handle SAME => t);
berghofe@11519
   318
berghofe@11715
   319
    fun abst lev (AbsP (a, t, prf)) =
berghofe@11715
   320
          (AbsP (a, apsome' (abst' lev) t, absth lev prf)
berghofe@11715
   321
           handle SAME => AbsP (a, t, abst lev prf))
berghofe@11715
   322
      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
berghofe@11715
   323
      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
berghofe@11715
   324
          handle SAME => prf1 %% abst lev prf2)
skalberg@15570
   325
      | abst lev (prf % t) = (abst lev prf % Option.map (absth' lev) t
berghofe@11715
   326
          handle SAME => prf % apsome' (abst' lev) t)
berghofe@11715
   327
      | abst _ _ = raise SAME
berghofe@11715
   328
    and absth lev prf = (abst lev prf handle SAME => prf)
berghofe@11519
   329
berghofe@11715
   330
  in absth 0 end;
berghofe@11519
   331
berghofe@11519
   332
berghofe@11519
   333
(*increments a proof term's non-local bound variables
berghofe@11519
   334
  required when moving a proof term within abstractions
berghofe@11519
   335
     inc is  increment for bound variables
berghofe@11519
   336
     lev is  level at which a bound variable is considered 'loose'*)
berghofe@11519
   337
berghofe@11519
   338
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
berghofe@11519
   339
berghofe@11715
   340
fun prf_incr_bv' incP inct Plev tlev (PBound i) =
berghofe@11715
   341
      if i >= Plev then PBound (i+incP) else raise SAME 
berghofe@11715
   342
  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
berghofe@11715
   343
      (AbsP (a, apsome' (same (incr_bv' inct tlev)) t,
berghofe@11715
   344
         prf_incr_bv incP inct (Plev+1) tlev body) handle SAME =>
berghofe@11715
   345
           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
berghofe@11715
   346
  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
berghofe@11715
   347
      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
berghofe@11715
   348
  | prf_incr_bv' incP inct Plev tlev (prf %% prf') = 
berghofe@11715
   349
      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
berghofe@11715
   350
       handle SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
berghofe@11715
   351
  | prf_incr_bv' incP inct Plev tlev (prf % t) = 
skalberg@15570
   352
      (prf_incr_bv' incP inct Plev tlev prf % Option.map (incr_bv' inct tlev) t
berghofe@11715
   353
       handle SAME => prf % apsome' (same (incr_bv' inct tlev)) t)
berghofe@11715
   354
  | prf_incr_bv' _ _ _ _ _ = raise SAME
berghofe@11715
   355
and prf_incr_bv incP inct Plev tlev prf =
berghofe@11715
   356
      (prf_incr_bv' incP inct Plev tlev prf handle SAME => prf);
berghofe@11519
   357
berghofe@11519
   358
fun incr_pboundvars  0 0 prf = prf
berghofe@11519
   359
  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
berghofe@11519
   360
berghofe@11519
   361
berghofe@11615
   362
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
skalberg@15531
   363
  | prf_loose_bvar1 (prf % SOME t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
skalberg@15531
   364
  | prf_loose_bvar1 (_ % NONE) _ = true
skalberg@15531
   365
  | prf_loose_bvar1 (AbsP (_, SOME t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
skalberg@15531
   366
  | prf_loose_bvar1 (AbsP (_, NONE, _)) k = true
berghofe@11519
   367
  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
berghofe@11519
   368
  | prf_loose_bvar1 _ _ = false;
berghofe@11519
   369
berghofe@11519
   370
fun prf_loose_Pbvar1 (PBound i) k = i = k
berghofe@11615
   371
  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
berghofe@11615
   372
  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
berghofe@11519
   373
  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
berghofe@11519
   374
  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
berghofe@11519
   375
  | prf_loose_Pbvar1 _ _ = false;
berghofe@11519
   376
berghofe@12279
   377
fun prf_add_loose_bnos plev tlev (PBound i) (is, js) =
berghofe@12279
   378
      if i < plev then (is, js) else ((i-plev) ins is, js)
berghofe@12279
   379
  | prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
berghofe@12279
   380
      prf_add_loose_bnos plev tlev prf2
berghofe@12279
   381
        (prf_add_loose_bnos plev tlev prf1 p)
berghofe@12279
   382
  | prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
berghofe@12279
   383
      prf_add_loose_bnos plev tlev prf (case opt of
skalberg@15531
   384
          NONE => (is, ~1 ins js)
skalberg@15531
   385
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   386
  | prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
berghofe@12279
   387
      prf_add_loose_bnos (plev+1) tlev prf (case opt of
skalberg@15531
   388
          NONE => (is, ~1 ins js)
skalberg@15531
   389
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   390
  | prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
berghofe@12279
   391
      prf_add_loose_bnos plev (tlev+1) prf p
berghofe@12279
   392
  | prf_add_loose_bnos _ _ _ _ = ([], []);
berghofe@12279
   393
berghofe@11519
   394
berghofe@11519
   395
(**** substitutions ****)
berghofe@11519
   396
berghofe@11519
   397
fun norm_proof env =
berghofe@11519
   398
  let
wenzelm@12497
   399
    val envT = type_env env;
wenzelm@12497
   400
    fun norm (Abst (s, T, prf)) = (Abst (s, apsome' (norm_type_same envT) T, normh prf)
berghofe@11519
   401
          handle SAME => Abst (s, T, norm prf))
berghofe@11519
   402
      | norm (AbsP (s, t, prf)) = (AbsP (s, apsome' (norm_term_same env) t, normh prf)
berghofe@11519
   403
          handle SAME => AbsP (s, t, norm prf))
skalberg@15570
   404
      | norm (prf % t) = (norm prf % Option.map (norm_term env) t
berghofe@11615
   405
          handle SAME => prf % apsome' (norm_term_same env) t)
berghofe@11615
   406
      | norm (prf1 %% prf2) = (norm prf1 %% normh prf2
berghofe@11615
   407
          handle SAME => prf1 %% norm prf2)
wenzelm@12497
   408
      | norm (PThm (s, prf, t, Ts)) = PThm (s, prf, t, apsome' (norm_types_same envT) Ts)
wenzelm@12497
   409
      | norm (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome' (norm_types_same envT) Ts)
berghofe@11519
   410
      | norm _ = raise SAME
berghofe@11519
   411
    and normh prf = (norm prf handle SAME => prf);
berghofe@11519
   412
  in normh end;
berghofe@11519
   413
berghofe@11519
   414
(***** Remove some types in proof term (to save space) *****)
berghofe@11519
   415
berghofe@11519
   416
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
berghofe@11519
   417
  | remove_types (t $ u) = remove_types t $ remove_types u
berghofe@11519
   418
  | remove_types (Const (s, _)) = Const (s, dummyT)
berghofe@11519
   419
  | remove_types t = t;
berghofe@11519
   420
berghofe@11519
   421
fun remove_types_env (Envir.Envir {iTs, asol, maxidx}) =
berghofe@15797
   422
  Envir.Envir {iTs = iTs, asol = Vartab.map (apsnd remove_types) asol,
berghofe@15797
   423
    maxidx = maxidx};
berghofe@11519
   424
berghofe@11519
   425
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
berghofe@11519
   426
berghofe@11519
   427
(**** substitution of bound variables ****)
berghofe@11519
   428
berghofe@11519
   429
fun prf_subst_bounds args prf =
berghofe@11519
   430
  let
berghofe@11519
   431
    val n = length args;
berghofe@11519
   432
    fun subst' lev (Bound i) =
berghofe@11519
   433
         (if i<lev then raise SAME    (*var is locally bound*)
berghofe@11519
   434
          else  incr_boundvars lev (List.nth (args, i-lev))
berghofe@11519
   435
                  handle Subscript => Bound (i-n)  (*loose: change it*))
berghofe@11519
   436
      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
berghofe@11519
   437
      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
berghofe@11519
   438
          handle SAME => f $ subst' lev t)
berghofe@11519
   439
      | subst' _ _ = raise SAME
berghofe@11519
   440
    and substh' lev t = (subst' lev t handle SAME => t);
berghofe@11519
   441
berghofe@11519
   442
    fun subst lev (AbsP (a, t, body)) = (AbsP (a, apsome' (subst' lev) t, substh lev body)
berghofe@11519
   443
          handle SAME => AbsP (a, t, subst lev body))
berghofe@11519
   444
      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
berghofe@11615
   445
      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
berghofe@11615
   446
          handle SAME => prf %% subst lev prf')
skalberg@15570
   447
      | subst lev (prf % t) = (subst lev prf % Option.map (substh' lev) t
berghofe@11615
   448
          handle SAME => prf % apsome' (subst' lev) t)
berghofe@11519
   449
      | subst _ _ = raise SAME
berghofe@11519
   450
    and substh lev prf = (subst lev prf handle SAME => prf)
berghofe@11519
   451
  in case args of [] => prf | _ => substh 0 prf end;
berghofe@11519
   452
berghofe@11519
   453
fun prf_subst_pbounds args prf =
berghofe@11519
   454
  let
berghofe@11519
   455
    val n = length args;
berghofe@11519
   456
    fun subst (PBound i) Plev tlev =
berghofe@11519
   457
 	 (if i < Plev then raise SAME    (*var is locally bound*)
berghofe@11519
   458
          else incr_pboundvars Plev tlev (List.nth (args, i-Plev))
berghofe@11519
   459
                 handle Subscript => PBound (i-n)  (*loose: change it*))
berghofe@11519
   460
      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
berghofe@11519
   461
      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
berghofe@11615
   462
      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
berghofe@11615
   463
          handle SAME => prf %% subst prf' Plev tlev)
berghofe@11615
   464
      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
berghofe@11519
   465
      | subst  prf _ _ = raise SAME
berghofe@11519
   466
    and substh prf Plev tlev = (subst prf Plev tlev handle SAME => prf)
berghofe@11519
   467
  in case args of [] => prf | _ => substh prf 0 0 end;
berghofe@11519
   468
berghofe@11519
   469
berghofe@11519
   470
(**** Freezing and thawing of variables in proof terms ****)
berghofe@11519
   471
berghofe@11519
   472
fun frzT names =
skalberg@15570
   473
  map_type_tvar (fn (ixn, xs) => TFree (valOf (assoc (names, ixn)), xs));
berghofe@11519
   474
berghofe@11519
   475
fun thawT names =
berghofe@11519
   476
  map_type_tfree (fn (s, xs) => case assoc (names, s) of
skalberg@15531
   477
      NONE => TFree (s, xs)
skalberg@15531
   478
    | SOME ixn => TVar (ixn, xs));
berghofe@11519
   479
berghofe@11519
   480
fun freeze names names' (t $ u) =
berghofe@11519
   481
      freeze names names' t $ freeze names names' u
berghofe@11519
   482
  | freeze names names' (Abs (s, T, t)) =
berghofe@11519
   483
      Abs (s, frzT names' T, freeze names names' t)
berghofe@11519
   484
  | freeze names names' (Const (s, T)) = Const (s, frzT names' T)
berghofe@11519
   485
  | freeze names names' (Free (s, T)) = Free (s, frzT names' T)
berghofe@11519
   486
  | freeze names names' (Var (ixn, T)) =
skalberg@15570
   487
      Free (valOf (assoc (names, ixn)), frzT names' T)
berghofe@11519
   488
  | freeze names names' t = t;
berghofe@11519
   489
berghofe@11519
   490
fun thaw names names' (t $ u) =
berghofe@11519
   491
      thaw names names' t $ thaw names names' u
berghofe@11519
   492
  | thaw names names' (Abs (s, T, t)) =
berghofe@11519
   493
      Abs (s, thawT names' T, thaw names names' t)
berghofe@11519
   494
  | thaw names names' (Const (s, T)) = Const (s, thawT names' T)
berghofe@11519
   495
  | thaw names names' (Free (s, T)) = 
berghofe@11519
   496
      let val T' = thawT names' T
berghofe@11519
   497
      in case assoc (names, s) of
skalberg@15531
   498
          NONE => Free (s, T')
skalberg@15531
   499
        | SOME ixn => Var (ixn, T')
berghofe@11519
   500
      end
berghofe@11519
   501
  | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
berghofe@11519
   502
  | thaw names names' t = t;
berghofe@11519
   503
berghofe@11519
   504
fun freeze_thaw_prf prf =
berghofe@11519
   505
  let
berghofe@11519
   506
    val (fs, Tfs, vs, Tvs) = fold_proof_terms
berghofe@11519
   507
      (fn (t, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   508
         (add_term_frees (t, fs), add_term_tfree_names (t, Tfs),
berghofe@11519
   509
          add_term_vars (t, vs), add_term_tvar_ixns (t, Tvs)))
berghofe@11519
   510
      (fn (T, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   511
         (fs, add_typ_tfree_names (T, Tfs),
berghofe@11519
   512
          vs, add_typ_ixns (Tvs, T)))
berghofe@11519
   513
            (([], [], [], []), prf);
berghofe@11519
   514
    val fs' = map (fst o dest_Free) fs;
berghofe@11519
   515
    val vs' = map (fst o dest_Var) vs;
berghofe@11519
   516
    val names = vs' ~~ variantlist (map fst vs', fs');
berghofe@11519
   517
    val names' = Tvs ~~ variantlist (map fst Tvs, Tfs);
berghofe@11519
   518
    val rnames = map swap names;
berghofe@11519
   519
    val rnames' = map swap names';
berghofe@11519
   520
  in
berghofe@11519
   521
    (map_proof_terms (freeze names names') (frzT names') prf,
berghofe@11519
   522
     map_proof_terms (thaw rnames rnames') (thawT rnames'))
berghofe@11519
   523
  end;
berghofe@11519
   524
berghofe@11519
   525
berghofe@11519
   526
(***** implication introduction *****)
berghofe@11519
   527
berghofe@11519
   528
fun implies_intr_proof h prf =
berghofe@11519
   529
  let
berghofe@11715
   530
    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise SAME
berghofe@11519
   531
      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
berghofe@11519
   532
      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i+1) prf)
berghofe@11615
   533
      | abshyp i (prf % t) = abshyp i prf % t
berghofe@11715
   534
      | abshyp i (prf1 %% prf2) = (abshyp i prf1 %% abshyph i prf2
berghofe@11715
   535
          handle SAME => prf1 %% abshyp i prf2)
berghofe@11715
   536
      | abshyp _ _ = raise SAME
berghofe@11715
   537
    and abshyph i prf = (abshyp i prf handle SAME => prf)
berghofe@11519
   538
  in
skalberg@15531
   539
    AbsP ("H", NONE (*h*), abshyph 0 prf)
berghofe@11519
   540
  end;
berghofe@11519
   541
berghofe@11519
   542
berghofe@11519
   543
(***** forall introduction *****)
berghofe@11519
   544
skalberg@15531
   545
fun forall_intr_proof x a prf = Abst (a, NONE, prf_abstract_over x prf);
berghofe@11519
   546
berghofe@11519
   547
berghofe@11519
   548
(***** varify *****)
berghofe@11519
   549
berghofe@11519
   550
fun varify_proof t fixed prf =
berghofe@11519
   551
  let
berghofe@15797
   552
    val fs = add_term_tfrees (t, []) \\ fixed;
berghofe@11519
   553
    val ixns = add_term_tvar_ixns (t, []);
berghofe@15797
   554
    val fmap = fs ~~ variantlist (map fst fs, map #1 ixns)
berghofe@11519
   555
    fun thaw (f as (a, S)) =
wenzelm@16940
   556
      (case gen_assoc (op =) (fmap, f) of
skalberg@15531
   557
        NONE => TFree f
skalberg@15531
   558
      | SOME b => TVar ((b, 0), S));
berghofe@11519
   559
  in map_proof_terms (map_term_types (map_type_tfree thaw)) (map_type_tfree thaw) prf
berghofe@11519
   560
  end;
berghofe@11519
   561
berghofe@11519
   562
berghofe@11519
   563
local
berghofe@11519
   564
berghofe@11519
   565
fun new_name (ix, (pairs,used)) =
berghofe@11519
   566
  let val v = variant used (string_of_indexname ix)
berghofe@11519
   567
  in  ((ix, v) :: pairs, v :: used)  end;
berghofe@11519
   568
berghofe@11519
   569
fun freeze_one alist (ix, sort) = (case assoc (alist, ix) of
skalberg@15531
   570
    NONE => TVar (ix, sort)
skalberg@15531
   571
  | SOME name => TFree (name, sort));
berghofe@11519
   572
berghofe@11519
   573
in
berghofe@11519
   574
berghofe@11519
   575
fun freezeT t prf =
berghofe@11519
   576
  let
berghofe@11519
   577
    val used = it_term_types add_typ_tfree_names (t, [])
berghofe@11519
   578
    and tvars = map #1 (it_term_types add_typ_tvars (t, []));
skalberg@15574
   579
    val (alist, _) = foldr new_name ([], used) tvars;
berghofe@11519
   580
  in
berghofe@11519
   581
    (case alist of
berghofe@11519
   582
      [] => prf (*nothing to do!*)
berghofe@11519
   583
    | _ =>
berghofe@11519
   584
      let val frzT = map_type_tvar (freeze_one alist)
berghofe@11519
   585
      in map_proof_terms (map_term_types frzT) frzT prf end)
berghofe@11519
   586
  end;
berghofe@11519
   587
berghofe@11519
   588
end;
berghofe@11519
   589
berghofe@11519
   590
berghofe@11519
   591
(***** rotate assumptions *****)
berghofe@11519
   592
berghofe@11519
   593
fun rotate_proof Bs Bi m prf =
berghofe@11519
   594
  let
berghofe@11519
   595
    val params = Term.strip_all_vars Bi;
berghofe@11519
   596
    val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
berghofe@11519
   597
    val i = length asms;
berghofe@11519
   598
    val j = length Bs;
berghofe@11519
   599
  in
berghofe@11519
   600
    mk_AbsP (j+1, proof_combP (prf, map PBound
skalberg@15574
   601
      (j downto 1) @ [mk_Abst (mk_AbsP (i,
berghofe@11519
   602
        proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
skalberg@15574
   603
          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m)))))) params]))
berghofe@11519
   604
  end;
berghofe@11519
   605
berghofe@11519
   606
berghofe@11519
   607
(***** permute premises *****)
berghofe@11519
   608
berghofe@11519
   609
fun permute_prems_prf prems j k prf =
berghofe@11519
   610
  let val n = length prems
berghofe@11519
   611
  in mk_AbsP (n, proof_combP (prf,
berghofe@11519
   612
    map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
berghofe@11519
   613
  end;
berghofe@11519
   614
berghofe@11519
   615
berghofe@11519
   616
(***** instantiation *****)
berghofe@11519
   617
wenzelm@16880
   618
fun instantiate (instT, inst) prf =
wenzelm@16880
   619
  map_proof_terms (Term.instantiate (instT, map (apsnd remove_types) inst))
wenzelm@16880
   620
    (Term.instantiateT instT) prf;
berghofe@11519
   621
berghofe@11519
   622
berghofe@11519
   623
(***** lifting *****)
berghofe@11519
   624
berghofe@11519
   625
fun lift_proof Bi inc prop prf =
berghofe@11519
   626
  let
berghofe@11519
   627
    val (_, lift_all) = Logic.lift_fns (Bi, inc);
berghofe@11519
   628
berghofe@11519
   629
    fun lift'' Us Ts t = strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
berghofe@11519
   630
berghofe@11715
   631
    fun lift' Us Ts (Abst (s, T, prf)) =
wenzelm@16880
   632
          (Abst (s, apsome' (same (Logic.incr_tvar inc)) T, lifth' Us (dummyT::Ts) prf)
berghofe@11715
   633
           handle SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
berghofe@11715
   634
      | lift' Us Ts (AbsP (s, t, prf)) =
berghofe@11715
   635
          (AbsP (s, apsome' (same (lift'' Us Ts)) t, lifth' Us Ts prf)
berghofe@11715
   636
           handle SAME => AbsP (s, t, lift' Us Ts prf))
skalberg@15570
   637
      | lift' Us Ts (prf % t) = (lift' Us Ts prf % Option.map (lift'' Us Ts) t
berghofe@11715
   638
          handle SAME => prf % apsome' (same (lift'' Us Ts)) t)
berghofe@11715
   639
      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
berghofe@11715
   640
          handle SAME => prf1 %% lift' Us Ts prf2)
berghofe@11715
   641
      | lift' _ _ (PThm (s, prf, prop, Ts)) =
wenzelm@16880
   642
          PThm (s, prf, prop, apsome' (same (map (Logic.incr_tvar inc))) Ts)
berghofe@11715
   643
      | lift' _ _ (PAxm (s, prop, Ts)) =
wenzelm@16880
   644
          PAxm (s, prop, apsome' (same (map (Logic.incr_tvar inc))) Ts)
berghofe@11715
   645
      | lift' _ _ _ = raise SAME
berghofe@11715
   646
    and lifth' Us Ts prf = (lift' Us Ts prf handle SAME => prf);
berghofe@11519
   647
berghofe@13662
   648
    val ps = map lift_all (Logic.strip_imp_prems prop);
berghofe@11519
   649
    val k = length ps;
berghofe@11519
   650
berghofe@11519
   651
    fun mk_app (b, (i, j, prf)) = 
berghofe@11615
   652
          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
berghofe@11519
   653
berghofe@11519
   654
    fun lift Us bs i j (Const ("==>", _) $ A $ B) =
skalberg@15531
   655
	    AbsP ("H", NONE (*A*), lift Us (true::bs) (i+1) j B)
berghofe@11519
   656
      | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) = 
skalberg@15531
   657
	    Abst (a, NONE (*T*), lift (T::Us) (false::bs) i (j+1) t)
berghofe@11715
   658
      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
skalberg@15574
   659
            map (fn k => (#3 (foldr mk_app (i-1, j-1, PBound k) bs)))
berghofe@11519
   660
              (i + k - 1 downto i));
berghofe@11519
   661
  in
berghofe@11519
   662
    mk_AbsP (k, lift [] [] 0 0 Bi)
berghofe@11519
   663
  end;
berghofe@11519
   664
berghofe@11519
   665
berghofe@11519
   666
(***** proof by assumption *****)
berghofe@11519
   667
skalberg@15531
   668
fun mk_asm_prf (Const ("==>", _) $ A $ B) i = AbsP ("H", NONE (*A*), mk_asm_prf B (i+1))
skalberg@15531
   669
  | mk_asm_prf (Const ("all", _) $ Abs (a, T, t)) i = Abst (a, NONE (*T*), mk_asm_prf t i)
berghofe@11519
   670
  | mk_asm_prf _ i = PBound i;
berghofe@11519
   671
berghofe@11519
   672
fun assumption_proof Bs Bi n prf =
berghofe@11519
   673
  mk_AbsP (length Bs, proof_combP (prf,
berghofe@11519
   674
    map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi (~n)]));
berghofe@11519
   675
berghofe@11519
   676
berghofe@11519
   677
(***** Composition of object rule with proof state *****)
berghofe@11519
   678
berghofe@11519
   679
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
skalberg@15531
   680
      AbsP ("H", NONE (*A*), flatten_params_proof (i+1) j n (B, k))
berghofe@11519
   681
  | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
skalberg@15531
   682
      Abst (a, NONE (*T*), flatten_params_proof i (j+1) n (t, k))
berghofe@11519
   683
  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
berghofe@11519
   684
      map Bound (j-1 downto 0)), map PBound (i-1 downto 0 \ i-n));
berghofe@11519
   685
berghofe@11519
   686
fun bicompose_proof Bs oldAs newAs A n rprf sprf =
berghofe@11519
   687
  let
berghofe@11519
   688
    val la = length newAs;
berghofe@11519
   689
    val lb = length Bs;
berghofe@11519
   690
  in
berghofe@11519
   691
    mk_AbsP (lb+la, proof_combP (sprf,
berghofe@11615
   692
      map PBound (lb + la - 1 downto la)) %%
skalberg@15570
   693
        proof_combP (rprf, (if n>0 then [mk_asm_prf (valOf A) (~n)] else []) @
berghofe@11519
   694
          map (flatten_params_proof 0 0 n) (oldAs ~~ (la - 1 downto 0))))
berghofe@11519
   695
  end;
berghofe@11519
   696
berghofe@11519
   697
berghofe@11519
   698
(***** axioms for equality *****)
berghofe@11519
   699
wenzelm@14854
   700
val aT = TFree ("'a", []);
wenzelm@14854
   701
val bT = TFree ("'b", []);
berghofe@11519
   702
val x = Free ("x", aT);
berghofe@11519
   703
val y = Free ("y", aT);
berghofe@11519
   704
val z = Free ("z", aT);
berghofe@11519
   705
val A = Free ("A", propT);
berghofe@11519
   706
val B = Free ("B", propT);
berghofe@11519
   707
val f = Free ("f", aT --> bT);
berghofe@11519
   708
val g = Free ("g", aT --> bT);
berghofe@11519
   709
berghofe@11519
   710
local open Logic in
berghofe@11519
   711
berghofe@11519
   712
val equality_axms =
berghofe@11519
   713
  [("reflexive", mk_equals (x, x)),
berghofe@11519
   714
   ("symmetric", mk_implies (mk_equals (x, y), mk_equals (y, x))),
berghofe@11519
   715
   ("transitive", list_implies ([mk_equals (x, y), mk_equals (y, z)], mk_equals (x, z))),
berghofe@11519
   716
   ("equal_intr", list_implies ([mk_implies (A, B), mk_implies (B, A)], mk_equals (A, B))),
berghofe@11519
   717
   ("equal_elim", list_implies ([mk_equals (A, B), A], B)),
berghofe@11519
   718
   ("abstract_rule", Logic.mk_implies
berghofe@11519
   719
      (all aT $ Abs ("x", aT, equals bT $ (f $ Bound 0) $ (g $ Bound 0)),
berghofe@11519
   720
       equals (aT --> bT) $
berghofe@11519
   721
         Abs ("x", aT, f $ Bound 0) $ Abs ("x", aT, g $ Bound 0))),
berghofe@11519
   722
   ("combination", Logic.list_implies
berghofe@11519
   723
      ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)],
berghofe@11519
   724
       Logic.mk_equals (f $ x, g $ y)))];
berghofe@11519
   725
berghofe@11519
   726
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
berghofe@11519
   727
  equal_elim_axm, abstract_rule_axm, combination_axm] =
skalberg@15531
   728
    map (fn (s, t) => PAxm ("ProtoPure." ^ s, varify t, NONE)) equality_axms;
berghofe@11519
   729
berghofe@11519
   730
end;
berghofe@11519
   731
skalberg@15531
   732
val reflexive = reflexive_axm % NONE;
berghofe@11519
   733
berghofe@11615
   734
fun symmetric (prf as PAxm ("ProtoPure.reflexive", _, _) % _) = prf
skalberg@15531
   735
  | symmetric prf = symmetric_axm % NONE % NONE %% prf;
berghofe@11519
   736
berghofe@11615
   737
fun transitive _ _ (PAxm ("ProtoPure.reflexive", _, _) % _) prf2 = prf2
berghofe@11615
   738
  | transitive _ _ prf1 (PAxm ("ProtoPure.reflexive", _, _) % _) = prf1
berghofe@11519
   739
  | transitive u (Type ("prop", [])) prf1 prf2 =
skalberg@15531
   740
      transitive_axm % NONE % SOME (remove_types u) % NONE %% prf1 %% prf2
berghofe@11519
   741
  | transitive u T prf1 prf2 =
skalberg@15531
   742
      transitive_axm % NONE % NONE % NONE %% prf1 %% prf2;
berghofe@11519
   743
berghofe@11519
   744
fun abstract_rule x a prf =
skalberg@15531
   745
  abstract_rule_axm % NONE % NONE %% forall_intr_proof x a prf;
berghofe@11519
   746
berghofe@11615
   747
fun check_comb (PAxm ("ProtoPure.combination", _, _) % f % g % _ % _ %% prf %% _) =
skalberg@15570
   748
      isSome f orelse check_comb prf
berghofe@11615
   749
  | check_comb (PAxm ("ProtoPure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
berghofe@11519
   750
      check_comb prf1 andalso check_comb prf2
berghofe@11615
   751
  | check_comb (PAxm ("ProtoPure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
berghofe@11519
   752
  | check_comb _ = false;
berghofe@11519
   753
berghofe@11519
   754
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
berghofe@11519
   755
  let
berghofe@11519
   756
    val f = Envir.beta_norm f;
berghofe@11519
   757
    val g = Envir.beta_norm g;
berghofe@11519
   758
    val prf =  if check_comb prf1 then
skalberg@15531
   759
        combination_axm % NONE % NONE
berghofe@11519
   760
      else (case prf1 of
berghofe@11615
   761
          PAxm ("ProtoPure.reflexive", _, _) % _ =>
skalberg@15531
   762
            combination_axm %> remove_types f % NONE
berghofe@11615
   763
        | _ => combination_axm %> remove_types f %> remove_types g)
berghofe@11519
   764
  in
berghofe@11519
   765
    (case T of
berghofe@11615
   766
       Type ("fun", _) => prf %
berghofe@11519
   767
         (case head_of f of
skalberg@15531
   768
            Abs _ => SOME (remove_types t)
skalberg@15531
   769
          | Var _ => SOME (remove_types t)
skalberg@15531
   770
          | _ => NONE) %
berghofe@11519
   771
         (case head_of g of
skalberg@15531
   772
            Abs _ => SOME (remove_types u)
skalberg@15531
   773
          | Var _ => SOME (remove_types u)
skalberg@15531
   774
          | _ => NONE) %% prf1 %% prf2
skalberg@15531
   775
     | _ => prf % NONE % NONE %% prf1 %% prf2)
berghofe@11519
   776
  end;
berghofe@11519
   777
berghofe@11519
   778
fun equal_intr A B prf1 prf2 =
berghofe@11615
   779
  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   780
berghofe@11519
   781
fun equal_elim A B prf1 prf2 =
berghofe@11615
   782
  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   783
berghofe@11519
   784
berghofe@11519
   785
(***** axioms and theorems *****)
berghofe@11519
   786
haftmann@16787
   787
fun vars_of t = rev (fold_aterms
haftmann@16787
   788
  (fn v as Var _ => (fn vs => v ins vs) | _ => I) t []);
berghofe@11519
   789
berghofe@11519
   790
fun test_args _ [] = true
berghofe@11519
   791
  | test_args is (Bound i :: ts) =
berghofe@11519
   792
      not (i mem is) andalso test_args (i :: is) ts
berghofe@11519
   793
  | test_args _ _ = false;
berghofe@11519
   794
berghofe@11519
   795
fun is_fun (Type ("fun", _)) = true
berghofe@11519
   796
  | is_fun (TVar _) = true
berghofe@11519
   797
  | is_fun _ = false;
berghofe@11519
   798
berghofe@11519
   799
fun add_funvars Ts (vs, t) =
berghofe@11519
   800
  if is_fun (fastype_of1 (Ts, t)) then
skalberg@15570
   801
    vs union List.mapPartial (fn Var (ixn, T) =>
skalberg@15531
   802
      if is_fun T then SOME ixn else NONE | _ => NONE) (vars_of t)
berghofe@11519
   803
  else vs;
berghofe@11519
   804
berghofe@11519
   805
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
berghofe@11519
   806
      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
berghofe@11519
   807
  | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
berghofe@11519
   808
      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
berghofe@12041
   809
  | add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
berghofe@12041
   810
  | add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
berghofe@12041
   811
and add_npvars' Ts (vs, t) = (case strip_comb t of
berghofe@11519
   812
    (Var (ixn, _), ts) => if test_args [] ts then vs
skalberg@15570
   813
      else Library.foldl (add_npvars' Ts) (overwrite (vs,
skalberg@15570
   814
        (ixn, Library.foldl (add_funvars Ts) (getOpt (assoc (vs, ixn), []), ts))), ts)
skalberg@15570
   815
  | (Abs (_, T, u), ts) => Library.foldl (add_npvars' (T::Ts)) (vs, u :: ts)
skalberg@15570
   816
  | (_, ts) => Library.foldl (add_npvars' Ts) (vs, ts));
berghofe@11519
   817
berghofe@11519
   818
fun prop_vars (Const ("==>", _) $ P $ Q) = prop_vars P union prop_vars Q
berghofe@11519
   819
  | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
berghofe@11519
   820
  | prop_vars t = (case strip_comb t of
berghofe@11519
   821
      (Var (ixn, _), _) => [ixn] | _ => []);
berghofe@11519
   822
berghofe@11519
   823
fun is_proj t =
berghofe@11519
   824
  let
berghofe@11519
   825
    fun is_p i t = (case strip_comb t of
berghofe@11519
   826
        (Bound j, []) => false
berghofe@11519
   827
      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
berghofe@11519
   828
      | (Abs (_, _, u), _) => is_p (i+1) u
berghofe@11519
   829
      | (_, ts) => exists (is_p i) ts)
berghofe@11519
   830
  in (case strip_abs_body t of
berghofe@11519
   831
        Bound _ => true
berghofe@11519
   832
      | t' => is_p 0 t')
berghofe@11519
   833
  end;
berghofe@11519
   834
berghofe@11519
   835
fun needed_vars prop = 
skalberg@15570
   836
  Library.foldl op union ([], map op ins (add_npvars true true [] ([], prop))) union
berghofe@11519
   837
  prop_vars prop;
berghofe@11519
   838
berghofe@11519
   839
fun gen_axm_proof c name prop =
berghofe@11519
   840
  let
berghofe@11519
   841
    val nvs = needed_vars prop;
berghofe@11519
   842
    val args = map (fn (v as Var (ixn, _)) =>
skalberg@15531
   843
        if ixn mem nvs then SOME v else NONE) (vars_of prop) @
wenzelm@16983
   844
      map SOME (sort Term.term_ord (term_frees prop));
berghofe@11519
   845
  in
skalberg@15531
   846
    proof_combt' (c (name, prop, NONE), args)
berghofe@11519
   847
  end;
berghofe@11519
   848
berghofe@11519
   849
val axm_proof = gen_axm_proof PAxm;
berghofe@17017
   850
berghofe@17017
   851
val dummy = Const (Term.dummy_patternN, dummyT);
berghofe@17017
   852
berghofe@17017
   853
fun oracle_proof name prop =
berghofe@17017
   854
  if !proofs = 0 then Oracle (name, dummy, NONE)
berghofe@17017
   855
  else gen_axm_proof Oracle name prop;
berghofe@11519
   856
berghofe@11519
   857
fun shrink ls lev (prf as Abst (a, T, body)) =
berghofe@11519
   858
      let val (b, is, ch, body') = shrink ls (lev+1) body
berghofe@11519
   859
      in (b, is, ch, if ch then Abst (a, T, body') else prf) end
berghofe@11519
   860
  | shrink ls lev (prf as AbsP (a, t, body)) =
berghofe@11519
   861
      let val (b, is, ch, body') = shrink (lev::ls) lev body
skalberg@15570
   862
      in (b orelse 0 mem is, List.mapPartial (fn 0 => NONE | i => SOME (i-1)) is,
berghofe@11519
   863
        ch, if ch then AbsP (a, t, body') else prf)
berghofe@11519
   864
      end
berghofe@11519
   865
  | shrink ls lev prf =
berghofe@11519
   866
      let val (is, ch, _, prf') = shrink' ls lev [] [] prf
berghofe@11519
   867
      in (false, is, ch, prf') end
berghofe@11615
   868
and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
berghofe@11519
   869
      let
berghofe@11519
   870
        val p as (_, is', ch', prf') = shrink ls lev prf2;
berghofe@11519
   871
        val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
berghofe@11519
   872
      in (is union is', ch orelse ch', ts',
berghofe@11615
   873
          if ch orelse ch' then prf'' %% prf' else prf)
berghofe@11519
   874
      end
berghofe@11615
   875
  | shrink' ls lev ts prfs (prf as prf1 % t) =
berghofe@11519
   876
      let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
berghofe@11615
   877
      in (is, ch orelse ch', ts', if ch orelse ch' then prf' % t' else prf) end
berghofe@11519
   878
  | shrink' ls lev ts prfs (prf as PBound i) =
skalberg@15570
   879
      (if exists (fn SOME (Bound j) => lev-j <= List.nth (ls, i) | _ => true) ts
berghofe@12233
   880
         orelse not (null (duplicates
skalberg@15570
   881
           (Library.foldl (fn (js, SOME (Bound j)) => j :: js | (js, _) => js) ([], ts))))
berghofe@11519
   882
         orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
berghofe@11519
   883
  | shrink' ls lev ts prfs (prf as Hyp _) = ([], false, map (pair false) ts, prf)
berghofe@11615
   884
  | shrink' ls lev ts prfs (prf as MinProof _) =
berghofe@11615
   885
      ([], false, map (pair false) ts, prf)
berghofe@11519
   886
  | shrink' ls lev ts prfs prf =
berghofe@11519
   887
      let
berghofe@11519
   888
        val prop = (case prf of PThm (_, _, prop, _) => prop | PAxm (_, prop, _) => prop
berghofe@11519
   889
          | Oracle (_, prop, _) => prop | _ => error "shrink: proof not in normal form");
berghofe@11519
   890
        val vs = vars_of prop;
nipkow@13629
   891
        val (ts', ts'') = splitAt (length vs, ts)
skalberg@15570
   892
        val insts = Library.take (length ts', map (fst o dest_Var) vs) ~~ ts';
skalberg@15570
   893
        val nvs = Library.foldl (fn (ixns', (ixn, ixns)) =>
berghofe@11519
   894
          ixn ins (case assoc (insts, ixn) of
skalberg@15531
   895
              SOME (SOME t) => if is_proj t then ixns union ixns' else ixns'
berghofe@11519
   896
            | _ => ixns union ixns'))
berghofe@11519
   897
              (needed prop ts'' prfs, add_npvars false true [] ([], prop));
berghofe@11519
   898
        val insts' = map
skalberg@15531
   899
          (fn (ixn, x as SOME _) => if ixn mem nvs then (false, x) else (true, NONE)
berghofe@11519
   900
            | (_, x) => (false, x)) insts
berghofe@11519
   901
      in ([], false, insts' @ map (pair false) ts'', prf) end
berghofe@11519
   902
and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
berghofe@11519
   903
      (if b then map (fst o dest_Var) (vars_of t) else []) union needed u ts prfs
berghofe@11519
   904
  | needed (Var (ixn, _)) (_::_) _ = [ixn]
berghofe@11519
   905
  | needed _ _ _ = [];
berghofe@11519
   906
berghofe@11519
   907
berghofe@11519
   908
(**** Simple first order matching functions for terms and proofs ****)
berghofe@11519
   909
berghofe@11519
   910
exception PMatch;
berghofe@11519
   911
berghofe@11519
   912
(** see pattern.ML **)
berghofe@11519
   913
skalberg@15570
   914
fun flt (i: int) = List.filter (fn n => n < i);
berghofe@12279
   915
berghofe@12279
   916
fun fomatch Ts tymatch j =
berghofe@11519
   917
  let
berghofe@11519
   918
    fun mtch (instsp as (tyinsts, insts)) = fn
berghofe@11519
   919
        (Var (ixn, T), t)  =>
berghofe@12279
   920
          if j>0 andalso not (null (flt j (loose_bnos t)))
berghofe@12279
   921
          then raise PMatch
berghofe@12279
   922
          else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
berghofe@12279
   923
            (ixn, t) :: insts)
berghofe@11519
   924
      | (Free (a, T), Free (b, U)) =>
berghofe@12279
   925
	  if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   926
      | (Const (a, T), Const (b, U))  =>
berghofe@12279
   927
	  if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   928
      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
berghofe@12279
   929
      | (Bound i, Bound j) => if i=j then instsp else raise PMatch
berghofe@11519
   930
      | _ => raise PMatch
berghofe@11519
   931
  in mtch end;
berghofe@11519
   932
berghofe@12279
   933
fun match_proof Ts tymatch =
berghofe@11519
   934
  let
skalberg@15531
   935
    fun optmatch _ inst (NONE, _) = inst
skalberg@15531
   936
      | optmatch _ _ (SOME _, NONE) = raise PMatch
skalberg@15531
   937
      | optmatch mtch inst (SOME x, SOME y) = mtch inst (x, y)
berghofe@12279
   938
berghofe@12279
   939
    fun matcht Ts j (pinst, tinst) (t, u) =
berghofe@12279
   940
      (pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
berghofe@12279
   941
    fun matchT (pinst, (tyinsts, insts)) p =
berghofe@12279
   942
      (pinst, (tymatch (tyinsts, K p), insts));
skalberg@15570
   943
    fun matchTs inst (Ts, Us) = Library.foldl (uncurry matchT) (inst, Ts ~~ Us);
berghofe@12279
   944
berghofe@12279
   945
    fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
berghofe@12279
   946
          if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
berghofe@12279
   947
          else (case apfst (flt i) (apsnd (flt j)
berghofe@12279
   948
                  (prf_add_loose_bnos 0 0 prf ([], []))) of
berghofe@12279
   949
              ([], []) => ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
   950
            | ([], _) => if j = 0 then
berghofe@12279
   951
                   ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
   952
                 else raise PMatch
berghofe@12279
   953
            | _ => raise PMatch)
berghofe@12279
   954
      | mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
berghofe@12279
   955
          optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
berghofe@12279
   956
      | mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
berghofe@12279
   957
          mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
berghofe@12279
   958
      | mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
skalberg@15570
   959
          mtch (getOpt (opU,dummyT) :: Ts) i (j+1)
berghofe@12279
   960
            (optmatch matchT inst (opT, opU)) (prf1, prf2)
berghofe@12279
   961
      | mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
skalberg@15570
   962
          mtch (getOpt (opU,dummyT) :: Ts) i (j+1) inst
berghofe@12279
   963
            (incr_pboundvars 0 1 prf1 %> Bound 0, prf2)
berghofe@12279
   964
      | mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
berghofe@12279
   965
          mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
berghofe@12279
   966
      | mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
berghofe@12279
   967
          mtch Ts (i+1) j inst (incr_pboundvars 1 0 prf1 %% PBound 0, prf2)
berghofe@12279
   968
      | mtch Ts i j inst (PThm ((name1, _), _, prop1, opTs),
berghofe@12279
   969
            PThm ((name2, _), _, prop2, opUs)) =
berghofe@11519
   970
          if name1=name2 andalso prop1=prop2 then
berghofe@12279
   971
            optmatch matchTs inst (opTs, opUs)
berghofe@11519
   972
          else raise PMatch
berghofe@12279
   973
      | mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
berghofe@12279
   974
          if s1=s2 then optmatch matchTs inst (opTs, opUs)
berghofe@11519
   975
          else raise PMatch
berghofe@12279
   976
      | mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
berghofe@12279
   977
      | mtch _ _ _ _ _ = raise PMatch
berghofe@12279
   978
  in mtch Ts 0 0 end;
berghofe@11519
   979
berghofe@11519
   980
fun prf_subst (pinst, (tyinsts, insts)) =
berghofe@11519
   981
  let
berghofe@15797
   982
    val substT = Envir.typ_subst_TVars tyinsts;
berghofe@11519
   983
berghofe@11519
   984
    fun subst' lev (t as Var (ixn, _)) = (case assoc (insts, ixn) of
skalberg@15531
   985
          NONE => t
skalberg@15531
   986
        | SOME u => incr_boundvars lev u)
berghofe@11519
   987
      | subst' lev (Const (s, T)) = Const (s, substT T)
berghofe@11519
   988
      | subst' lev (Free (s, T)) = Free (s, substT T)
berghofe@11519
   989
      | subst' lev (Abs (a, T, body)) = Abs (a, substT T, subst' (lev+1) body)
berghofe@11519
   990
      | subst' lev (f $ t) = subst' lev f $ subst' lev t
berghofe@11519
   991
      | subst' _ t = t;
berghofe@11519
   992
berghofe@11519
   993
    fun subst plev tlev (AbsP (a, t, body)) =
skalberg@15570
   994
          AbsP (a, Option.map (subst' tlev) t, subst (plev+1) tlev body)
berghofe@11519
   995
      | subst plev tlev (Abst (a, T, body)) =
skalberg@15570
   996
          Abst (a, Option.map substT T, subst plev (tlev+1) body)
berghofe@11615
   997
      | subst plev tlev (prf %% prf') = subst plev tlev prf %% subst plev tlev prf'
skalberg@15570
   998
      | subst plev tlev (prf % t) = subst plev tlev prf % Option.map (subst' tlev) t
berghofe@11519
   999
      | subst plev tlev (prf as Hyp (Var (ixn, _))) = (case assoc (pinst, ixn) of
skalberg@15531
  1000
          NONE => prf
skalberg@15531
  1001
        | SOME prf' => incr_pboundvars plev tlev prf')
berghofe@11519
  1002
      | subst _ _ (PThm (id, prf, prop, Ts)) =
skalberg@15570
  1003
          PThm (id, prf, prop, Option.map (map substT) Ts)
berghofe@11519
  1004
      | subst _ _ (PAxm (id, prop, Ts)) =
skalberg@15570
  1005
          PAxm (id, prop, Option.map (map substT) Ts)
berghofe@11519
  1006
      | subst _ _ t = t
berghofe@11519
  1007
  in subst 0 0 end;
berghofe@11519
  1008
berghofe@12871
  1009
(*A fast unification filter: true unless the two terms cannot be unified. 
berghofe@12871
  1010
  Terms must be NORMAL.  Treats all Vars as distinct. *)
berghofe@12871
  1011
fun could_unify prf1 prf2 =
berghofe@12871
  1012
  let
berghofe@12871
  1013
    fun matchrands (prf1 %% prf2) (prf1' %% prf2') =
berghofe@12871
  1014
          could_unify prf2 prf2' andalso matchrands prf1 prf1'
skalberg@15531
  1015
      | matchrands (prf % SOME t) (prf' % SOME t') =
berghofe@12871
  1016
          Term.could_unify (t, t') andalso matchrands prf prf'
berghofe@12871
  1017
      | matchrands (prf % _) (prf' % _) = matchrands prf prf'
berghofe@12871
  1018
      | matchrands _ _ = true
berghofe@12871
  1019
berghofe@12871
  1020
    fun head_of (prf %% _) = head_of prf
berghofe@12871
  1021
      | head_of (prf % _) = head_of prf
berghofe@12871
  1022
      | head_of prf = prf
berghofe@12871
  1023
berghofe@12871
  1024
  in case (head_of prf1, head_of prf2) of
berghofe@12871
  1025
        (_, Hyp (Var _)) => true
berghofe@12871
  1026
      | (Hyp (Var _), _) => true
berghofe@12871
  1027
      | (PThm ((a, _), _, propa, _), PThm ((b, _), _, propb, _)) =>
berghofe@12871
  1028
          a = b andalso propa = propb andalso matchrands prf1 prf2
berghofe@12871
  1029
      | (PAxm (a, _, _), PAxm (b, _, _)) => a = b andalso matchrands prf1 prf2
berghofe@12871
  1030
      | (PBound i, PBound j) =>  i = j andalso matchrands prf1 prf2
berghofe@12871
  1031
      | (AbsP _, _) =>  true   (*because of possible eta equality*)
berghofe@12871
  1032
      | (Abst _, _) =>  true
berghofe@12871
  1033
      | (_, AbsP _) =>  true
berghofe@12871
  1034
      | (_, Abst _) =>  true
berghofe@12871
  1035
      | _ => false
berghofe@12871
  1036
  end;
berghofe@12871
  1037
berghofe@11519
  1038
(**** rewriting on proof terms ****)
berghofe@11519
  1039
berghofe@13102
  1040
val skel0 = PBound 0;
berghofe@13102
  1041
berghofe@12279
  1042
fun rewrite_prf tymatch (rules, procs) prf =
berghofe@11519
  1043
  let
skalberg@15531
  1044
    fun rew _ (Abst (_, _, body) % SOME t) = SOME (prf_subst_bounds [t] body, skel0)
skalberg@15531
  1045
      | rew _ (AbsP (_, _, body) %% prf) = SOME (prf_subst_pbounds [prf] body, skel0)
berghofe@11519
  1046
      | rew Ts prf = (case get_first (fn (_, r) => r Ts prf) procs of
skalberg@15531
  1047
          SOME prf' => SOME (prf', skel0)
skalberg@15531
  1048
        | NONE => get_first (fn (prf1, prf2) => SOME (prf_subst
berghofe@13102
  1049
            (match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2, prf2)
skalberg@15570
  1050
               handle PMatch => NONE) (List.filter (could_unify prf o fst) rules));
berghofe@11519
  1051
berghofe@11615
  1052
    fun rew0 Ts (prf as AbsP (_, _, prf' %% PBound 0)) =
berghofe@11519
  1053
          if prf_loose_Pbvar1 prf' 0 then rew Ts prf
berghofe@11519
  1054
          else
berghofe@11519
  1055
            let val prf'' = incr_pboundvars (~1) 0 prf'
skalberg@15570
  1056
            in SOME (getOpt (rew Ts prf'', (prf'', skel0))) end
skalberg@15531
  1057
      | rew0 Ts (prf as Abst (_, _, prf' % SOME (Bound 0))) =
berghofe@11519
  1058
          if prf_loose_bvar1 prf' 0 then rew Ts prf
berghofe@11519
  1059
          else
berghofe@11519
  1060
            let val prf'' = incr_pboundvars 0 (~1) prf'
skalberg@15570
  1061
            in SOME (getOpt (rew Ts prf'', (prf'', skel0))) end
berghofe@11519
  1062
      | rew0 Ts prf = rew Ts prf;
berghofe@11519
  1063
skalberg@15531
  1064
    fun rew1 _ (Hyp (Var _)) _ = NONE
berghofe@13102
  1065
      | rew1 Ts skel prf = (case rew2 Ts skel prf of
skalberg@15531
  1066
          SOME prf1 => (case rew0 Ts prf1 of
skalberg@15570
  1067
              SOME (prf2, skel') => SOME (getOpt (rew1 Ts skel' prf2, prf2))
skalberg@15531
  1068
            | NONE => SOME prf1)
skalberg@15531
  1069
        | NONE => (case rew0 Ts prf of
skalberg@15570
  1070
              SOME (prf1, skel') => SOME (getOpt (rew1 Ts skel' prf1, prf1))
skalberg@15531
  1071
            | NONE => NONE))
berghofe@11519
  1072
skalberg@15531
  1073
    and rew2 Ts skel (prf % SOME t) = (case prf of
berghofe@11519
  1074
            Abst (_, _, body) =>
berghofe@11519
  1075
              let val prf' = prf_subst_bounds [t] body
skalberg@15570
  1076
              in SOME (getOpt (rew2 Ts skel0 prf', prf')) end
berghofe@13102
  1077
          | _ => (case rew1 Ts (case skel of skel' % _ => skel' | _ => skel0) prf of
skalberg@15531
  1078
              SOME prf' => SOME (prf' % SOME t)
skalberg@15531
  1079
            | NONE => NONE))
skalberg@15570
  1080
      | rew2 Ts skel (prf % NONE) = Option.map (fn prf' => prf' % NONE)
berghofe@13102
  1081
          (rew1 Ts (case skel of skel' % _ => skel' | _ => skel0) prf)
berghofe@13102
  1082
      | rew2 Ts skel (prf1 %% prf2) = (case prf1 of
berghofe@11519
  1083
            AbsP (_, _, body) =>
berghofe@11519
  1084
              let val prf' = prf_subst_pbounds [prf2] body
skalberg@15570
  1085
              in SOME (getOpt (rew2 Ts skel0 prf', prf')) end
berghofe@13102
  1086
          | _ =>
berghofe@13102
  1087
            let val (skel1, skel2) = (case skel of
berghofe@13102
  1088
                skel1 %% skel2 => (skel1, skel2)
berghofe@13102
  1089
              | _ => (skel0, skel0))
berghofe@13102
  1090
            in case rew1 Ts skel1 prf1 of
skalberg@15531
  1091
                SOME prf1' => (case rew1 Ts skel2 prf2 of
skalberg@15531
  1092
                    SOME prf2' => SOME (prf1' %% prf2')
skalberg@15531
  1093
                  | NONE => SOME (prf1' %% prf2))
skalberg@15531
  1094
              | NONE => (case rew1 Ts skel2 prf2 of
skalberg@15531
  1095
                    SOME prf2' => SOME (prf1 %% prf2')
skalberg@15531
  1096
                  | NONE => NONE)
berghofe@13102
  1097
            end)
skalberg@15570
  1098
      | rew2 Ts skel (Abst (s, T, prf)) = (case rew1 (getOpt (T,dummyT) :: Ts)
berghofe@13102
  1099
              (case skel of Abst (_, _, skel') => skel' | _ => skel0) prf of
skalberg@15531
  1100
            SOME prf' => SOME (Abst (s, T, prf'))
skalberg@15531
  1101
          | NONE => NONE)
berghofe@13102
  1102
      | rew2 Ts skel (AbsP (s, t, prf)) = (case rew1 Ts
berghofe@13102
  1103
              (case skel of AbsP (_, _, skel') => skel' | _ => skel0) prf of
skalberg@15531
  1104
            SOME prf' => SOME (AbsP (s, t, prf'))
skalberg@15531
  1105
          | NONE => NONE)
skalberg@15531
  1106
      | rew2 _ _ _ = NONE
berghofe@11519
  1107
skalberg@15570
  1108
  in getOpt (rew1 [] skel0 prf, prf) end;
berghofe@11519
  1109
wenzelm@17203
  1110
fun rewrite_proof thy = rewrite_prf (fn (tyenv, f) =>
wenzelm@17203
  1111
  Sign.typ_match thy (f ()) tyenv handle Type.TYPE_MATCH => raise PMatch);
berghofe@11519
  1112
berghofe@11715
  1113
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
berghofe@11615
  1114
wenzelm@16940
  1115
berghofe@11519
  1116
(**** theory data ****)
berghofe@11519
  1117
wenzelm@16458
  1118
structure ProofData = TheoryDataFun
wenzelm@16458
  1119
(struct
berghofe@11519
  1120
  val name = "Pure/proof";
berghofe@11519
  1121
  type T = ((proof * proof) list *
berghofe@12233
  1122
    (string * (typ list -> proof -> proof option)) list);
berghofe@11519
  1123
berghofe@12233
  1124
  val empty = ([], []);
berghofe@12233
  1125
  val copy = I;
wenzelm@16458
  1126
  val extend = I;
wenzelm@16458
  1127
  fun merge _ ((rules1, procs1), (rules2, procs2)) =
wenzelm@12293
  1128
    (merge_lists rules1 rules2, merge_alists procs1 procs2);
berghofe@11519
  1129
  fun print _ _ = ();
wenzelm@16458
  1130
end);
berghofe@11519
  1131
wenzelm@16536
  1132
val init_data = ProofData.init;
berghofe@11519
  1133
berghofe@12233
  1134
fun add_prf_rrules rs thy =
berghofe@11519
  1135
  let val r = ProofData.get thy
berghofe@12233
  1136
  in ProofData.put (rs @ fst r, snd r) thy end;
berghofe@11519
  1137
berghofe@12233
  1138
fun add_prf_rprocs ps thy =
berghofe@11519
  1139
  let val r = ProofData.get thy
berghofe@12233
  1140
  in ProofData.put (fst r, ps @ snd r) thy end;
berghofe@11519
  1141
wenzelm@16458
  1142
fun thm_proof thy (name, tags) hyps prop prf =
berghofe@11519
  1143
  let
wenzelm@12923
  1144
    val prop = Logic.list_implies (hyps, prop);
berghofe@11519
  1145
    val nvs = needed_vars prop;
berghofe@11519
  1146
    val args = map (fn (v as Var (ixn, _)) =>
skalberg@15531
  1147
        if ixn mem nvs then SOME v else NONE) (vars_of prop) @
wenzelm@16983
  1148
      map SOME (sort Term.term_ord (term_frees prop));
wenzelm@11543
  1149
    val opt_prf = if ! proofs = 2 then
wenzelm@16458
  1150
        #4 (shrink [] 0 (rewrite_prf fst (ProofData.get thy)
skalberg@15574
  1151
          (foldr (uncurry implies_intr_proof) prf hyps)))
berghofe@17017
  1152
      else MinProof (mk_min_proof prf ([], [], []));
berghofe@12233
  1153
    val head = (case strip_combt (fst (strip_combP prf)) of
skalberg@15531
  1154
        (PThm ((old_name, _), prf', prop', NONE), args') =>
berghofe@11519
  1155
          if (old_name="" orelse old_name=name) andalso
berghofe@11519
  1156
             prop = prop' andalso args = args' then
skalberg@15531
  1157
            PThm ((name, tags), prf', prop, NONE)
berghofe@11519
  1158
          else
skalberg@15531
  1159
            PThm ((name, tags), opt_prf, prop, NONE)
skalberg@15531
  1160
      | _ => PThm ((name, tags), opt_prf, prop, NONE))
berghofe@11519
  1161
  in
wenzelm@12923
  1162
    proof_combP (proof_combt' (head, args), map Hyp hyps)
berghofe@11519
  1163
  end;
berghofe@11519
  1164
wenzelm@12923
  1165
fun get_name_tags hyps prop prf =
wenzelm@12923
  1166
  let val prop = Logic.list_implies (hyps, prop) in
wenzelm@12923
  1167
    (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
  1168
      (PThm ((name, tags), _, prop', _), _) =>
berghofe@11519
  1169
        if prop=prop' then (name, tags) else ("", [])
berghofe@11519
  1170
    | (PAxm (name, prop', _), _) =>
berghofe@11519
  1171
        if prop=prop' then (name, []) else ("", [])
wenzelm@12923
  1172
    | _ => ("", []))
wenzelm@12923
  1173
  end;
berghofe@11519
  1174
berghofe@11519
  1175
end;
berghofe@11519
  1176
berghofe@11519
  1177
structure BasicProofterm : BASIC_PROOFTERM = Proofterm;
berghofe@11519
  1178
open BasicProofterm;