src/HOL/Num.thy
author paulson <lp15@cam.ac.uk>
Mon May 23 15:33:24 2016 +0100 (2016-05-23)
changeset 63114 27afe7af7379
parent 62597 b3f2b8c906a6
child 63654 f90e3926e627
permissions -rw-r--r--
Lots of new material for multivariate analysis
huffman@47108
     1
(*  Title:      HOL/Num.thy
huffman@47108
     2
    Author:     Florian Haftmann
huffman@47108
     3
    Author:     Brian Huffman
huffman@47108
     4
*)
huffman@47108
     5
wenzelm@60758
     6
section \<open>Binary Numerals\<close>
huffman@47108
     7
huffman@47108
     8
theory Num
blanchet@58154
     9
imports BNF_Least_Fixpoint
huffman@47108
    10
begin
huffman@47108
    11
wenzelm@61799
    12
subsection \<open>The \<open>num\<close> type\<close>
huffman@47108
    13
blanchet@58310
    14
datatype num = One | Bit0 num | Bit1 num
huffman@47108
    15
wenzelm@60758
    16
text \<open>Increment function for type @{typ num}\<close>
huffman@47108
    17
huffman@47108
    18
primrec inc :: "num \<Rightarrow> num" where
huffman@47108
    19
  "inc One = Bit0 One" |
huffman@47108
    20
  "inc (Bit0 x) = Bit1 x" |
huffman@47108
    21
  "inc (Bit1 x) = Bit0 (inc x)"
huffman@47108
    22
wenzelm@60758
    23
text \<open>Converting between type @{typ num} and type @{typ nat}\<close>
huffman@47108
    24
huffman@47108
    25
primrec nat_of_num :: "num \<Rightarrow> nat" where
huffman@47108
    26
  "nat_of_num One = Suc 0" |
huffman@47108
    27
  "nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x" |
huffman@47108
    28
  "nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)"
huffman@47108
    29
huffman@47108
    30
primrec num_of_nat :: "nat \<Rightarrow> num" where
huffman@47108
    31
  "num_of_nat 0 = One" |
huffman@47108
    32
  "num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)"
huffman@47108
    33
huffman@47108
    34
lemma nat_of_num_pos: "0 < nat_of_num x"
huffman@47108
    35
  by (induct x) simp_all
huffman@47108
    36
huffman@47108
    37
lemma nat_of_num_neq_0: " nat_of_num x \<noteq> 0"
huffman@47108
    38
  by (induct x) simp_all
huffman@47108
    39
huffman@47108
    40
lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)"
huffman@47108
    41
  by (induct x) simp_all
huffman@47108
    42
huffman@47108
    43
lemma num_of_nat_double:
huffman@47108
    44
  "0 < n \<Longrightarrow> num_of_nat (n + n) = Bit0 (num_of_nat n)"
huffman@47108
    45
  by (induct n) simp_all
huffman@47108
    46
wenzelm@60758
    47
text \<open>
huffman@47108
    48
  Type @{typ num} is isomorphic to the strictly positive
huffman@47108
    49
  natural numbers.
wenzelm@60758
    50
\<close>
huffman@47108
    51
huffman@47108
    52
lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x"
huffman@47108
    53
  by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos)
huffman@47108
    54
huffman@47108
    55
lemma num_of_nat_inverse: "0 < n \<Longrightarrow> nat_of_num (num_of_nat n) = n"
huffman@47108
    56
  by (induct n) (simp_all add: nat_of_num_inc)
huffman@47108
    57
huffman@47108
    58
lemma num_eq_iff: "x = y \<longleftrightarrow> nat_of_num x = nat_of_num y"
huffman@47108
    59
  apply safe
huffman@47108
    60
  apply (drule arg_cong [where f=num_of_nat])
huffman@47108
    61
  apply (simp add: nat_of_num_inverse)
huffman@47108
    62
  done
huffman@47108
    63
huffman@47108
    64
lemma num_induct [case_names One inc]:
huffman@47108
    65
  fixes P :: "num \<Rightarrow> bool"
huffman@47108
    66
  assumes One: "P One"
huffman@47108
    67
    and inc: "\<And>x. P x \<Longrightarrow> P (inc x)"
huffman@47108
    68
  shows "P x"
huffman@47108
    69
proof -
huffman@47108
    70
  obtain n where n: "Suc n = nat_of_num x"
huffman@47108
    71
    by (cases "nat_of_num x", simp_all add: nat_of_num_neq_0)
huffman@47108
    72
  have "P (num_of_nat (Suc n))"
huffman@47108
    73
  proof (induct n)
huffman@47108
    74
    case 0 show ?case using One by simp
huffman@47108
    75
  next
huffman@47108
    76
    case (Suc n)
huffman@47108
    77
    then have "P (inc (num_of_nat (Suc n)))" by (rule inc)
huffman@47108
    78
    then show "P (num_of_nat (Suc (Suc n)))" by simp
huffman@47108
    79
  qed
huffman@47108
    80
  with n show "P x"
huffman@47108
    81
    by (simp add: nat_of_num_inverse)
huffman@47108
    82
qed
huffman@47108
    83
wenzelm@60758
    84
text \<open>
huffman@47108
    85
  From now on, there are two possible models for @{typ num}:
wenzelm@61799
    86
  as positive naturals (rule \<open>num_induct\<close>)
wenzelm@61799
    87
  and as digit representation (rules \<open>num.induct\<close>, \<open>num.cases\<close>).
wenzelm@60758
    88
\<close>
huffman@47108
    89
huffman@47108
    90
wenzelm@60758
    91
subsection \<open>Numeral operations\<close>
huffman@47108
    92
huffman@47108
    93
instantiation num :: "{plus,times,linorder}"
huffman@47108
    94
begin
huffman@47108
    95
huffman@47108
    96
definition [code del]:
huffman@47108
    97
  "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
huffman@47108
    98
huffman@47108
    99
definition [code del]:
huffman@47108
   100
  "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
huffman@47108
   101
huffman@47108
   102
definition [code del]:
huffman@47108
   103
  "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
huffman@47108
   104
huffman@47108
   105
definition [code del]:
huffman@47108
   106
  "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
huffman@47108
   107
huffman@47108
   108
instance
wenzelm@61169
   109
  by standard (auto simp add: less_num_def less_eq_num_def num_eq_iff)
huffman@47108
   110
huffman@47108
   111
end
huffman@47108
   112
huffman@47108
   113
lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y"
huffman@47108
   114
  unfolding plus_num_def
huffman@47108
   115
  by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos)
huffman@47108
   116
huffman@47108
   117
lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y"
huffman@47108
   118
  unfolding times_num_def
huffman@47108
   119
  by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos)
huffman@47108
   120
huffman@47108
   121
lemma add_num_simps [simp, code]:
huffman@47108
   122
  "One + One = Bit0 One"
huffman@47108
   123
  "One + Bit0 n = Bit1 n"
huffman@47108
   124
  "One + Bit1 n = Bit0 (n + One)"
huffman@47108
   125
  "Bit0 m + One = Bit1 m"
huffman@47108
   126
  "Bit0 m + Bit0 n = Bit0 (m + n)"
huffman@47108
   127
  "Bit0 m + Bit1 n = Bit1 (m + n)"
huffman@47108
   128
  "Bit1 m + One = Bit0 (m + One)"
huffman@47108
   129
  "Bit1 m + Bit0 n = Bit1 (m + n)"
huffman@47108
   130
  "Bit1 m + Bit1 n = Bit0 (m + n + One)"
huffman@47108
   131
  by (simp_all add: num_eq_iff nat_of_num_add)
huffman@47108
   132
huffman@47108
   133
lemma mult_num_simps [simp, code]:
huffman@47108
   134
  "m * One = m"
huffman@47108
   135
  "One * n = n"
huffman@47108
   136
  "Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))"
huffman@47108
   137
  "Bit0 m * Bit1 n = Bit0 (m * Bit1 n)"
huffman@47108
   138
  "Bit1 m * Bit0 n = Bit0 (Bit1 m * n)"
huffman@47108
   139
  "Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))"
huffman@47108
   140
  by (simp_all add: num_eq_iff nat_of_num_add
webertj@49962
   141
    nat_of_num_mult distrib_right distrib_left)
huffman@47108
   142
huffman@47108
   143
lemma eq_num_simps:
huffman@47108
   144
  "One = One \<longleftrightarrow> True"
huffman@47108
   145
  "One = Bit0 n \<longleftrightarrow> False"
huffman@47108
   146
  "One = Bit1 n \<longleftrightarrow> False"
huffman@47108
   147
  "Bit0 m = One \<longleftrightarrow> False"
huffman@47108
   148
  "Bit1 m = One \<longleftrightarrow> False"
huffman@47108
   149
  "Bit0 m = Bit0 n \<longleftrightarrow> m = n"
huffman@47108
   150
  "Bit0 m = Bit1 n \<longleftrightarrow> False"
huffman@47108
   151
  "Bit1 m = Bit0 n \<longleftrightarrow> False"
huffman@47108
   152
  "Bit1 m = Bit1 n \<longleftrightarrow> m = n"
huffman@47108
   153
  by simp_all
huffman@47108
   154
huffman@47108
   155
lemma le_num_simps [simp, code]:
huffman@47108
   156
  "One \<le> n \<longleftrightarrow> True"
huffman@47108
   157
  "Bit0 m \<le> One \<longleftrightarrow> False"
huffman@47108
   158
  "Bit1 m \<le> One \<longleftrightarrow> False"
huffman@47108
   159
  "Bit0 m \<le> Bit0 n \<longleftrightarrow> m \<le> n"
huffman@47108
   160
  "Bit0 m \<le> Bit1 n \<longleftrightarrow> m \<le> n"
huffman@47108
   161
  "Bit1 m \<le> Bit1 n \<longleftrightarrow> m \<le> n"
huffman@47108
   162
  "Bit1 m \<le> Bit0 n \<longleftrightarrow> m < n"
huffman@47108
   163
  using nat_of_num_pos [of n] nat_of_num_pos [of m]
huffman@47108
   164
  by (auto simp add: less_eq_num_def less_num_def)
huffman@47108
   165
huffman@47108
   166
lemma less_num_simps [simp, code]:
huffman@47108
   167
  "m < One \<longleftrightarrow> False"
huffman@47108
   168
  "One < Bit0 n \<longleftrightarrow> True"
huffman@47108
   169
  "One < Bit1 n \<longleftrightarrow> True"
huffman@47108
   170
  "Bit0 m < Bit0 n \<longleftrightarrow> m < n"
huffman@47108
   171
  "Bit0 m < Bit1 n \<longleftrightarrow> m \<le> n"
huffman@47108
   172
  "Bit1 m < Bit1 n \<longleftrightarrow> m < n"
huffman@47108
   173
  "Bit1 m < Bit0 n \<longleftrightarrow> m < n"
huffman@47108
   174
  using nat_of_num_pos [of n] nat_of_num_pos [of m]
huffman@47108
   175
  by (auto simp add: less_eq_num_def less_num_def)
huffman@47108
   176
Andreas@61630
   177
lemma le_num_One_iff: "x \<le> num.One \<longleftrightarrow> x = num.One"
Andreas@61630
   178
by (simp add: antisym_conv)
Andreas@61630
   179
wenzelm@61799
   180
text \<open>Rules using \<open>One\<close> and \<open>inc\<close> as constructors\<close>
huffman@47108
   181
huffman@47108
   182
lemma add_One: "x + One = inc x"
huffman@47108
   183
  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
huffman@47108
   184
huffman@47108
   185
lemma add_One_commute: "One + n = n + One"
huffman@47108
   186
  by (induct n) simp_all
huffman@47108
   187
huffman@47108
   188
lemma add_inc: "x + inc y = inc (x + y)"
huffman@47108
   189
  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
huffman@47108
   190
huffman@47108
   191
lemma mult_inc: "x * inc y = x * y + x"
huffman@47108
   192
  by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc)
huffman@47108
   193
wenzelm@60758
   194
text \<open>The @{const num_of_nat} conversion\<close>
huffman@47108
   195
huffman@47108
   196
lemma num_of_nat_One:
huffman@47300
   197
  "n \<le> 1 \<Longrightarrow> num_of_nat n = One"
huffman@47108
   198
  by (cases n) simp_all
huffman@47108
   199
huffman@47108
   200
lemma num_of_nat_plus_distrib:
huffman@47108
   201
  "0 < m \<Longrightarrow> 0 < n \<Longrightarrow> num_of_nat (m + n) = num_of_nat m + num_of_nat n"
huffman@47108
   202
  by (induct n) (auto simp add: add_One add_One_commute add_inc)
huffman@47108
   203
wenzelm@60758
   204
text \<open>A double-and-decrement function\<close>
huffman@47108
   205
huffman@47108
   206
primrec BitM :: "num \<Rightarrow> num" where
huffman@47108
   207
  "BitM One = One" |
huffman@47108
   208
  "BitM (Bit0 n) = Bit1 (BitM n)" |
huffman@47108
   209
  "BitM (Bit1 n) = Bit1 (Bit0 n)"
huffman@47108
   210
huffman@47108
   211
lemma BitM_plus_one: "BitM n + One = Bit0 n"
huffman@47108
   212
  by (induct n) simp_all
huffman@47108
   213
huffman@47108
   214
lemma one_plus_BitM: "One + BitM n = Bit0 n"
huffman@47108
   215
  unfolding add_One_commute BitM_plus_one ..
huffman@47108
   216
wenzelm@60758
   217
text \<open>Squaring and exponentiation\<close>
huffman@47108
   218
huffman@47108
   219
primrec sqr :: "num \<Rightarrow> num" where
huffman@47108
   220
  "sqr One = One" |
huffman@47108
   221
  "sqr (Bit0 n) = Bit0 (Bit0 (sqr n))" |
huffman@47108
   222
  "sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))"
huffman@47108
   223
huffman@47108
   224
primrec pow :: "num \<Rightarrow> num \<Rightarrow> num" where
huffman@47108
   225
  "pow x One = x" |
huffman@47108
   226
  "pow x (Bit0 y) = sqr (pow x y)" |
huffman@47191
   227
  "pow x (Bit1 y) = sqr (pow x y) * x"
huffman@47108
   228
huffman@47108
   229
lemma nat_of_num_sqr: "nat_of_num (sqr x) = nat_of_num x * nat_of_num x"
huffman@47108
   230
  by (induct x, simp_all add: algebra_simps nat_of_num_add)
huffman@47108
   231
huffman@47108
   232
lemma sqr_conv_mult: "sqr x = x * x"
huffman@47108
   233
  by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult)
huffman@47108
   234
huffman@47108
   235
wenzelm@60758
   236
subsection \<open>Binary numerals\<close>
huffman@47108
   237
wenzelm@60758
   238
text \<open>
huffman@47211
   239
  We embed binary representations into a generic algebraic
wenzelm@61799
   240
  structure using \<open>numeral\<close>.
wenzelm@60758
   241
\<close>
huffman@47108
   242
huffman@47108
   243
class numeral = one + semigroup_add
huffman@47108
   244
begin
huffman@47108
   245
huffman@47108
   246
primrec numeral :: "num \<Rightarrow> 'a" where
huffman@47108
   247
  numeral_One: "numeral One = 1" |
huffman@47108
   248
  numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" |
huffman@47108
   249
  numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1"
huffman@47108
   250
haftmann@50817
   251
lemma numeral_code [code]:
haftmann@50817
   252
  "numeral One = 1"
haftmann@50817
   253
  "numeral (Bit0 n) = (let m = numeral n in m + m)"
haftmann@50817
   254
  "numeral (Bit1 n) = (let m = numeral n in m + m + 1)"
haftmann@50817
   255
  by (simp_all add: Let_def)
haftmann@50817
   256
  
huffman@47108
   257
lemma one_plus_numeral_commute: "1 + numeral x = numeral x + 1"
huffman@47108
   258
  apply (induct x)
huffman@47108
   259
  apply simp
haftmann@57512
   260
  apply (simp add: add.assoc [symmetric], simp add: add.assoc)
haftmann@57512
   261
  apply (simp add: add.assoc [symmetric], simp add: add.assoc)
huffman@47108
   262
  done
huffman@47108
   263
huffman@47108
   264
lemma numeral_inc: "numeral (inc x) = numeral x + 1"
huffman@47108
   265
proof (induct x)
huffman@47108
   266
  case (Bit1 x)
huffman@47108
   267
  have "numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1"
huffman@47108
   268
    by (simp only: one_plus_numeral_commute)
huffman@47108
   269
  with Bit1 show ?case
haftmann@57512
   270
    by (simp add: add.assoc)
huffman@47108
   271
qed simp_all
huffman@47108
   272
huffman@47108
   273
declare numeral.simps [simp del]
huffman@47108
   274
huffman@47108
   275
abbreviation "Numeral1 \<equiv> numeral One"
huffman@47108
   276
huffman@47108
   277
declare numeral_One [code_post]
huffman@47108
   278
huffman@47108
   279
end
huffman@47108
   280
wenzelm@60758
   281
text \<open>Numeral syntax.\<close>
huffman@47108
   282
huffman@47108
   283
syntax
huffman@47108
   284
  "_Numeral" :: "num_const \<Rightarrow> 'a"    ("_")
huffman@47108
   285
haftmann@58410
   286
ML_file "Tools/numeral.ML"
haftmann@58410
   287
wenzelm@60758
   288
parse_translation \<open>
wenzelm@52143
   289
  let
wenzelm@52143
   290
    fun numeral_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] =
wenzelm@52143
   291
          c $ numeral_tr [t] $ u
wenzelm@52143
   292
      | numeral_tr [Const (num, _)] =
wenzelm@58421
   293
          (Numeral.mk_number_syntax o #value o Lexicon.read_num) num
wenzelm@52143
   294
      | numeral_tr ts = raise TERM ("numeral_tr", ts);
wenzelm@55974
   295
  in [(@{syntax_const "_Numeral"}, K numeral_tr)] end
wenzelm@60758
   296
\<close>
huffman@47108
   297
wenzelm@60758
   298
typed_print_translation \<open>
wenzelm@52143
   299
  let
haftmann@54489
   300
    fun num_tr' ctxt T [n] =
wenzelm@52143
   301
      let
haftmann@62597
   302
        val k = Numeral.dest_num_syntax n;
wenzelm@52187
   303
        val t' =
wenzelm@52187
   304
          Syntax.const @{syntax_const "_Numeral"} $
haftmann@54489
   305
            Syntax.free (string_of_int k);
wenzelm@52143
   306
      in
wenzelm@52143
   307
        (case T of
wenzelm@52143
   308
          Type (@{type_name fun}, [_, T']) =>
wenzelm@52210
   309
            if Printer.type_emphasis ctxt T' then
wenzelm@52210
   310
              Syntax.const @{syntax_const "_constrain"} $ t' $
wenzelm@52210
   311
                Syntax_Phases.term_of_typ ctxt T'
wenzelm@52210
   312
            else t'
wenzelm@52187
   313
        | _ => if T = dummyT then t' else raise Match)
wenzelm@52143
   314
      end;
wenzelm@52143
   315
  in
haftmann@54489
   316
   [(@{const_syntax numeral}, num_tr')]
wenzelm@52143
   317
  end
wenzelm@60758
   318
\<close>
huffman@47108
   319
huffman@47228
   320
wenzelm@60758
   321
subsection \<open>Class-specific numeral rules\<close>
huffman@47108
   322
wenzelm@60758
   323
text \<open>
huffman@47108
   324
  @{const numeral} is a morphism.
wenzelm@60758
   325
\<close>
huffman@47108
   326
wenzelm@61799
   327
subsubsection \<open>Structures with addition: class \<open>numeral\<close>\<close>
huffman@47108
   328
huffman@47108
   329
context numeral
huffman@47108
   330
begin
huffman@47108
   331
huffman@47108
   332
lemma numeral_add: "numeral (m + n) = numeral m + numeral n"
huffman@47108
   333
  by (induct n rule: num_induct)
haftmann@57512
   334
     (simp_all only: numeral_One add_One add_inc numeral_inc add.assoc)
huffman@47108
   335
huffman@47108
   336
lemma numeral_plus_numeral: "numeral m + numeral n = numeral (m + n)"
huffman@47108
   337
  by (rule numeral_add [symmetric])
huffman@47108
   338
huffman@47108
   339
lemma numeral_plus_one: "numeral n + 1 = numeral (n + One)"
huffman@47108
   340
  using numeral_add [of n One] by (simp add: numeral_One)
huffman@47108
   341
huffman@47108
   342
lemma one_plus_numeral: "1 + numeral n = numeral (One + n)"
huffman@47108
   343
  using numeral_add [of One n] by (simp add: numeral_One)
huffman@47108
   344
huffman@47108
   345
lemma one_add_one: "1 + 1 = 2"
huffman@47108
   346
  using numeral_add [of One One] by (simp add: numeral_One)
huffman@47108
   347
huffman@47108
   348
lemmas add_numeral_special =
huffman@47108
   349
  numeral_plus_one one_plus_numeral one_add_one
huffman@47108
   350
huffman@47108
   351
end
huffman@47108
   352
wenzelm@60758
   353
subsubsection \<open>
wenzelm@61799
   354
  Structures with negation: class \<open>neg_numeral\<close>
wenzelm@60758
   355
\<close>
huffman@47108
   356
haftmann@54489
   357
class neg_numeral = numeral + group_add
huffman@47108
   358
begin
huffman@47108
   359
haftmann@54489
   360
lemma uminus_numeral_One:
haftmann@54489
   361
  "- Numeral1 = - 1"
haftmann@54489
   362
  by (simp add: numeral_One)
haftmann@54489
   363
wenzelm@60758
   364
text \<open>Numerals form an abelian subgroup.\<close>
huffman@47108
   365
huffman@47108
   366
inductive is_num :: "'a \<Rightarrow> bool" where
huffman@47108
   367
  "is_num 1" |
huffman@47108
   368
  "is_num x \<Longrightarrow> is_num (- x)" |
huffman@47108
   369
  "\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> is_num (x + y)"
huffman@47108
   370
huffman@47108
   371
lemma is_num_numeral: "is_num (numeral k)"
huffman@47108
   372
  by (induct k, simp_all add: numeral.simps is_num.intros)
huffman@47108
   373
huffman@47108
   374
lemma is_num_add_commute:
huffman@47108
   375
  "\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> x + y = y + x"
huffman@47108
   376
  apply (induct x rule: is_num.induct)
huffman@47108
   377
  apply (induct y rule: is_num.induct)
huffman@47108
   378
  apply simp
huffman@47108
   379
  apply (rule_tac a=x in add_left_imp_eq)
huffman@47108
   380
  apply (rule_tac a=x in add_right_imp_eq)
haftmann@57512
   381
  apply (simp add: add.assoc)
haftmann@57512
   382
  apply (simp add: add.assoc [symmetric], simp add: add.assoc)
huffman@47108
   383
  apply (rule_tac a=x in add_left_imp_eq)
huffman@47108
   384
  apply (rule_tac a=x in add_right_imp_eq)
haftmann@57512
   385
  apply (simp add: add.assoc)
haftmann@57512
   386
  apply (simp add: add.assoc, simp add: add.assoc [symmetric])
huffman@47108
   387
  done
huffman@47108
   388
huffman@47108
   389
lemma is_num_add_left_commute:
huffman@47108
   390
  "\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> x + (y + z) = y + (x + z)"
haftmann@57512
   391
  by (simp only: add.assoc [symmetric] is_num_add_commute)
huffman@47108
   392
huffman@47108
   393
lemmas is_num_normalize =
haftmann@57512
   394
  add.assoc is_num_add_commute is_num_add_left_commute
huffman@47108
   395
  is_num.intros is_num_numeral
haftmann@54230
   396
  minus_add
huffman@47108
   397
huffman@47108
   398
definition dbl :: "'a \<Rightarrow> 'a" where "dbl x = x + x"
huffman@47108
   399
definition dbl_inc :: "'a \<Rightarrow> 'a" where "dbl_inc x = x + x + 1"
huffman@47108
   400
definition dbl_dec :: "'a \<Rightarrow> 'a" where "dbl_dec x = x + x - 1"
huffman@47108
   401
huffman@47108
   402
definition sub :: "num \<Rightarrow> num \<Rightarrow> 'a" where
huffman@47108
   403
  "sub k l = numeral k - numeral l"
huffman@47108
   404
huffman@47108
   405
lemma numeral_BitM: "numeral (BitM n) = numeral (Bit0 n) - 1"
huffman@47108
   406
  by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq)
huffman@47108
   407
huffman@47108
   408
lemma dbl_simps [simp]:
haftmann@54489
   409
  "dbl (- numeral k) = - dbl (numeral k)"
huffman@47108
   410
  "dbl 0 = 0"
huffman@47108
   411
  "dbl 1 = 2"
haftmann@54489
   412
  "dbl (- 1) = - 2"
huffman@47108
   413
  "dbl (numeral k) = numeral (Bit0 k)"
haftmann@54489
   414
  by (simp_all add: dbl_def numeral.simps minus_add)
huffman@47108
   415
huffman@47108
   416
lemma dbl_inc_simps [simp]:
haftmann@54489
   417
  "dbl_inc (- numeral k) = - dbl_dec (numeral k)"
huffman@47108
   418
  "dbl_inc 0 = 1"
huffman@47108
   419
  "dbl_inc 1 = 3"
haftmann@54489
   420
  "dbl_inc (- 1) = - 1"
huffman@47108
   421
  "dbl_inc (numeral k) = numeral (Bit1 k)"
haftmann@54489
   422
  by (simp_all add: dbl_inc_def dbl_dec_def numeral.simps numeral_BitM is_num_normalize algebra_simps del: add_uminus_conv_diff)
huffman@47108
   423
huffman@47108
   424
lemma dbl_dec_simps [simp]:
haftmann@54489
   425
  "dbl_dec (- numeral k) = - dbl_inc (numeral k)"
haftmann@54489
   426
  "dbl_dec 0 = - 1"
huffman@47108
   427
  "dbl_dec 1 = 1"
haftmann@54489
   428
  "dbl_dec (- 1) = - 3"
huffman@47108
   429
  "dbl_dec (numeral k) = numeral (BitM k)"
haftmann@54489
   430
  by (simp_all add: dbl_dec_def dbl_inc_def numeral.simps numeral_BitM is_num_normalize)
huffman@47108
   431
huffman@47108
   432
lemma sub_num_simps [simp]:
huffman@47108
   433
  "sub One One = 0"
haftmann@54489
   434
  "sub One (Bit0 l) = - numeral (BitM l)"
haftmann@54489
   435
  "sub One (Bit1 l) = - numeral (Bit0 l)"
huffman@47108
   436
  "sub (Bit0 k) One = numeral (BitM k)"
huffman@47108
   437
  "sub (Bit1 k) One = numeral (Bit0 k)"
huffman@47108
   438
  "sub (Bit0 k) (Bit0 l) = dbl (sub k l)"
huffman@47108
   439
  "sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)"
huffman@47108
   440
  "sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)"
huffman@47108
   441
  "sub (Bit1 k) (Bit1 l) = dbl (sub k l)"
haftmann@54489
   442
  by (simp_all add: dbl_def dbl_dec_def dbl_inc_def sub_def numeral.simps
haftmann@54230
   443
    numeral_BitM is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus)
huffman@47108
   444
huffman@47108
   445
lemma add_neg_numeral_simps:
haftmann@54489
   446
  "numeral m + - numeral n = sub m n"
haftmann@54489
   447
  "- numeral m + numeral n = sub n m"
haftmann@54489
   448
  "- numeral m + - numeral n = - (numeral m + numeral n)"
haftmann@54489
   449
  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize
haftmann@54230
   450
    del: add_uminus_conv_diff add: diff_conv_add_uminus)
huffman@47108
   451
huffman@47108
   452
lemma add_neg_numeral_special:
haftmann@54489
   453
  "1 + - numeral m = sub One m"
haftmann@54489
   454
  "- numeral m + 1 = sub One m"
haftmann@54489
   455
  "numeral m + - 1 = sub m One"
haftmann@54489
   456
  "- 1 + numeral n = sub n One"
haftmann@54489
   457
  "- 1 + - numeral n = - numeral (inc n)"
haftmann@54489
   458
  "- numeral m + - 1 = - numeral (inc m)"
haftmann@54489
   459
  "1 + - 1 = 0"
haftmann@54489
   460
  "- 1 + 1 = 0"
haftmann@54489
   461
  "- 1 + - 1 = - 2"
haftmann@54489
   462
  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize right_minus numeral_inc
haftmann@54489
   463
    del: add_uminus_conv_diff add: diff_conv_add_uminus)
huffman@47108
   464
huffman@47108
   465
lemma diff_numeral_simps:
huffman@47108
   466
  "numeral m - numeral n = sub m n"
haftmann@54489
   467
  "numeral m - - numeral n = numeral (m + n)"
haftmann@54489
   468
  "- numeral m - numeral n = - numeral (m + n)"
haftmann@54489
   469
  "- numeral m - - numeral n = sub n m"
haftmann@54489
   470
  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize
haftmann@54230
   471
    del: add_uminus_conv_diff add: diff_conv_add_uminus)
huffman@47108
   472
huffman@47108
   473
lemma diff_numeral_special:
huffman@47108
   474
  "1 - numeral n = sub One n"
huffman@47108
   475
  "numeral m - 1 = sub m One"
haftmann@54489
   476
  "1 - - numeral n = numeral (One + n)"
haftmann@54489
   477
  "- numeral m - 1 = - numeral (m + One)"
haftmann@54489
   478
  "- 1 - numeral n = - numeral (inc n)"
haftmann@54489
   479
  "numeral m - - 1 = numeral (inc m)"
haftmann@54489
   480
  "- 1 - - numeral n = sub n One"
haftmann@54489
   481
  "- numeral m - - 1 = sub One m"
haftmann@54489
   482
  "1 - 1 = 0"
haftmann@54489
   483
  "- 1 - 1 = - 2"
haftmann@54489
   484
  "1 - - 1 = 2"
haftmann@54489
   485
  "- 1 - - 1 = 0"
haftmann@54489
   486
  by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize numeral_inc
haftmann@54489
   487
    del: add_uminus_conv_diff add: diff_conv_add_uminus)
huffman@47108
   488
huffman@47108
   489
end
huffman@47108
   490
wenzelm@60758
   491
subsubsection \<open>
wenzelm@61799
   492
  Structures with multiplication: class \<open>semiring_numeral\<close>
wenzelm@60758
   493
\<close>
huffman@47108
   494
huffman@47108
   495
class semiring_numeral = semiring + monoid_mult
huffman@47108
   496
begin
huffman@47108
   497
huffman@47108
   498
subclass numeral ..
huffman@47108
   499
huffman@47108
   500
lemma numeral_mult: "numeral (m * n) = numeral m * numeral n"
huffman@47108
   501
  apply (induct n rule: num_induct)
huffman@47108
   502
  apply (simp add: numeral_One)
webertj@49962
   503
  apply (simp add: mult_inc numeral_inc numeral_add distrib_left)
huffman@47108
   504
  done
huffman@47108
   505
huffman@47108
   506
lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)"
huffman@47108
   507
  by (rule numeral_mult [symmetric])
huffman@47108
   508
haftmann@53064
   509
lemma mult_2: "2 * z = z + z"
haftmann@53064
   510
  unfolding one_add_one [symmetric] distrib_right by simp
haftmann@53064
   511
haftmann@53064
   512
lemma mult_2_right: "z * 2 = z + z"
haftmann@53064
   513
  unfolding one_add_one [symmetric] distrib_left by simp
haftmann@53064
   514
huffman@47108
   515
end
huffman@47108
   516
wenzelm@60758
   517
subsubsection \<open>
wenzelm@61799
   518
  Structures with a zero: class \<open>semiring_1\<close>
wenzelm@60758
   519
\<close>
huffman@47108
   520
huffman@47108
   521
context semiring_1
huffman@47108
   522
begin
huffman@47108
   523
huffman@47108
   524
subclass semiring_numeral ..
huffman@47108
   525
huffman@47108
   526
lemma of_nat_numeral [simp]: "of_nat (numeral n) = numeral n"
huffman@47108
   527
  by (induct n,
huffman@47108
   528
    simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1)
huffman@47108
   529
huffman@47108
   530
end
huffman@47108
   531
haftmann@51143
   532
lemma nat_of_num_numeral [code_abbrev]:
haftmann@51143
   533
  "nat_of_num = numeral"
huffman@47108
   534
proof
huffman@47108
   535
  fix n
huffman@47108
   536
  have "numeral n = nat_of_num n"
huffman@47108
   537
    by (induct n) (simp_all add: numeral.simps)
huffman@47108
   538
  then show "nat_of_num n = numeral n" by simp
huffman@47108
   539
qed
huffman@47108
   540
haftmann@51143
   541
lemma nat_of_num_code [code]:
haftmann@51143
   542
  "nat_of_num One = 1"
haftmann@51143
   543
  "nat_of_num (Bit0 n) = (let m = nat_of_num n in m + m)"
haftmann@51143
   544
  "nat_of_num (Bit1 n) = (let m = nat_of_num n in Suc (m + m))"
haftmann@51143
   545
  by (simp_all add: Let_def)
haftmann@51143
   546
wenzelm@60758
   547
subsubsection \<open>
wenzelm@61799
   548
  Equality: class \<open>semiring_char_0\<close>
wenzelm@60758
   549
\<close>
huffman@47108
   550
huffman@47108
   551
context semiring_char_0
huffman@47108
   552
begin
huffman@47108
   553
huffman@47108
   554
lemma numeral_eq_iff: "numeral m = numeral n \<longleftrightarrow> m = n"
huffman@47108
   555
  unfolding of_nat_numeral [symmetric] nat_of_num_numeral [symmetric]
huffman@47108
   556
    of_nat_eq_iff num_eq_iff ..
huffman@47108
   557
huffman@47108
   558
lemma numeral_eq_one_iff: "numeral n = 1 \<longleftrightarrow> n = One"
huffman@47108
   559
  by (rule numeral_eq_iff [of n One, unfolded numeral_One])
huffman@47108
   560
huffman@47108
   561
lemma one_eq_numeral_iff: "1 = numeral n \<longleftrightarrow> One = n"
huffman@47108
   562
  by (rule numeral_eq_iff [of One n, unfolded numeral_One])
huffman@47108
   563
huffman@47108
   564
lemma numeral_neq_zero: "numeral n \<noteq> 0"
huffman@47108
   565
  unfolding of_nat_numeral [symmetric] nat_of_num_numeral [symmetric]
huffman@47108
   566
  by (simp add: nat_of_num_pos)
huffman@47108
   567
huffman@47108
   568
lemma zero_neq_numeral: "0 \<noteq> numeral n"
huffman@47108
   569
  unfolding eq_commute [of 0] by (rule numeral_neq_zero)
huffman@47108
   570
huffman@47108
   571
lemmas eq_numeral_simps [simp] =
huffman@47108
   572
  numeral_eq_iff
huffman@47108
   573
  numeral_eq_one_iff
huffman@47108
   574
  one_eq_numeral_iff
huffman@47108
   575
  numeral_neq_zero
huffman@47108
   576
  zero_neq_numeral
huffman@47108
   577
huffman@47108
   578
end
huffman@47108
   579
wenzelm@60758
   580
subsubsection \<open>
wenzelm@61799
   581
  Comparisons: class \<open>linordered_semidom\<close>
wenzelm@60758
   582
\<close>
huffman@47108
   583
wenzelm@60758
   584
text \<open>Could be perhaps more general than here.\<close>
huffman@47108
   585
huffman@47108
   586
context linordered_semidom
huffman@47108
   587
begin
huffman@47108
   588
huffman@47108
   589
lemma numeral_le_iff: "numeral m \<le> numeral n \<longleftrightarrow> m \<le> n"
huffman@47108
   590
proof -
huffman@47108
   591
  have "of_nat (numeral m) \<le> of_nat (numeral n) \<longleftrightarrow> m \<le> n"
huffman@47108
   592
    unfolding less_eq_num_def nat_of_num_numeral of_nat_le_iff ..
huffman@47108
   593
  then show ?thesis by simp
huffman@47108
   594
qed
huffman@47108
   595
huffman@47108
   596
lemma one_le_numeral: "1 \<le> numeral n"
huffman@47108
   597
using numeral_le_iff [of One n] by (simp add: numeral_One)
huffman@47108
   598
huffman@47108
   599
lemma numeral_le_one_iff: "numeral n \<le> 1 \<longleftrightarrow> n \<le> One"
huffman@47108
   600
using numeral_le_iff [of n One] by (simp add: numeral_One)
huffman@47108
   601
huffman@47108
   602
lemma numeral_less_iff: "numeral m < numeral n \<longleftrightarrow> m < n"
huffman@47108
   603
proof -
huffman@47108
   604
  have "of_nat (numeral m) < of_nat (numeral n) \<longleftrightarrow> m < n"
huffman@47108
   605
    unfolding less_num_def nat_of_num_numeral of_nat_less_iff ..
huffman@47108
   606
  then show ?thesis by simp
huffman@47108
   607
qed
huffman@47108
   608
huffman@47108
   609
lemma not_numeral_less_one: "\<not> numeral n < 1"
huffman@47108
   610
  using numeral_less_iff [of n One] by (simp add: numeral_One)
huffman@47108
   611
huffman@47108
   612
lemma one_less_numeral_iff: "1 < numeral n \<longleftrightarrow> One < n"
huffman@47108
   613
  using numeral_less_iff [of One n] by (simp add: numeral_One)
huffman@47108
   614
huffman@47108
   615
lemma zero_le_numeral: "0 \<le> numeral n"
huffman@47108
   616
  by (induct n) (simp_all add: numeral.simps)
huffman@47108
   617
huffman@47108
   618
lemma zero_less_numeral: "0 < numeral n"
huffman@47108
   619
  by (induct n) (simp_all add: numeral.simps add_pos_pos)
huffman@47108
   620
huffman@47108
   621
lemma not_numeral_le_zero: "\<not> numeral n \<le> 0"
huffman@47108
   622
  by (simp add: not_le zero_less_numeral)
huffman@47108
   623
huffman@47108
   624
lemma not_numeral_less_zero: "\<not> numeral n < 0"
huffman@47108
   625
  by (simp add: not_less zero_le_numeral)
huffman@47108
   626
huffman@47108
   627
lemmas le_numeral_extra =
huffman@47108
   628
  zero_le_one not_one_le_zero
huffman@47108
   629
  order_refl [of 0] order_refl [of 1]
huffman@47108
   630
huffman@47108
   631
lemmas less_numeral_extra =
huffman@47108
   632
  zero_less_one not_one_less_zero
huffman@47108
   633
  less_irrefl [of 0] less_irrefl [of 1]
huffman@47108
   634
huffman@47108
   635
lemmas le_numeral_simps [simp] =
huffman@47108
   636
  numeral_le_iff
huffman@47108
   637
  one_le_numeral
huffman@47108
   638
  numeral_le_one_iff
huffman@47108
   639
  zero_le_numeral
huffman@47108
   640
  not_numeral_le_zero
huffman@47108
   641
huffman@47108
   642
lemmas less_numeral_simps [simp] =
huffman@47108
   643
  numeral_less_iff
huffman@47108
   644
  one_less_numeral_iff
huffman@47108
   645
  not_numeral_less_one
huffman@47108
   646
  zero_less_numeral
huffman@47108
   647
  not_numeral_less_zero
huffman@47108
   648
Andreas@61630
   649
lemma min_0_1 [simp]:
Andreas@61630
   650
  fixes min' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" defines "min' \<equiv> min" shows
Andreas@61630
   651
  "min' 0 1 = 0"
Andreas@61630
   652
  "min' 1 0 = 0"
Andreas@61630
   653
  "min' 0 (numeral x) = 0"
Andreas@61630
   654
  "min' (numeral x) 0 = 0"
Andreas@61630
   655
  "min' 1 (numeral x) = 1"
Andreas@61630
   656
  "min' (numeral x) 1 = 1"
Andreas@61630
   657
by(simp_all add: min'_def min_def le_num_One_iff)
Andreas@61630
   658
Andreas@61630
   659
lemma max_0_1 [simp]: 
Andreas@61630
   660
  fixes max' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" defines "max' \<equiv> max" shows
Andreas@61630
   661
  "max' 0 1 = 1"
Andreas@61630
   662
  "max' 1 0 = 1"
Andreas@61630
   663
  "max' 0 (numeral x) = numeral x"
Andreas@61630
   664
  "max' (numeral x) 0 = numeral x"
Andreas@61630
   665
  "max' 1 (numeral x) = numeral x"
Andreas@61630
   666
  "max' (numeral x) 1 = numeral x"
Andreas@61630
   667
by(simp_all add: max'_def max_def le_num_One_iff)
Andreas@61630
   668
huffman@47108
   669
end
huffman@47108
   670
wenzelm@60758
   671
subsubsection \<open>
wenzelm@61799
   672
  Multiplication and negation: class \<open>ring_1\<close>
wenzelm@60758
   673
\<close>
huffman@47108
   674
huffman@47108
   675
context ring_1
huffman@47108
   676
begin
huffman@47108
   677
huffman@47108
   678
subclass neg_numeral ..
huffman@47108
   679
huffman@47108
   680
lemma mult_neg_numeral_simps:
haftmann@54489
   681
  "- numeral m * - numeral n = numeral (m * n)"
haftmann@54489
   682
  "- numeral m * numeral n = - numeral (m * n)"
haftmann@54489
   683
  "numeral m * - numeral n = - numeral (m * n)"
haftmann@54489
   684
  unfolding mult_minus_left mult_minus_right
huffman@47108
   685
  by (simp_all only: minus_minus numeral_mult)
huffman@47108
   686
haftmann@54489
   687
lemma mult_minus1 [simp]: "- 1 * z = - z"
haftmann@54489
   688
  unfolding numeral.simps mult_minus_left by simp
huffman@47108
   689
haftmann@54489
   690
lemma mult_minus1_right [simp]: "z * - 1 = - z"
haftmann@54489
   691
  unfolding numeral.simps mult_minus_right by simp
huffman@47108
   692
huffman@47108
   693
end
huffman@47108
   694
wenzelm@60758
   695
subsubsection \<open>
wenzelm@61799
   696
  Equality using \<open>iszero\<close> for rings with non-zero characteristic
wenzelm@60758
   697
\<close>
huffman@47108
   698
huffman@47108
   699
context ring_1
huffman@47108
   700
begin
huffman@47108
   701
huffman@47108
   702
definition iszero :: "'a \<Rightarrow> bool"
huffman@47108
   703
  where "iszero z \<longleftrightarrow> z = 0"
huffman@47108
   704
huffman@47108
   705
lemma iszero_0 [simp]: "iszero 0"
huffman@47108
   706
  by (simp add: iszero_def)
huffman@47108
   707
huffman@47108
   708
lemma not_iszero_1 [simp]: "\<not> iszero 1"
huffman@47108
   709
  by (simp add: iszero_def)
huffman@47108
   710
huffman@47108
   711
lemma not_iszero_Numeral1: "\<not> iszero Numeral1"
huffman@47108
   712
  by (simp add: numeral_One)
huffman@47108
   713
haftmann@54489
   714
lemma not_iszero_neg_1 [simp]: "\<not> iszero (- 1)"
haftmann@54489
   715
  by (simp add: iszero_def)
haftmann@54489
   716
haftmann@54489
   717
lemma not_iszero_neg_Numeral1: "\<not> iszero (- Numeral1)"
haftmann@54489
   718
  by (simp add: numeral_One)
haftmann@54489
   719
huffman@47108
   720
lemma iszero_neg_numeral [simp]:
haftmann@54489
   721
  "iszero (- numeral w) \<longleftrightarrow> iszero (numeral w)"
haftmann@54489
   722
  unfolding iszero_def
huffman@47108
   723
  by (rule neg_equal_0_iff_equal)
huffman@47108
   724
huffman@47108
   725
lemma eq_iff_iszero_diff: "x = y \<longleftrightarrow> iszero (x - y)"
huffman@47108
   726
  unfolding iszero_def by (rule eq_iff_diff_eq_0)
huffman@47108
   727
wenzelm@61799
   728
text \<open>The \<open>eq_numeral_iff_iszero\<close> lemmas are not declared
wenzelm@61799
   729
\<open>[simp]\<close> by default, because for rings of characteristic zero,
wenzelm@61799
   730
better simp rules are possible. For a type like integers mod \<open>n\<close>, type-instantiated versions of these rules should be added to the
huffman@47108
   731
simplifier, along with a type-specific rule for deciding propositions
wenzelm@61799
   732
of the form \<open>iszero (numeral w)\<close>.
huffman@47108
   733
huffman@47108
   734
bh: Maybe it would not be so bad to just declare these as simp
huffman@47108
   735
rules anyway? I should test whether these rules take precedence over
wenzelm@61799
   736
the \<open>ring_char_0\<close> rules in the simplifier.
wenzelm@60758
   737
\<close>
huffman@47108
   738
huffman@47108
   739
lemma eq_numeral_iff_iszero:
huffman@47108
   740
  "numeral x = numeral y \<longleftrightarrow> iszero (sub x y)"
haftmann@54489
   741
  "numeral x = - numeral y \<longleftrightarrow> iszero (numeral (x + y))"
haftmann@54489
   742
  "- numeral x = numeral y \<longleftrightarrow> iszero (numeral (x + y))"
haftmann@54489
   743
  "- numeral x = - numeral y \<longleftrightarrow> iszero (sub y x)"
huffman@47108
   744
  "numeral x = 1 \<longleftrightarrow> iszero (sub x One)"
huffman@47108
   745
  "1 = numeral y \<longleftrightarrow> iszero (sub One y)"
haftmann@54489
   746
  "- numeral x = 1 \<longleftrightarrow> iszero (numeral (x + One))"
haftmann@54489
   747
  "1 = - numeral y \<longleftrightarrow> iszero (numeral (One + y))"
huffman@47108
   748
  "numeral x = 0 \<longleftrightarrow> iszero (numeral x)"
huffman@47108
   749
  "0 = numeral y \<longleftrightarrow> iszero (numeral y)"
haftmann@54489
   750
  "- numeral x = 0 \<longleftrightarrow> iszero (numeral x)"
haftmann@54489
   751
  "0 = - numeral y \<longleftrightarrow> iszero (numeral y)"
huffman@47108
   752
  unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special
huffman@47108
   753
  by simp_all
huffman@47108
   754
huffman@47108
   755
end
huffman@47108
   756
wenzelm@60758
   757
subsubsection \<open>
wenzelm@61799
   758
  Equality and negation: class \<open>ring_char_0\<close>
wenzelm@60758
   759
\<close>
huffman@47108
   760
haftmann@62481
   761
context ring_char_0
huffman@47108
   762
begin
huffman@47108
   763
huffman@47108
   764
lemma not_iszero_numeral [simp]: "\<not> iszero (numeral w)"
huffman@47108
   765
  by (simp add: iszero_def)
huffman@47108
   766
haftmann@54489
   767
lemma neg_numeral_eq_iff: "- numeral m = - numeral n \<longleftrightarrow> m = n"
haftmann@54489
   768
  by simp
huffman@47108
   769
haftmann@54489
   770
lemma numeral_neq_neg_numeral: "numeral m \<noteq> - numeral n"
haftmann@54489
   771
  unfolding eq_neg_iff_add_eq_0
huffman@47108
   772
  by (simp add: numeral_plus_numeral)
huffman@47108
   773
haftmann@54489
   774
lemma neg_numeral_neq_numeral: "- numeral m \<noteq> numeral n"
huffman@47108
   775
  by (rule numeral_neq_neg_numeral [symmetric])
huffman@47108
   776
haftmann@54489
   777
lemma zero_neq_neg_numeral: "0 \<noteq> - numeral n"
haftmann@54489
   778
  unfolding neg_0_equal_iff_equal by simp
huffman@47108
   779
haftmann@54489
   780
lemma neg_numeral_neq_zero: "- numeral n \<noteq> 0"
haftmann@54489
   781
  unfolding neg_equal_0_iff_equal by simp
huffman@47108
   782
haftmann@54489
   783
lemma one_neq_neg_numeral: "1 \<noteq> - numeral n"
huffman@47108
   784
  using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One)
huffman@47108
   785
haftmann@54489
   786
lemma neg_numeral_neq_one: "- numeral n \<noteq> 1"
huffman@47108
   787
  using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One)
huffman@47108
   788
haftmann@54489
   789
lemma neg_one_neq_numeral:
haftmann@54489
   790
  "- 1 \<noteq> numeral n"
haftmann@54489
   791
  using neg_numeral_neq_numeral [of One n] by (simp add: numeral_One)
haftmann@54489
   792
haftmann@54489
   793
lemma numeral_neq_neg_one:
haftmann@54489
   794
  "numeral n \<noteq> - 1"
haftmann@54489
   795
  using numeral_neq_neg_numeral [of n One] by (simp add: numeral_One)
haftmann@54489
   796
haftmann@54489
   797
lemma neg_one_eq_numeral_iff:
haftmann@54489
   798
  "- 1 = - numeral n \<longleftrightarrow> n = One"
haftmann@54489
   799
  using neg_numeral_eq_iff [of One n] by (auto simp add: numeral_One)
haftmann@54489
   800
haftmann@54489
   801
lemma numeral_eq_neg_one_iff:
haftmann@54489
   802
  "- numeral n = - 1 \<longleftrightarrow> n = One"
haftmann@54489
   803
  using neg_numeral_eq_iff [of n One] by (auto simp add: numeral_One)
haftmann@54489
   804
haftmann@54489
   805
lemma neg_one_neq_zero:
haftmann@54489
   806
  "- 1 \<noteq> 0"
haftmann@54489
   807
  by simp
haftmann@54489
   808
haftmann@54489
   809
lemma zero_neq_neg_one:
haftmann@54489
   810
  "0 \<noteq> - 1"
haftmann@54489
   811
  by simp
haftmann@54489
   812
haftmann@54489
   813
lemma neg_one_neq_one:
haftmann@54489
   814
  "- 1 \<noteq> 1"
haftmann@54489
   815
  using neg_numeral_neq_numeral [of One One] by (simp only: numeral_One not_False_eq_True)
haftmann@54489
   816
haftmann@54489
   817
lemma one_neq_neg_one:
haftmann@54489
   818
  "1 \<noteq> - 1"
haftmann@54489
   819
  using numeral_neq_neg_numeral [of One One] by (simp only: numeral_One not_False_eq_True)
haftmann@54489
   820
huffman@47108
   821
lemmas eq_neg_numeral_simps [simp] =
huffman@47108
   822
  neg_numeral_eq_iff
huffman@47108
   823
  numeral_neq_neg_numeral neg_numeral_neq_numeral
huffman@47108
   824
  one_neq_neg_numeral neg_numeral_neq_one
huffman@47108
   825
  zero_neq_neg_numeral neg_numeral_neq_zero
haftmann@54489
   826
  neg_one_neq_numeral numeral_neq_neg_one
haftmann@54489
   827
  neg_one_eq_numeral_iff numeral_eq_neg_one_iff
haftmann@54489
   828
  neg_one_neq_zero zero_neq_neg_one
haftmann@54489
   829
  neg_one_neq_one one_neq_neg_one
huffman@47108
   830
huffman@47108
   831
end
huffman@47108
   832
haftmann@62348
   833
wenzelm@60758
   834
subsubsection \<open>
wenzelm@61799
   835
  Structures with negation and order: class \<open>linordered_idom\<close>
wenzelm@60758
   836
\<close>
huffman@47108
   837
huffman@47108
   838
context linordered_idom
huffman@47108
   839
begin
huffman@47108
   840
huffman@47108
   841
subclass ring_char_0 ..
huffman@47108
   842
haftmann@54489
   843
lemma neg_numeral_le_iff: "- numeral m \<le> - numeral n \<longleftrightarrow> n \<le> m"
haftmann@54489
   844
  by (simp only: neg_le_iff_le numeral_le_iff)
huffman@47108
   845
haftmann@54489
   846
lemma neg_numeral_less_iff: "- numeral m < - numeral n \<longleftrightarrow> n < m"
haftmann@54489
   847
  by (simp only: neg_less_iff_less numeral_less_iff)
huffman@47108
   848
haftmann@54489
   849
lemma neg_numeral_less_zero: "- numeral n < 0"
haftmann@54489
   850
  by (simp only: neg_less_0_iff_less zero_less_numeral)
huffman@47108
   851
haftmann@54489
   852
lemma neg_numeral_le_zero: "- numeral n \<le> 0"
haftmann@54489
   853
  by (simp only: neg_le_0_iff_le zero_le_numeral)
huffman@47108
   854
haftmann@54489
   855
lemma not_zero_less_neg_numeral: "\<not> 0 < - numeral n"
huffman@47108
   856
  by (simp only: not_less neg_numeral_le_zero)
huffman@47108
   857
haftmann@54489
   858
lemma not_zero_le_neg_numeral: "\<not> 0 \<le> - numeral n"
huffman@47108
   859
  by (simp only: not_le neg_numeral_less_zero)
huffman@47108
   860
haftmann@54489
   861
lemma neg_numeral_less_numeral: "- numeral m < numeral n"
huffman@47108
   862
  using neg_numeral_less_zero zero_less_numeral by (rule less_trans)
huffman@47108
   863
haftmann@54489
   864
lemma neg_numeral_le_numeral: "- numeral m \<le> numeral n"
huffman@47108
   865
  by (simp only: less_imp_le neg_numeral_less_numeral)
huffman@47108
   866
haftmann@54489
   867
lemma not_numeral_less_neg_numeral: "\<not> numeral m < - numeral n"
huffman@47108
   868
  by (simp only: not_less neg_numeral_le_numeral)
huffman@47108
   869
haftmann@54489
   870
lemma not_numeral_le_neg_numeral: "\<not> numeral m \<le> - numeral n"
huffman@47108
   871
  by (simp only: not_le neg_numeral_less_numeral)
huffman@47108
   872
  
haftmann@54489
   873
lemma neg_numeral_less_one: "- numeral m < 1"
huffman@47108
   874
  by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One])
huffman@47108
   875
haftmann@54489
   876
lemma neg_numeral_le_one: "- numeral m \<le> 1"
huffman@47108
   877
  by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One])
huffman@47108
   878
haftmann@54489
   879
lemma not_one_less_neg_numeral: "\<not> 1 < - numeral m"
huffman@47108
   880
  by (simp only: not_less neg_numeral_le_one)
huffman@47108
   881
haftmann@54489
   882
lemma not_one_le_neg_numeral: "\<not> 1 \<le> - numeral m"
huffman@47108
   883
  by (simp only: not_le neg_numeral_less_one)
huffman@47108
   884
haftmann@54489
   885
lemma not_numeral_less_neg_one: "\<not> numeral m < - 1"
haftmann@54489
   886
  using not_numeral_less_neg_numeral [of m One] by (simp add: numeral_One)
haftmann@54489
   887
haftmann@54489
   888
lemma not_numeral_le_neg_one: "\<not> numeral m \<le> - 1"
haftmann@54489
   889
  using not_numeral_le_neg_numeral [of m One] by (simp add: numeral_One)
haftmann@54489
   890
haftmann@54489
   891
lemma neg_one_less_numeral: "- 1 < numeral m"
haftmann@54489
   892
  using neg_numeral_less_numeral [of One m] by (simp add: numeral_One)
haftmann@54489
   893
haftmann@54489
   894
lemma neg_one_le_numeral: "- 1 \<le> numeral m"
haftmann@54489
   895
  using neg_numeral_le_numeral [of One m] by (simp add: numeral_One)
haftmann@54489
   896
haftmann@54489
   897
lemma neg_numeral_less_neg_one_iff: "- numeral m < - 1 \<longleftrightarrow> m \<noteq> One"
haftmann@54489
   898
  by (cases m) simp_all
haftmann@54489
   899
haftmann@54489
   900
lemma neg_numeral_le_neg_one: "- numeral m \<le> - 1"
haftmann@54489
   901
  by simp
haftmann@54489
   902
haftmann@54489
   903
lemma not_neg_one_less_neg_numeral: "\<not> - 1 < - numeral m"
haftmann@54489
   904
  by simp
haftmann@54489
   905
haftmann@54489
   906
lemma not_neg_one_le_neg_numeral_iff: "\<not> - 1 \<le> - numeral m \<longleftrightarrow> m \<noteq> One"
haftmann@54489
   907
  by (cases m) simp_all
haftmann@54489
   908
huffman@47108
   909
lemma sub_non_negative:
huffman@47108
   910
  "sub n m \<ge> 0 \<longleftrightarrow> n \<ge> m"
huffman@47108
   911
  by (simp only: sub_def le_diff_eq) simp
huffman@47108
   912
huffman@47108
   913
lemma sub_positive:
huffman@47108
   914
  "sub n m > 0 \<longleftrightarrow> n > m"
huffman@47108
   915
  by (simp only: sub_def less_diff_eq) simp
huffman@47108
   916
huffman@47108
   917
lemma sub_non_positive:
huffman@47108
   918
  "sub n m \<le> 0 \<longleftrightarrow> n \<le> m"
huffman@47108
   919
  by (simp only: sub_def diff_le_eq) simp
huffman@47108
   920
huffman@47108
   921
lemma sub_negative:
huffman@47108
   922
  "sub n m < 0 \<longleftrightarrow> n < m"
huffman@47108
   923
  by (simp only: sub_def diff_less_eq) simp
huffman@47108
   924
huffman@47108
   925
lemmas le_neg_numeral_simps [simp] =
huffman@47108
   926
  neg_numeral_le_iff
huffman@47108
   927
  neg_numeral_le_numeral not_numeral_le_neg_numeral
huffman@47108
   928
  neg_numeral_le_zero not_zero_le_neg_numeral
huffman@47108
   929
  neg_numeral_le_one not_one_le_neg_numeral
haftmann@54489
   930
  neg_one_le_numeral not_numeral_le_neg_one
haftmann@54489
   931
  neg_numeral_le_neg_one not_neg_one_le_neg_numeral_iff
haftmann@54489
   932
haftmann@54489
   933
lemma le_minus_one_simps [simp]:
haftmann@54489
   934
  "- 1 \<le> 0"
haftmann@54489
   935
  "- 1 \<le> 1"
haftmann@54489
   936
  "\<not> 0 \<le> - 1"
haftmann@54489
   937
  "\<not> 1 \<le> - 1"
haftmann@54489
   938
  by simp_all
huffman@47108
   939
huffman@47108
   940
lemmas less_neg_numeral_simps [simp] =
huffman@47108
   941
  neg_numeral_less_iff
huffman@47108
   942
  neg_numeral_less_numeral not_numeral_less_neg_numeral
huffman@47108
   943
  neg_numeral_less_zero not_zero_less_neg_numeral
huffman@47108
   944
  neg_numeral_less_one not_one_less_neg_numeral
haftmann@54489
   945
  neg_one_less_numeral not_numeral_less_neg_one
haftmann@54489
   946
  neg_numeral_less_neg_one_iff not_neg_one_less_neg_numeral
haftmann@54489
   947
haftmann@54489
   948
lemma less_minus_one_simps [simp]:
haftmann@54489
   949
  "- 1 < 0"
haftmann@54489
   950
  "- 1 < 1"
haftmann@54489
   951
  "\<not> 0 < - 1"
haftmann@54489
   952
  "\<not> 1 < - 1"
haftmann@54489
   953
  by (simp_all add: less_le)
huffman@47108
   954
wenzelm@61944
   955
lemma abs_numeral [simp]: "\<bar>numeral n\<bar> = numeral n"
huffman@47108
   956
  by simp
huffman@47108
   957
wenzelm@61944
   958
lemma abs_neg_numeral [simp]: "\<bar>- numeral n\<bar> = numeral n"
haftmann@54489
   959
  by (simp only: abs_minus_cancel abs_numeral)
haftmann@54489
   960
wenzelm@61944
   961
lemma abs_neg_one [simp]: "\<bar>- 1\<bar> = 1"
haftmann@54489
   962
  by simp
huffman@47108
   963
huffman@47108
   964
end
huffman@47108
   965
wenzelm@60758
   966
subsubsection \<open>
huffman@47108
   967
  Natural numbers
wenzelm@60758
   968
\<close>
huffman@47108
   969
huffman@47299
   970
lemma Suc_1 [simp]: "Suc 1 = 2"
huffman@47299
   971
  unfolding Suc_eq_plus1 by (rule one_add_one)
huffman@47299
   972
huffman@47108
   973
lemma Suc_numeral [simp]: "Suc (numeral n) = numeral (n + One)"
huffman@47299
   974
  unfolding Suc_eq_plus1 by (rule numeral_plus_one)
huffman@47108
   975
huffman@47209
   976
definition pred_numeral :: "num \<Rightarrow> nat"
huffman@47209
   977
  where [code del]: "pred_numeral k = numeral k - 1"
huffman@47209
   978
huffman@47209
   979
lemma numeral_eq_Suc: "numeral k = Suc (pred_numeral k)"
huffman@47209
   980
  unfolding pred_numeral_def by simp
huffman@47209
   981
huffman@47220
   982
lemma eval_nat_numeral:
huffman@47108
   983
  "numeral One = Suc 0"
huffman@47108
   984
  "numeral (Bit0 n) = Suc (numeral (BitM n))"
huffman@47108
   985
  "numeral (Bit1 n) = Suc (numeral (Bit0 n))"
huffman@47108
   986
  by (simp_all add: numeral.simps BitM_plus_one)
huffman@47108
   987
huffman@47209
   988
lemma pred_numeral_simps [simp]:
huffman@47300
   989
  "pred_numeral One = 0"
huffman@47300
   990
  "pred_numeral (Bit0 k) = numeral (BitM k)"
huffman@47300
   991
  "pred_numeral (Bit1 k) = numeral (Bit0 k)"
huffman@47220
   992
  unfolding pred_numeral_def eval_nat_numeral
huffman@47209
   993
  by (simp_all only: diff_Suc_Suc diff_0)
huffman@47209
   994
huffman@47192
   995
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
huffman@47220
   996
  by (simp add: eval_nat_numeral)
huffman@47192
   997
huffman@47192
   998
lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))"
huffman@47220
   999
  by (simp add: eval_nat_numeral)
huffman@47192
  1000
huffman@47207
  1001
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0"
huffman@47207
  1002
  by (simp only: numeral_One One_nat_def)
huffman@47207
  1003
huffman@47207
  1004
lemma Suc_nat_number_of_add:
huffman@47300
  1005
  "Suc (numeral v + n) = numeral (v + One) + n"
huffman@47207
  1006
  by simp
huffman@47207
  1007
huffman@47207
  1008
(*Maps #n to n for n = 1, 2*)
huffman@47207
  1009
lemmas numerals = numeral_One [where 'a=nat] numeral_2_eq_2
huffman@47207
  1010
wenzelm@60758
  1011
text \<open>Comparisons involving @{term Suc}.\<close>
huffman@47209
  1012
huffman@47209
  1013
lemma eq_numeral_Suc [simp]: "numeral k = Suc n \<longleftrightarrow> pred_numeral k = n"
huffman@47209
  1014
  by (simp add: numeral_eq_Suc)
huffman@47209
  1015
huffman@47209
  1016
lemma Suc_eq_numeral [simp]: "Suc n = numeral k \<longleftrightarrow> n = pred_numeral k"
huffman@47209
  1017
  by (simp add: numeral_eq_Suc)
huffman@47209
  1018
huffman@47209
  1019
lemma less_numeral_Suc [simp]: "numeral k < Suc n \<longleftrightarrow> pred_numeral k < n"
huffman@47209
  1020
  by (simp add: numeral_eq_Suc)
huffman@47209
  1021
huffman@47209
  1022
lemma less_Suc_numeral [simp]: "Suc n < numeral k \<longleftrightarrow> n < pred_numeral k"
huffman@47209
  1023
  by (simp add: numeral_eq_Suc)
huffman@47209
  1024
huffman@47209
  1025
lemma le_numeral_Suc [simp]: "numeral k \<le> Suc n \<longleftrightarrow> pred_numeral k \<le> n"
huffman@47209
  1026
  by (simp add: numeral_eq_Suc)
huffman@47209
  1027
huffman@47209
  1028
lemma le_Suc_numeral [simp]: "Suc n \<le> numeral k \<longleftrightarrow> n \<le> pred_numeral k"
huffman@47209
  1029
  by (simp add: numeral_eq_Suc)
huffman@47209
  1030
huffman@47218
  1031
lemma diff_Suc_numeral [simp]: "Suc n - numeral k = n - pred_numeral k"
huffman@47218
  1032
  by (simp add: numeral_eq_Suc)
huffman@47218
  1033
huffman@47218
  1034
lemma diff_numeral_Suc [simp]: "numeral k - Suc n = pred_numeral k - n"
huffman@47218
  1035
  by (simp add: numeral_eq_Suc)
huffman@47218
  1036
huffman@47209
  1037
lemma max_Suc_numeral [simp]:
huffman@47209
  1038
  "max (Suc n) (numeral k) = Suc (max n (pred_numeral k))"
huffman@47209
  1039
  by (simp add: numeral_eq_Suc)
huffman@47209
  1040
huffman@47209
  1041
lemma max_numeral_Suc [simp]:
huffman@47209
  1042
  "max (numeral k) (Suc n) = Suc (max (pred_numeral k) n)"
huffman@47209
  1043
  by (simp add: numeral_eq_Suc)
huffman@47209
  1044
huffman@47209
  1045
lemma min_Suc_numeral [simp]:
huffman@47209
  1046
  "min (Suc n) (numeral k) = Suc (min n (pred_numeral k))"
huffman@47209
  1047
  by (simp add: numeral_eq_Suc)
huffman@47209
  1048
huffman@47209
  1049
lemma min_numeral_Suc [simp]:
huffman@47209
  1050
  "min (numeral k) (Suc n) = Suc (min (pred_numeral k) n)"
huffman@47209
  1051
  by (simp add: numeral_eq_Suc)
huffman@47209
  1052
wenzelm@60758
  1053
text \<open>For @{term case_nat} and @{term rec_nat}.\<close>
huffman@47216
  1054
blanchet@55415
  1055
lemma case_nat_numeral [simp]:
blanchet@55415
  1056
  "case_nat a f (numeral v) = (let pv = pred_numeral v in f pv)"
huffman@47216
  1057
  by (simp add: numeral_eq_Suc)
huffman@47216
  1058
blanchet@55415
  1059
lemma case_nat_add_eq_if [simp]:
blanchet@55415
  1060
  "case_nat a f ((numeral v) + n) = (let pv = pred_numeral v in f (pv + n))"
huffman@47216
  1061
  by (simp add: numeral_eq_Suc)
huffman@47216
  1062
blanchet@55415
  1063
lemma rec_nat_numeral [simp]:
blanchet@55415
  1064
  "rec_nat a f (numeral v) =
blanchet@55415
  1065
    (let pv = pred_numeral v in f pv (rec_nat a f pv))"
huffman@47216
  1066
  by (simp add: numeral_eq_Suc Let_def)
huffman@47216
  1067
blanchet@55415
  1068
lemma rec_nat_add_eq_if [simp]:
blanchet@55415
  1069
  "rec_nat a f (numeral v + n) =
blanchet@55415
  1070
    (let pv = pred_numeral v in f (pv + n) (rec_nat a f (pv + n)))"
huffman@47216
  1071
  by (simp add: numeral_eq_Suc Let_def)
huffman@47216
  1072
wenzelm@60758
  1073
text \<open>Case analysis on @{term "n < 2"}\<close>
huffman@47255
  1074
huffman@47255
  1075
lemma less_2_cases: "n < 2 \<Longrightarrow> n = 0 \<or> n = Suc 0"
huffman@47255
  1076
  by (auto simp add: numeral_2_eq_2)
huffman@47255
  1077
wenzelm@60758
  1078
text \<open>Removal of Small Numerals: 0, 1 and (in additive positions) 2\<close>
wenzelm@60758
  1079
text \<open>bh: Are these rules really a good idea?\<close>
huffman@47255
  1080
huffman@47255
  1081
lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)"
huffman@47255
  1082
  by simp
huffman@47255
  1083
huffman@47255
  1084
lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)"
huffman@47255
  1085
  by simp
huffman@47255
  1086
wenzelm@60758
  1087
text \<open>Can be used to eliminate long strings of Sucs, but not by default.\<close>
huffman@47255
  1088
huffman@47255
  1089
lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"
huffman@47255
  1090
  by simp
huffman@47255
  1091
huffman@47255
  1092
lemmas nat_1_add_1 = one_add_one [where 'a=nat] (* legacy *)
huffman@47255
  1093
huffman@47108
  1094
wenzelm@60758
  1095
subsection \<open>Particular lemmas concerning @{term 2}\<close>
haftmann@58512
  1096
haftmann@59867
  1097
context linordered_field
haftmann@58512
  1098
begin
haftmann@58512
  1099
haftmann@62348
  1100
subclass field_char_0 ..
haftmann@62348
  1101
haftmann@58512
  1102
lemma half_gt_zero_iff:
haftmann@58512
  1103
  "0 < a / 2 \<longleftrightarrow> 0 < a" (is "?P \<longleftrightarrow> ?Q")
haftmann@58512
  1104
  by (auto simp add: field_simps)
haftmann@58512
  1105
haftmann@58512
  1106
lemma half_gt_zero [simp]:
haftmann@58512
  1107
  "0 < a \<Longrightarrow> 0 < a / 2"
haftmann@58512
  1108
  by (simp add: half_gt_zero_iff)
haftmann@58512
  1109
haftmann@58512
  1110
end
haftmann@58512
  1111
haftmann@58512
  1112
wenzelm@60758
  1113
subsection \<open>Numeral equations as default simplification rules\<close>
huffman@47108
  1114
huffman@47108
  1115
declare (in numeral) numeral_One [simp]
huffman@47108
  1116
declare (in numeral) numeral_plus_numeral [simp]
huffman@47108
  1117
declare (in numeral) add_numeral_special [simp]
huffman@47108
  1118
declare (in neg_numeral) add_neg_numeral_simps [simp]
huffman@47108
  1119
declare (in neg_numeral) add_neg_numeral_special [simp]
huffman@47108
  1120
declare (in neg_numeral) diff_numeral_simps [simp]
huffman@47108
  1121
declare (in neg_numeral) diff_numeral_special [simp]
huffman@47108
  1122
declare (in semiring_numeral) numeral_times_numeral [simp]
huffman@47108
  1123
declare (in ring_1) mult_neg_numeral_simps [simp]
huffman@47108
  1124
wenzelm@60758
  1125
subsection \<open>Setting up simprocs\<close>
huffman@47108
  1126
huffman@47108
  1127
lemma mult_numeral_1: "Numeral1 * a = (a::'a::semiring_numeral)"
huffman@47108
  1128
  by simp
huffman@47108
  1129
huffman@47108
  1130
lemma mult_numeral_1_right: "a * Numeral1 = (a::'a::semiring_numeral)"
huffman@47108
  1131
  by simp
huffman@47108
  1132
huffman@47108
  1133
lemma divide_numeral_1: "a / Numeral1 = (a::'a::field)"
huffman@47108
  1134
  by simp
huffman@47108
  1135
huffman@47108
  1136
lemma inverse_numeral_1:
huffman@47108
  1137
  "inverse Numeral1 = (Numeral1::'a::division_ring)"
huffman@47108
  1138
  by simp
huffman@47108
  1139
wenzelm@60758
  1140
text\<open>Theorem lists for the cancellation simprocs. The use of a binary
wenzelm@60758
  1141
numeral for 1 reduces the number of special cases.\<close>
huffman@47108
  1142
haftmann@54489
  1143
lemma mult_1s:
haftmann@54489
  1144
  fixes a :: "'a::semiring_numeral"
haftmann@54489
  1145
    and b :: "'b::ring_1"
haftmann@54489
  1146
  shows "Numeral1 * a = a"
haftmann@54489
  1147
    "a * Numeral1 = a"
haftmann@54489
  1148
    "- Numeral1 * b = - b"
haftmann@54489
  1149
    "b * - Numeral1 = - b"
haftmann@54489
  1150
  by simp_all
huffman@47108
  1151
wenzelm@60758
  1152
setup \<open>
huffman@47226
  1153
  Reorient_Proc.add
huffman@47226
  1154
    (fn Const (@{const_name numeral}, _) $ _ => true
haftmann@54489
  1155
    | Const (@{const_name uminus}, _) $ (Const (@{const_name numeral}, _) $ _) => true
huffman@47226
  1156
    | _ => false)
wenzelm@60758
  1157
\<close>
huffman@47226
  1158
huffman@47226
  1159
simproc_setup reorient_numeral
haftmann@54489
  1160
  ("numeral w = x" | "- numeral w = y") = Reorient_Proc.proc
huffman@47226
  1161
huffman@47108
  1162
wenzelm@60758
  1163
subsubsection \<open>Simplification of arithmetic operations on integer constants.\<close>
huffman@47108
  1164
huffman@47108
  1165
lemmas arith_special = (* already declared simp above *)
huffman@47108
  1166
  add_numeral_special add_neg_numeral_special
haftmann@54489
  1167
  diff_numeral_special
huffman@47108
  1168
huffman@47108
  1169
(* rules already in simpset *)
huffman@47108
  1170
lemmas arith_extra_simps =
huffman@47108
  1171
  numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right
haftmann@54489
  1172
  minus_zero
huffman@47108
  1173
  diff_numeral_simps diff_0 diff_0_right
huffman@47108
  1174
  numeral_times_numeral mult_neg_numeral_simps
huffman@47108
  1175
  mult_zero_left mult_zero_right
huffman@47108
  1176
  abs_numeral abs_neg_numeral
huffman@47108
  1177
wenzelm@60758
  1178
text \<open>
huffman@47108
  1179
  For making a minimal simpset, one must include these default simprules.
wenzelm@61799
  1180
  Also include \<open>simp_thms\<close>.
wenzelm@60758
  1181
\<close>
huffman@47108
  1182
huffman@47108
  1183
lemmas arith_simps =
huffman@47108
  1184
  add_num_simps mult_num_simps sub_num_simps
huffman@47108
  1185
  BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps
huffman@47108
  1186
  abs_zero abs_one arith_extra_simps
huffman@47108
  1187
haftmann@54249
  1188
lemmas more_arith_simps =
haftmann@54249
  1189
  neg_le_iff_le
haftmann@54249
  1190
  minus_zero left_minus right_minus
haftmann@54249
  1191
  mult_1_left mult_1_right
haftmann@54249
  1192
  mult_minus_left mult_minus_right
haftmann@57512
  1193
  minus_add_distrib minus_minus mult.assoc
haftmann@54249
  1194
haftmann@54249
  1195
lemmas of_nat_simps =
haftmann@54249
  1196
  of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult
haftmann@54249
  1197
wenzelm@60758
  1198
text \<open>Simplification of relational operations\<close>
huffman@47108
  1199
huffman@47108
  1200
lemmas eq_numeral_extra =
huffman@47108
  1201
  zero_neq_one one_neq_zero
huffman@47108
  1202
huffman@47108
  1203
lemmas rel_simps =
huffman@47108
  1204
  le_num_simps less_num_simps eq_num_simps
haftmann@54489
  1205
  le_numeral_simps le_neg_numeral_simps le_minus_one_simps le_numeral_extra
haftmann@54489
  1206
  less_numeral_simps less_neg_numeral_simps less_minus_one_simps less_numeral_extra
huffman@47108
  1207
  eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra
huffman@47108
  1208
haftmann@54249
  1209
lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)"
wenzelm@61799
  1210
  \<comment> \<open>Unfold all \<open>let\<close>s involving constants\<close>
haftmann@54249
  1211
  unfolding Let_def ..
haftmann@54249
  1212
haftmann@54489
  1213
lemma Let_neg_numeral [simp]: "Let (- numeral v) f = f (- numeral v)"
wenzelm@61799
  1214
  \<comment> \<open>Unfold all \<open>let\<close>s involving constants\<close>
haftmann@54249
  1215
  unfolding Let_def ..
haftmann@54249
  1216
wenzelm@60758
  1217
declaration \<open>
haftmann@54249
  1218
let 
wenzelm@59996
  1219
  fun number_of ctxt T n =
wenzelm@59996
  1220
    if not (Sign.of_sort (Proof_Context.theory_of ctxt) (T, @{sort numeral}))
haftmann@54249
  1221
    then raise CTERM ("number_of", [])
wenzelm@59996
  1222
    else Numeral.mk_cnumber (Thm.ctyp_of ctxt T) n;
haftmann@54249
  1223
in
haftmann@54249
  1224
  K (
haftmann@54249
  1225
    Lin_Arith.add_simps (@{thms arith_simps} @ @{thms more_arith_simps}
haftmann@54249
  1226
      @ @{thms rel_simps}
haftmann@54249
  1227
      @ @{thms pred_numeral_simps}
haftmann@54249
  1228
      @ @{thms arith_special numeral_One}
haftmann@54249
  1229
      @ @{thms of_nat_simps})
haftmann@54249
  1230
    #> Lin_Arith.add_simps [@{thm Suc_numeral},
haftmann@54249
  1231
      @{thm Let_numeral}, @{thm Let_neg_numeral}, @{thm Let_0}, @{thm Let_1},
haftmann@54249
  1232
      @{thm le_Suc_numeral}, @{thm le_numeral_Suc},
haftmann@54249
  1233
      @{thm less_Suc_numeral}, @{thm less_numeral_Suc},
haftmann@54249
  1234
      @{thm Suc_eq_numeral}, @{thm eq_numeral_Suc},
haftmann@54249
  1235
      @{thm mult_Suc}, @{thm mult_Suc_right},
haftmann@54249
  1236
      @{thm of_nat_numeral}]
haftmann@54249
  1237
    #> Lin_Arith.set_number_of number_of)
haftmann@54249
  1238
end
wenzelm@60758
  1239
\<close>
haftmann@54249
  1240
huffman@47108
  1241
wenzelm@60758
  1242
subsubsection \<open>Simplification of arithmetic when nested to the right.\<close>
huffman@47108
  1243
huffman@47108
  1244
lemma add_numeral_left [simp]:
huffman@47108
  1245
  "numeral v + (numeral w + z) = (numeral(v + w) + z)"
haftmann@57512
  1246
  by (simp_all add: add.assoc [symmetric])
huffman@47108
  1247
huffman@47108
  1248
lemma add_neg_numeral_left [simp]:
haftmann@54489
  1249
  "numeral v + (- numeral w + y) = (sub v w + y)"
haftmann@54489
  1250
  "- numeral v + (numeral w + y) = (sub w v + y)"
haftmann@54489
  1251
  "- numeral v + (- numeral w + y) = (- numeral(v + w) + y)"
haftmann@57512
  1252
  by (simp_all add: add.assoc [symmetric])
huffman@47108
  1253
huffman@47108
  1254
lemma mult_numeral_left [simp]:
huffman@47108
  1255
  "numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)"
haftmann@54489
  1256
  "- numeral v * (numeral w * y) = (- numeral(v * w) * y :: 'b::ring_1)"
haftmann@54489
  1257
  "numeral v * (- numeral w * y) = (- numeral(v * w) * y :: 'b::ring_1)"
haftmann@54489
  1258
  "- numeral v * (- numeral w * y) = (numeral(v * w) * y :: 'b::ring_1)"
haftmann@57512
  1259
  by (simp_all add: mult.assoc [symmetric])
huffman@47108
  1260
huffman@47108
  1261
hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec
huffman@47108
  1262
haftmann@51143
  1263
wenzelm@60758
  1264
subsection \<open>code module namespace\<close>
huffman@47108
  1265
haftmann@52435
  1266
code_identifier
haftmann@52435
  1267
  code_module Num \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
huffman@47108
  1268
huffman@47108
  1269
end