src/ZF/Constructible/Separation.thy
author wenzelm
Mon Dec 07 10:23:50 2015 +0100 (2015-12-07)
changeset 61798 27f3c10b0b50
parent 60770 240563fbf41d
child 67443 3abf6a722518
permissions -rw-r--r--
isabelle update_cartouches -c -t;
paulson@13437
     1
(*  Title:      ZF/Constructible/Separation.thy
paulson@13437
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@13437
     3
*)
paulson@13437
     4
wenzelm@60770
     5
section\<open>Early Instances of Separation and Strong Replacement\<close>
paulson@13323
     6
haftmann@16417
     7
theory Separation imports L_axioms WF_absolute begin
paulson@13306
     8
wenzelm@61798
     9
text\<open>This theory proves all instances needed for locale \<open>M_basic\<close>\<close>
paulson@13339
    10
wenzelm@60770
    11
text\<open>Helps us solve for de Bruijn indices!\<close>
paulson@13306
    12
lemma nth_ConsI: "[|nth(n,l) = x; n \<in> nat|] ==> nth(succ(n), Cons(a,l)) = x"
paulson@13306
    13
by simp
paulson@13306
    14
paulson@13316
    15
lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
wenzelm@13428
    16
lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
paulson@13323
    17
                   fun_plus_iff_sats
paulson@13306
    18
paulson@13306
    19
lemma Collect_conj_in_DPow:
wenzelm@13428
    20
     "[| {x\<in>A. P(x)} \<in> DPow(A);  {x\<in>A. Q(x)} \<in> DPow(A) |]
paulson@13306
    21
      ==> {x\<in>A. P(x) & Q(x)} \<in> DPow(A)"
wenzelm@13428
    22
by (simp add: Int_in_DPow Collect_Int_Collect_eq [symmetric])
paulson@13306
    23
paulson@13306
    24
lemma Collect_conj_in_DPow_Lset:
paulson@13306
    25
     "[|z \<in> Lset(j); {x \<in> Lset(j). P(x)} \<in> DPow(Lset(j))|]
paulson@13306
    26
      ==> {x \<in> Lset(j). x \<in> z & P(x)} \<in> DPow(Lset(j))"
paulson@13306
    27
apply (frule mem_Lset_imp_subset_Lset)
wenzelm@13428
    28
apply (simp add: Collect_conj_in_DPow Collect_mem_eq
paulson@13306
    29
                 subset_Int_iff2 elem_subset_in_DPow)
paulson@13306
    30
done
paulson@13306
    31
paulson@13306
    32
lemma separation_CollectI:
paulson@13306
    33
     "(\<And>z. L(z) ==> L({x \<in> z . P(x)})) ==> separation(L, \<lambda>x. P(x))"
wenzelm@13428
    34
apply (unfold separation_def, clarify)
wenzelm@13428
    35
apply (rule_tac x="{x\<in>z. P(x)}" in rexI)
paulson@13306
    36
apply simp_all
paulson@13306
    37
done
paulson@13306
    38
wenzelm@60770
    39
text\<open>Reduces the original comprehension to the reflected one\<close>
paulson@13306
    40
lemma reflection_imp_L_separation:
paulson@46823
    41
      "[| \<forall>x\<in>Lset(j). P(x) \<longleftrightarrow> Q(x);
wenzelm@13428
    42
          {x \<in> Lset(j) . Q(x)} \<in> DPow(Lset(j));
paulson@13306
    43
          Ord(j);  z \<in> Lset(j)|] ==> L({x \<in> z . P(x)})"
paulson@13306
    44
apply (rule_tac i = "succ(j)" in L_I)
paulson@13306
    45
 prefer 2 apply simp
paulson@13306
    46
apply (subgoal_tac "{x \<in> z. P(x)} = {x \<in> Lset(j). x \<in> z & (Q(x))}")
paulson@13306
    47
 prefer 2
wenzelm@13428
    48
 apply (blast dest: mem_Lset_imp_subset_Lset)
paulson@13306
    49
apply (simp add: Lset_succ Collect_conj_in_DPow_Lset)
paulson@13306
    50
done
paulson@13306
    51
wenzelm@60770
    52
text\<open>Encapsulates the standard proof script for proving instances of 
wenzelm@60770
    53
      Separation.\<close>
paulson@13566
    54
lemma gen_separation:
paulson@13566
    55
 assumes reflection: "REFLECTS [P,Q]"
paulson@13566
    56
     and Lu:         "L(u)"
paulson@13566
    57
     and collI: "!!j. u \<in> Lset(j)
paulson@13566
    58
                \<Longrightarrow> Collect(Lset(j), Q(j)) \<in> DPow(Lset(j))"
paulson@13566
    59
 shows "separation(L,P)"
paulson@13566
    60
apply (rule separation_CollectI)
paulson@13566
    61
apply (rule_tac A="{u,z}" in subset_LsetE, blast intro: Lu)
paulson@13566
    62
apply (rule ReflectsE [OF reflection], assumption)
paulson@13566
    63
apply (drule subset_Lset_ltD, assumption)
paulson@13566
    64
apply (erule reflection_imp_L_separation)
paulson@13566
    65
  apply (simp_all add: lt_Ord2, clarify)
paulson@13691
    66
apply (rule collI, assumption)
paulson@13687
    67
done
paulson@13687
    68
wenzelm@60770
    69
text\<open>As above, but typically @{term u} is a finite enumeration such as
paulson@13687
    70
  @{term "{a,b}"}; thus the new subgoal gets the assumption
paulson@13687
    71
  @{term "{a,b} \<subseteq> Lset(i)"}, which is logically equivalent to 
wenzelm@60770
    72
  @{term "a \<in> Lset(i)"} and @{term "b \<in> Lset(i)"}.\<close>
paulson@13687
    73
lemma gen_separation_multi:
paulson@13687
    74
 assumes reflection: "REFLECTS [P,Q]"
paulson@13687
    75
     and Lu:         "L(u)"
paulson@13687
    76
     and collI: "!!j. u \<subseteq> Lset(j)
paulson@13687
    77
                \<Longrightarrow> Collect(Lset(j), Q(j)) \<in> DPow(Lset(j))"
paulson@13687
    78
 shows "separation(L,P)"
paulson@13687
    79
apply (rule gen_separation [OF reflection Lu])
paulson@13687
    80
apply (drule mem_Lset_imp_subset_Lset)
paulson@13687
    81
apply (erule collI) 
paulson@13566
    82
done
paulson@13566
    83
paulson@13306
    84
wenzelm@60770
    85
subsection\<open>Separation for Intersection\<close>
paulson@13306
    86
paulson@13306
    87
lemma Inter_Reflects:
paulson@46823
    88
     "REFLECTS[\<lambda>x. \<forall>y[L]. y\<in>A \<longrightarrow> x \<in> y,
paulson@46823
    89
               \<lambda>i x. \<forall>y\<in>Lset(i). y\<in>A \<longrightarrow> x \<in> y]"
wenzelm@13428
    90
by (intro FOL_reflections)
paulson@13306
    91
paulson@13306
    92
lemma Inter_separation:
paulson@46823
    93
     "L(A) ==> separation(L, \<lambda>x. \<forall>y[L]. y\<in>A \<longrightarrow> x\<in>y)"
paulson@13566
    94
apply (rule gen_separation [OF Inter_Reflects], simp)
wenzelm@13428
    95
apply (rule DPow_LsetI)
wenzelm@60770
    96
 txt\<open>I leave this one example of a manual proof.  The tedium of manually
wenzelm@60770
    97
      instantiating @{term i}, @{term j} and @{term env} is obvious.\<close>
wenzelm@13428
    98
apply (rule ball_iff_sats)
paulson@13306
    99
apply (rule imp_iff_sats)
paulson@13306
   100
apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
paulson@13306
   101
apply (rule_tac i=0 and j=2 in mem_iff_sats)
paulson@13306
   102
apply (simp_all add: succ_Un_distrib [symmetric])
paulson@13306
   103
done
paulson@13306
   104
wenzelm@60770
   105
subsection\<open>Separation for Set Difference\<close>
paulson@13437
   106
paulson@13437
   107
lemma Diff_Reflects:
paulson@13437
   108
     "REFLECTS[\<lambda>x. x \<notin> B, \<lambda>i x. x \<notin> B]"
paulson@13437
   109
by (intro FOL_reflections)  
paulson@13437
   110
paulson@13437
   111
lemma Diff_separation:
paulson@13437
   112
     "L(B) ==> separation(L, \<lambda>x. x \<notin> B)"
paulson@13566
   113
apply (rule gen_separation [OF Diff_Reflects], simp)
paulson@13687
   114
apply (rule_tac env="[B]" in DPow_LsetI)
paulson@13437
   115
apply (rule sep_rules | simp)+
paulson@13437
   116
done
paulson@13437
   117
wenzelm@60770
   118
subsection\<open>Separation for Cartesian Product\<close>
paulson@13306
   119
paulson@13323
   120
lemma cartprod_Reflects:
paulson@13314
   121
     "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. y\<in>B & pair(L,x,y,z)),
wenzelm@13428
   122
                \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). y\<in>B &
paulson@13807
   123
                                   pair(##Lset(i),x,y,z))]"
paulson@13323
   124
by (intro FOL_reflections function_reflections)
paulson@13306
   125
paulson@13306
   126
lemma cartprod_separation:
wenzelm@13428
   127
     "[| L(A); L(B) |]
paulson@13306
   128
      ==> separation(L, \<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. y\<in>B & pair(L,x,y,z)))"
paulson@13687
   129
apply (rule gen_separation_multi [OF cartprod_Reflects, of "{A,B}"], auto)
paulson@13687
   130
apply (rule_tac env="[A,B]" in DPow_LsetI)
paulson@13316
   131
apply (rule sep_rules | simp)+
paulson@13306
   132
done
paulson@13306
   133
wenzelm@60770
   134
subsection\<open>Separation for Image\<close>
paulson@13306
   135
paulson@13306
   136
lemma image_Reflects:
paulson@13314
   137
     "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & (\<exists>x[L]. x\<in>A & pair(L,x,y,p)),
paulson@13807
   138
           \<lambda>i y. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). x\<in>A & pair(##Lset(i),x,y,p))]"
paulson@13323
   139
by (intro FOL_reflections function_reflections)
paulson@13306
   140
paulson@13306
   141
lemma image_separation:
wenzelm@13428
   142
     "[| L(A); L(r) |]
paulson@13306
   143
      ==> separation(L, \<lambda>y. \<exists>p[L]. p\<in>r & (\<exists>x[L]. x\<in>A & pair(L,x,y,p)))"
paulson@13687
   144
apply (rule gen_separation_multi [OF image_Reflects, of "{A,r}"], auto)
paulson@13687
   145
apply (rule_tac env="[A,r]" in DPow_LsetI)
paulson@13316
   146
apply (rule sep_rules | simp)+
paulson@13306
   147
done
paulson@13306
   148
paulson@13306
   149
wenzelm@60770
   150
subsection\<open>Separation for Converse\<close>
paulson@13306
   151
paulson@13306
   152
lemma converse_Reflects:
paulson@13314
   153
  "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>r & (\<exists>x[L]. \<exists>y[L]. pair(L,x,y,p) & pair(L,y,x,z)),
wenzelm@13428
   154
     \<lambda>i z. \<exists>p\<in>Lset(i). p\<in>r & (\<exists>x\<in>Lset(i). \<exists>y\<in>Lset(i).
paulson@13807
   155
                     pair(##Lset(i),x,y,p) & pair(##Lset(i),y,x,z))]"
paulson@13323
   156
by (intro FOL_reflections function_reflections)
paulson@13306
   157
paulson@13306
   158
lemma converse_separation:
wenzelm@13428
   159
     "L(r) ==> separation(L,
paulson@13306
   160
         \<lambda>z. \<exists>p[L]. p\<in>r & (\<exists>x[L]. \<exists>y[L]. pair(L,x,y,p) & pair(L,y,x,z)))"
paulson@13566
   161
apply (rule gen_separation [OF converse_Reflects], simp)
paulson@13687
   162
apply (rule_tac env="[r]" in DPow_LsetI)
paulson@13316
   163
apply (rule sep_rules | simp)+
paulson@13306
   164
done
paulson@13306
   165
paulson@13306
   166
wenzelm@60770
   167
subsection\<open>Separation for Restriction\<close>
paulson@13306
   168
paulson@13306
   169
lemma restrict_Reflects:
paulson@13314
   170
     "REFLECTS[\<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. pair(L,x,y,z)),
paulson@13807
   171
        \<lambda>i z. \<exists>x\<in>Lset(i). x\<in>A & (\<exists>y\<in>Lset(i). pair(##Lset(i),x,y,z))]"
paulson@13323
   172
by (intro FOL_reflections function_reflections)
paulson@13306
   173
paulson@13306
   174
lemma restrict_separation:
paulson@13306
   175
   "L(A) ==> separation(L, \<lambda>z. \<exists>x[L]. x\<in>A & (\<exists>y[L]. pair(L,x,y,z)))"
paulson@13566
   176
apply (rule gen_separation [OF restrict_Reflects], simp)
paulson@13687
   177
apply (rule_tac env="[A]" in DPow_LsetI)
paulson@13316
   178
apply (rule sep_rules | simp)+
paulson@13306
   179
done
paulson@13306
   180
paulson@13306
   181
wenzelm@60770
   182
subsection\<open>Separation for Composition\<close>
paulson@13306
   183
paulson@13306
   184
lemma comp_Reflects:
wenzelm@13428
   185
     "REFLECTS[\<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
wenzelm@13428
   186
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
paulson@13306
   187
                  xy\<in>s & yz\<in>r,
wenzelm@13428
   188
        \<lambda>i xz. \<exists>x\<in>Lset(i). \<exists>y\<in>Lset(i). \<exists>z\<in>Lset(i). \<exists>xy\<in>Lset(i). \<exists>yz\<in>Lset(i).
paulson@13807
   189
                  pair(##Lset(i),x,z,xz) & pair(##Lset(i),x,y,xy) &
paulson@13807
   190
                  pair(##Lset(i),y,z,yz) & xy\<in>s & yz\<in>r]"
paulson@13323
   191
by (intro FOL_reflections function_reflections)
paulson@13306
   192
paulson@13306
   193
lemma comp_separation:
paulson@13306
   194
     "[| L(r); L(s) |]
wenzelm@13428
   195
      ==> separation(L, \<lambda>xz. \<exists>x[L]. \<exists>y[L]. \<exists>z[L]. \<exists>xy[L]. \<exists>yz[L].
wenzelm@13428
   196
                  pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
paulson@13306
   197
                  xy\<in>s & yz\<in>r)"
paulson@13687
   198
apply (rule gen_separation_multi [OF comp_Reflects, of "{r,s}"], auto)
wenzelm@60770
   199
txt\<open>Subgoals after applying general ``separation'' rule:
wenzelm@60770
   200
     @{subgoals[display,indent=0,margin=65]}\<close>
paulson@13687
   201
apply (rule_tac env="[r,s]" in DPow_LsetI)
wenzelm@60770
   202
txt\<open>Subgoals ready for automatic synthesis of a formula:
wenzelm@60770
   203
     @{subgoals[display,indent=0,margin=65]}\<close>
paulson@13316
   204
apply (rule sep_rules | simp)+
paulson@13306
   205
done
paulson@13306
   206
paulson@13687
   207
wenzelm@60770
   208
subsection\<open>Separation for Predecessors in an Order\<close>
paulson@13306
   209
paulson@13306
   210
lemma pred_Reflects:
paulson@13314
   211
     "REFLECTS[\<lambda>y. \<exists>p[L]. p\<in>r & pair(L,y,x,p),
paulson@13807
   212
                    \<lambda>i y. \<exists>p \<in> Lset(i). p\<in>r & pair(##Lset(i),y,x,p)]"
paulson@13323
   213
by (intro FOL_reflections function_reflections)
paulson@13306
   214
paulson@13306
   215
lemma pred_separation:
paulson@13306
   216
     "[| L(r); L(x) |] ==> separation(L, \<lambda>y. \<exists>p[L]. p\<in>r & pair(L,y,x,p))"
paulson@13687
   217
apply (rule gen_separation_multi [OF pred_Reflects, of "{r,x}"], auto)
paulson@13687
   218
apply (rule_tac env="[r,x]" in DPow_LsetI)
paulson@13316
   219
apply (rule sep_rules | simp)+
paulson@13306
   220
done
paulson@13306
   221
paulson@13306
   222
wenzelm@60770
   223
subsection\<open>Separation for the Membership Relation\<close>
paulson@13306
   224
paulson@13306
   225
lemma Memrel_Reflects:
paulson@13314
   226
     "REFLECTS[\<lambda>z. \<exists>x[L]. \<exists>y[L]. pair(L,x,y,z) & x \<in> y,
paulson@13807
   227
            \<lambda>i z. \<exists>x \<in> Lset(i). \<exists>y \<in> Lset(i). pair(##Lset(i),x,y,z) & x \<in> y]"
paulson@13323
   228
by (intro FOL_reflections function_reflections)
paulson@13306
   229
paulson@13306
   230
lemma Memrel_separation:
paulson@13306
   231
     "separation(L, \<lambda>z. \<exists>x[L]. \<exists>y[L]. pair(L,x,y,z) & x \<in> y)"
paulson@13566
   232
apply (rule gen_separation [OF Memrel_Reflects nonempty])
paulson@13687
   233
apply (rule_tac env="[]" in DPow_LsetI)
paulson@13316
   234
apply (rule sep_rules | simp)+
paulson@13306
   235
done
paulson@13306
   236
paulson@13306
   237
wenzelm@60770
   238
subsection\<open>Replacement for FunSpace\<close>
wenzelm@13428
   239
paulson@13306
   240
lemma funspace_succ_Reflects:
wenzelm@13428
   241
 "REFLECTS[\<lambda>z. \<exists>p[L]. p\<in>A & (\<exists>f[L]. \<exists>b[L]. \<exists>nb[L]. \<exists>cnbf[L].
wenzelm@13428
   242
            pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
wenzelm@13428
   243
            upair(L,cnbf,cnbf,z)),
wenzelm@13428
   244
        \<lambda>i z. \<exists>p \<in> Lset(i). p\<in>A & (\<exists>f \<in> Lset(i). \<exists>b \<in> Lset(i).
wenzelm@13428
   245
              \<exists>nb \<in> Lset(i). \<exists>cnbf \<in> Lset(i).
paulson@13807
   246
                pair(##Lset(i),f,b,p) & pair(##Lset(i),n,b,nb) &
paulson@13807
   247
                is_cons(##Lset(i),nb,f,cnbf) & upair(##Lset(i),cnbf,cnbf,z))]"
paulson@13323
   248
by (intro FOL_reflections function_reflections)
paulson@13306
   249
paulson@13306
   250
lemma funspace_succ_replacement:
wenzelm@13428
   251
     "L(n) ==>
wenzelm@13428
   252
      strong_replacement(L, \<lambda>p z. \<exists>f[L]. \<exists>b[L]. \<exists>nb[L]. \<exists>cnbf[L].
paulson@13306
   253
                pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) &
paulson@13306
   254
                upair(L,cnbf,cnbf,z))"
wenzelm@13428
   255
apply (rule strong_replacementI)
paulson@13687
   256
apply (rule_tac u="{n,B}" in gen_separation_multi [OF funspace_succ_Reflects], 
paulson@13687
   257
       auto)
paulson@13687
   258
apply (rule_tac env="[n,B]" in DPow_LsetI)
paulson@13316
   259
apply (rule sep_rules | simp)+
paulson@13306
   260
done
paulson@13306
   261
paulson@13306
   262
wenzelm@60770
   263
subsection\<open>Separation for a Theorem about @{term "is_recfun"}\<close>
paulson@13323
   264
paulson@13323
   265
lemma is_recfun_reflects:
wenzelm@13428
   266
  "REFLECTS[\<lambda>x. \<exists>xa[L]. \<exists>xb[L].
wenzelm@13428
   267
                pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
wenzelm@13428
   268
                (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
paulson@13323
   269
                                   fx \<noteq> gx),
wenzelm@13428
   270
   \<lambda>i x. \<exists>xa \<in> Lset(i). \<exists>xb \<in> Lset(i).
paulson@13807
   271
          pair(##Lset(i),x,a,xa) & xa \<in> r & pair(##Lset(i),x,b,xb) & xb \<in> r &
paulson@13807
   272
                (\<exists>fx \<in> Lset(i). \<exists>gx \<in> Lset(i). fun_apply(##Lset(i),f,x,fx) &
paulson@13807
   273
                  fun_apply(##Lset(i),g,x,gx) & fx \<noteq> gx)]"
paulson@13323
   274
by (intro FOL_reflections function_reflections fun_plus_reflections)
paulson@13323
   275
paulson@13323
   276
lemma is_recfun_separation:
wenzelm@61798
   277
     \<comment>\<open>for well-founded recursion\<close>
wenzelm@13428
   278
     "[| L(r); L(f); L(g); L(a); L(b) |]
wenzelm@13428
   279
     ==> separation(L,
wenzelm@13428
   280
            \<lambda>x. \<exists>xa[L]. \<exists>xb[L].
wenzelm@13428
   281
                pair(L,x,a,xa) & xa \<in> r & pair(L,x,b,xb) & xb \<in> r &
wenzelm@13428
   282
                (\<exists>fx[L]. \<exists>gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) &
paulson@13323
   283
                                   fx \<noteq> gx))"
paulson@13687
   284
apply (rule gen_separation_multi [OF is_recfun_reflects, of "{r,f,g,a,b}"], 
paulson@13687
   285
            auto)
paulson@13687
   286
apply (rule_tac env="[r,f,g,a,b]" in DPow_LsetI)
paulson@13323
   287
apply (rule sep_rules | simp)+
paulson@13323
   288
done
paulson@13323
   289
paulson@13323
   290
wenzelm@61798
   291
subsection\<open>Instantiating the locale \<open>M_basic\<close>\<close>
wenzelm@60770
   292
text\<open>Separation (and Strong Replacement) for basic set-theoretic constructions
wenzelm@60770
   293
such as intersection, Cartesian Product and image.\<close>
paulson@13363
   294
paulson@13564
   295
lemma M_basic_axioms_L: "M_basic_axioms(L)"
paulson@13564
   296
  apply (rule M_basic_axioms.intro)
paulson@13437
   297
       apply (assumption | rule
wenzelm@32960
   298
         Inter_separation Diff_separation cartprod_separation image_separation
wenzelm@32960
   299
         converse_separation restrict_separation
wenzelm@32960
   300
         comp_separation pred_separation Memrel_separation
wenzelm@32960
   301
         funspace_succ_replacement is_recfun_separation)+
wenzelm@13428
   302
  done
paulson@13323
   303
paulson@13564
   304
theorem M_basic_L: "PROP M_basic(L)"
paulson@13564
   305
by (rule M_basic.intro [OF M_trivial_L M_basic_axioms_L])
paulson@13437
   306
wenzelm@30729
   307
interpretation L?: M_basic L by (rule M_basic_L)
paulson@13323
   308
paulson@13323
   309
paulson@13306
   310
end