src/HOL/Auth/Message.ML
author paulson
Mon Aug 19 11:19:55 1996 +0200 (1996-08-19)
changeset 1913 2809adb15eb0
parent 1893 fa58f4a06f21
child 1929 f0839bab4b00
permissions -rw-r--r--
Renaming of functions, and tidying
paulson@1839
     1
(*  Title:      HOL/Auth/Message
paulson@1839
     2
    ID:         $Id$
paulson@1839
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1839
     4
    Copyright   1996  University of Cambridge
paulson@1839
     5
paulson@1839
     6
Datatypes of agents and messages;
paulson@1913
     7
Inductive relations "parts", "analz" and "synth"
paulson@1839
     8
*)
paulson@1839
     9
paulson@1839
    10
open Message;
paulson@1839
    11
paulson@1839
    12
paulson@1839
    13
(** Inverse of keys **)
paulson@1839
    14
paulson@1839
    15
goal thy "!!K K'. (invKey K = invKey K') = (K=K')";
paulson@1839
    16
by (Step_tac 1);
paulson@1839
    17
br box_equals 1;
paulson@1839
    18
by (REPEAT (rtac invKey 2));
paulson@1839
    19
by (Asm_simp_tac 1);
paulson@1839
    20
qed "invKey_eq";
paulson@1839
    21
paulson@1839
    22
Addsimps [invKey, invKey_eq];
paulson@1839
    23
paulson@1839
    24
paulson@1839
    25
(**** keysFor operator ****)
paulson@1839
    26
paulson@1839
    27
goalw thy [keysFor_def] "keysFor {} = {}";
paulson@1839
    28
by (Fast_tac 1);
paulson@1839
    29
qed "keysFor_empty";
paulson@1839
    30
paulson@1839
    31
goalw thy [keysFor_def] "keysFor (H Un H') = keysFor H Un keysFor H'";
paulson@1839
    32
by (Fast_tac 1);
paulson@1839
    33
qed "keysFor_Un";
paulson@1839
    34
paulson@1839
    35
goalw thy [keysFor_def] "keysFor (UN i. H i) = (UN i. keysFor (H i))";
paulson@1839
    36
by (Fast_tac 1);
paulson@1839
    37
qed "keysFor_UN";
paulson@1839
    38
paulson@1839
    39
(*Monotonicity*)
paulson@1839
    40
goalw thy [keysFor_def] "!!G H. G<=H ==> keysFor(G) <= keysFor(H)";
paulson@1839
    41
by (Fast_tac 1);
paulson@1839
    42
qed "keysFor_mono";
paulson@1839
    43
paulson@1839
    44
goalw thy [keysFor_def] "keysFor (insert (Agent A) H) = keysFor H";
paulson@1839
    45
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    46
qed "keysFor_insert_Agent";
paulson@1839
    47
paulson@1839
    48
goalw thy [keysFor_def] "keysFor (insert (Nonce N) H) = keysFor H";
paulson@1839
    49
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    50
qed "keysFor_insert_Nonce";
paulson@1839
    51
paulson@1839
    52
goalw thy [keysFor_def] "keysFor (insert (Key K) H) = keysFor H";
paulson@1839
    53
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    54
qed "keysFor_insert_Key";
paulson@1839
    55
paulson@1839
    56
goalw thy [keysFor_def] "keysFor (insert {|X,Y|} H) = keysFor H";
paulson@1839
    57
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    58
qed "keysFor_insert_MPair";
paulson@1839
    59
paulson@1839
    60
goalw thy [keysFor_def]
paulson@1839
    61
    "keysFor (insert (Crypt X K) H) = insert (invKey K) (keysFor H)";
paulson@1839
    62
by (Auto_tac());
paulson@1839
    63
by (fast_tac (!claset addIs [image_eqI]) 1);
paulson@1839
    64
qed "keysFor_insert_Crypt";
paulson@1839
    65
paulson@1839
    66
Addsimps [keysFor_empty, keysFor_Un, keysFor_UN, 
paulson@1839
    67
	  keysFor_insert_Agent, keysFor_insert_Nonce,
paulson@1839
    68
	  keysFor_insert_Key, keysFor_insert_MPair,
paulson@1839
    69
	  keysFor_insert_Crypt];
paulson@1839
    70
paulson@1839
    71
paulson@1839
    72
(**** Inductive relation "parts" ****)
paulson@1839
    73
paulson@1839
    74
val major::prems = 
paulson@1839
    75
goal thy "[| {|X,Y|} : parts H;       \
paulson@1839
    76
\            [| X : parts H; Y : parts H |] ==> P  \
paulson@1839
    77
\         |] ==> P";
paulson@1839
    78
by (cut_facts_tac [major] 1);
paulson@1839
    79
brs prems 1;
paulson@1839
    80
by (REPEAT (eresolve_tac [asm_rl, parts.Fst, parts.Snd] 1));
paulson@1839
    81
qed "MPair_parts";
paulson@1839
    82
paulson@1839
    83
AddIs  [parts.Inj];
paulson@1839
    84
AddSEs [MPair_parts];
paulson@1839
    85
AddDs  [parts.Body];
paulson@1839
    86
paulson@1839
    87
goal thy "H <= parts(H)";
paulson@1839
    88
by (Fast_tac 1);
paulson@1839
    89
qed "parts_increasing";
paulson@1839
    90
paulson@1839
    91
(*Monotonicity*)
paulson@1839
    92
goalw thy parts.defs "!!G H. G<=H ==> parts(G) <= parts(H)";
paulson@1839
    93
by (rtac lfp_mono 1);
paulson@1839
    94
by (REPEAT (ares_tac basic_monos 1));
paulson@1839
    95
qed "parts_mono";
paulson@1839
    96
paulson@1839
    97
goal thy "parts{} = {}";
paulson@1839
    98
by (Step_tac 1);
paulson@1839
    99
be parts.induct 1;
paulson@1839
   100
by (ALLGOALS Fast_tac);
paulson@1839
   101
qed "parts_empty";
paulson@1839
   102
Addsimps [parts_empty];
paulson@1839
   103
paulson@1839
   104
goal thy "!!X. X: parts{} ==> P";
paulson@1839
   105
by (Asm_full_simp_tac 1);
paulson@1839
   106
qed "parts_emptyE";
paulson@1839
   107
AddSEs [parts_emptyE];
paulson@1839
   108
paulson@1893
   109
(*WARNING: loops if H = {Y}, therefore must not be repeated!*)
paulson@1893
   110
goal thy "!!H. X: parts H ==> EX Y:H. X: parts {Y}";
paulson@1893
   111
be parts.induct 1;
paulson@1893
   112
by (ALLGOALS Fast_tac);
paulson@1893
   113
qed "parts_singleton";
paulson@1893
   114
paulson@1839
   115
paulson@1839
   116
(** Unions **)
paulson@1839
   117
paulson@1839
   118
goal thy "parts(G) Un parts(H) <= parts(G Un H)";
paulson@1839
   119
by (REPEAT (ares_tac [Un_least, parts_mono, Un_upper1, Un_upper2] 1));
paulson@1839
   120
val parts_Un_subset1 = result();
paulson@1839
   121
paulson@1839
   122
goal thy "parts(G Un H) <= parts(G) Un parts(H)";
paulson@1839
   123
br subsetI 1;
paulson@1839
   124
be parts.induct 1;
paulson@1839
   125
by (ALLGOALS Fast_tac);
paulson@1839
   126
val parts_Un_subset2 = result();
paulson@1839
   127
paulson@1839
   128
goal thy "parts(G Un H) = parts(G) Un parts(H)";
paulson@1839
   129
by (REPEAT (ares_tac [equalityI, parts_Un_subset1, parts_Un_subset2] 1));
paulson@1839
   130
qed "parts_Un";
paulson@1839
   131
paulson@1852
   132
(*TWO inserts to avoid looping.  This rewrite is better than nothing...*)
paulson@1852
   133
goal thy "parts (insert X (insert Y H)) = parts {X} Un parts {Y} Un parts H";
paulson@1852
   134
by (stac (read_instantiate [("A","H")] insert_is_Un) 1);
paulson@1852
   135
by (stac (read_instantiate [("A","{Y} Un H")] insert_is_Un) 1);
paulson@1852
   136
by (simp_tac (HOL_ss addsimps [parts_Un, Un_assoc]) 1);
paulson@1852
   137
qed "parts_insert2";
paulson@1852
   138
paulson@1839
   139
goal thy "(UN x:A. parts(H x)) <= parts(UN x:A. H x)";
paulson@1839
   140
by (REPEAT (ares_tac [UN_least, parts_mono, UN_upper] 1));
paulson@1839
   141
val parts_UN_subset1 = result();
paulson@1839
   142
paulson@1839
   143
goal thy "parts(UN x:A. H x) <= (UN x:A. parts(H x))";
paulson@1839
   144
br subsetI 1;
paulson@1839
   145
be parts.induct 1;
paulson@1839
   146
by (ALLGOALS Fast_tac);
paulson@1839
   147
val parts_UN_subset2 = result();
paulson@1839
   148
paulson@1839
   149
goal thy "parts(UN x:A. H x) = (UN x:A. parts(H x))";
paulson@1839
   150
by (REPEAT (ares_tac [equalityI, parts_UN_subset1, parts_UN_subset2] 1));
paulson@1839
   151
qed "parts_UN";
paulson@1839
   152
paulson@1839
   153
goal thy "parts(UN x. H x) = (UN x. parts(H x))";
paulson@1839
   154
by (simp_tac (!simpset addsimps [UNION1_def, parts_UN]) 1);
paulson@1839
   155
qed "parts_UN1";
paulson@1839
   156
paulson@1913
   157
(*Added to simplify arguments to parts, analz and synth*)
paulson@1839
   158
Addsimps [parts_Un, parts_UN, parts_UN1];
paulson@1839
   159
paulson@1839
   160
goal thy "insert X (parts H) <= parts(insert X H)";
paulson@1852
   161
by (fast_tac (!claset addEs [impOfSubs parts_mono]) 1);
paulson@1839
   162
qed "parts_insert_subset";
paulson@1839
   163
paulson@1839
   164
(*Especially for reasoning about the Fake rule in traces*)
paulson@1839
   165
goal thy "!!Y. X: G ==> parts(insert X H) <= parts G Un parts H";
paulson@1839
   166
br ([parts_mono, parts_Un_subset2] MRS subset_trans) 1;
paulson@1839
   167
by (Fast_tac 1);
paulson@1839
   168
qed "parts_insert_subset_Un";
paulson@1839
   169
paulson@1839
   170
(** Idempotence and transitivity **)
paulson@1839
   171
paulson@1839
   172
goal thy "!!H. X: parts (parts H) ==> X: parts H";
paulson@1839
   173
be parts.induct 1;
paulson@1839
   174
by (ALLGOALS Fast_tac);
paulson@1839
   175
qed "parts_partsE";
paulson@1839
   176
AddSEs [parts_partsE];
paulson@1839
   177
paulson@1839
   178
goal thy "parts (parts H) = parts H";
paulson@1839
   179
by (Fast_tac 1);
paulson@1839
   180
qed "parts_idem";
paulson@1839
   181
Addsimps [parts_idem];
paulson@1839
   182
paulson@1839
   183
goal thy "!!H. [| X: parts G;  G <= parts H |] ==> X: parts H";
paulson@1839
   184
by (dtac parts_mono 1);
paulson@1839
   185
by (Fast_tac 1);
paulson@1839
   186
qed "parts_trans";
paulson@1839
   187
paulson@1839
   188
(*Cut*)
paulson@1839
   189
goal thy "!!H. [| X: parts H;  Y: parts (insert X H) |] ==> Y: parts H";
paulson@1839
   190
be parts_trans 1;
paulson@1839
   191
by (Fast_tac 1);
paulson@1839
   192
qed "parts_cut";
paulson@1839
   193
paulson@1839
   194
paulson@1839
   195
(** Rewrite rules for pulling out atomic messages **)
paulson@1839
   196
paulson@1839
   197
goal thy "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)";
paulson@1839
   198
by (rtac (parts_insert_subset RSN (2, equalityI)) 1);
paulson@1839
   199
br subsetI 1;
paulson@1839
   200
be parts.induct 1;
paulson@1839
   201
(*Simplification breaks up equalities between messages;
paulson@1839
   202
  how to make it work for fast_tac??*)
paulson@1839
   203
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   204
qed "parts_insert_Agent";
paulson@1839
   205
paulson@1839
   206
goal thy "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)";
paulson@1839
   207
by (rtac (parts_insert_subset RSN (2, equalityI)) 1);
paulson@1839
   208
br subsetI 1;
paulson@1839
   209
be parts.induct 1;
paulson@1839
   210
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   211
qed "parts_insert_Nonce";
paulson@1839
   212
paulson@1839
   213
goal thy "parts (insert (Key K) H) = insert (Key K) (parts H)";
paulson@1839
   214
by (rtac (parts_insert_subset RSN (2, equalityI)) 1);
paulson@1839
   215
br subsetI 1;
paulson@1839
   216
be parts.induct 1;
paulson@1839
   217
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   218
qed "parts_insert_Key";
paulson@1839
   219
paulson@1839
   220
goal thy "parts (insert (Crypt X K) H) = \
paulson@1839
   221
\         insert (Crypt X K) (parts (insert X H))";
paulson@1839
   222
br equalityI 1;
paulson@1839
   223
br subsetI 1;
paulson@1839
   224
be parts.induct 1;
paulson@1839
   225
by (Auto_tac());
paulson@1839
   226
be parts.induct 1;
paulson@1839
   227
by (ALLGOALS (best_tac (!claset addIs [parts.Body])));
paulson@1839
   228
qed "parts_insert_Crypt";
paulson@1839
   229
paulson@1839
   230
goal thy "parts (insert {|X,Y|} H) = \
paulson@1839
   231
\         insert {|X,Y|} (parts (insert X (insert Y H)))";
paulson@1839
   232
br equalityI 1;
paulson@1839
   233
br subsetI 1;
paulson@1839
   234
be parts.induct 1;
paulson@1839
   235
by (Auto_tac());
paulson@1839
   236
be parts.induct 1;
paulson@1839
   237
by (ALLGOALS (best_tac (!claset addIs [parts.Fst, parts.Snd])));
paulson@1839
   238
qed "parts_insert_MPair";
paulson@1839
   239
paulson@1839
   240
Addsimps [parts_insert_Agent, parts_insert_Nonce, 
paulson@1839
   241
	  parts_insert_Key, parts_insert_Crypt, parts_insert_MPair];
paulson@1839
   242
paulson@1839
   243
paulson@1913
   244
(**** Inductive relation "analz" ****)
paulson@1839
   245
paulson@1839
   246
val major::prems = 
paulson@1913
   247
goal thy "[| {|X,Y|} : analz H;       \
paulson@1913
   248
\            [| X : analz H; Y : analz H |] ==> P  \
paulson@1839
   249
\         |] ==> P";
paulson@1839
   250
by (cut_facts_tac [major] 1);
paulson@1839
   251
brs prems 1;
paulson@1913
   252
by (REPEAT (eresolve_tac [asm_rl, analz.Fst, analz.Snd] 1));
paulson@1913
   253
qed "MPair_analz";
paulson@1839
   254
paulson@1913
   255
AddIs  [analz.Inj];
paulson@1913
   256
AddSEs [MPair_analz];
paulson@1913
   257
AddDs  [analz.Decrypt];
paulson@1839
   258
paulson@1913
   259
Addsimps [analz.Inj];
paulson@1885
   260
paulson@1913
   261
goal thy "H <= analz(H)";
paulson@1839
   262
by (Fast_tac 1);
paulson@1913
   263
qed "analz_increasing";
paulson@1839
   264
paulson@1913
   265
goal thy "analz H <= parts H";
paulson@1839
   266
by (rtac subsetI 1);
paulson@1913
   267
be analz.induct 1;
paulson@1839
   268
by (ALLGOALS Fast_tac);
paulson@1913
   269
qed "analz_subset_parts";
paulson@1839
   270
paulson@1913
   271
bind_thm ("not_parts_not_analz", analz_subset_parts RS contra_subsetD);
paulson@1839
   272
paulson@1839
   273
paulson@1913
   274
goal thy "parts (analz H) = parts H";
paulson@1839
   275
br equalityI 1;
paulson@1913
   276
br (analz_subset_parts RS parts_mono RS subset_trans) 1;
paulson@1839
   277
by (Simp_tac 1);
paulson@1913
   278
by (fast_tac (!claset addDs [analz_increasing RS parts_mono RS subsetD]) 1);
paulson@1913
   279
qed "parts_analz";
paulson@1913
   280
Addsimps [parts_analz];
paulson@1839
   281
paulson@1913
   282
goal thy "analz (parts H) = parts H";
paulson@1885
   283
by (Auto_tac());
paulson@1913
   284
be analz.induct 1;
paulson@1885
   285
by (Auto_tac());
paulson@1913
   286
qed "analz_parts";
paulson@1913
   287
Addsimps [analz_parts];
paulson@1885
   288
paulson@1839
   289
(*Monotonicity; Lemma 1 of Lowe*)
paulson@1913
   290
goalw thy analz.defs "!!G H. G<=H ==> analz(G) <= analz(H)";
paulson@1839
   291
by (rtac lfp_mono 1);
paulson@1839
   292
by (REPEAT (ares_tac basic_monos 1));
paulson@1913
   293
qed "analz_mono";
paulson@1839
   294
paulson@1839
   295
(** General equational properties **)
paulson@1839
   296
paulson@1913
   297
goal thy "analz{} = {}";
paulson@1839
   298
by (Step_tac 1);
paulson@1913
   299
be analz.induct 1;
paulson@1839
   300
by (ALLGOALS Fast_tac);
paulson@1913
   301
qed "analz_empty";
paulson@1913
   302
Addsimps [analz_empty];
paulson@1839
   303
paulson@1913
   304
(*Converse fails: we can analz more from the union than from the 
paulson@1839
   305
  separate parts, as a key in one might decrypt a message in the other*)
paulson@1913
   306
goal thy "analz(G) Un analz(H) <= analz(G Un H)";
paulson@1913
   307
by (REPEAT (ares_tac [Un_least, analz_mono, Un_upper1, Un_upper2] 1));
paulson@1913
   308
qed "analz_Un";
paulson@1839
   309
paulson@1913
   310
goal thy "insert X (analz H) <= analz(insert X H)";
paulson@1913
   311
by (fast_tac (!claset addEs [impOfSubs analz_mono]) 1);
paulson@1913
   312
qed "analz_insert";
paulson@1839
   313
paulson@1839
   314
(** Rewrite rules for pulling out atomic messages **)
paulson@1839
   315
paulson@1913
   316
goal thy "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)";
paulson@1913
   317
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@1839
   318
br subsetI 1;
paulson@1913
   319
be analz.induct 1;
paulson@1839
   320
(*Simplification breaks up equalities between messages;
paulson@1839
   321
  how to make it work for fast_tac??*)
paulson@1839
   322
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   323
qed "analz_insert_Agent";
paulson@1839
   324
paulson@1913
   325
goal thy "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)";
paulson@1913
   326
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@1839
   327
br subsetI 1;
paulson@1913
   328
be analz.induct 1;
paulson@1839
   329
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   330
qed "analz_insert_Nonce";
paulson@1839
   331
paulson@1839
   332
(*Can only pull out Keys if they are not needed to decrypt the rest*)
paulson@1839
   333
goalw thy [keysFor_def]
paulson@1913
   334
    "!!K. K ~: keysFor (analz H) ==>  \
paulson@1913
   335
\         analz (insert (Key K) H) = insert (Key K) (analz H)";
paulson@1913
   336
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@1839
   337
br subsetI 1;
paulson@1913
   338
be analz.induct 1;
paulson@1839
   339
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   340
qed "analz_insert_Key";
paulson@1839
   341
paulson@1913
   342
goal thy "analz (insert {|X,Y|} H) = \
paulson@1913
   343
\         insert {|X,Y|} (analz (insert X (insert Y H)))";
paulson@1885
   344
br equalityI 1;
paulson@1885
   345
br subsetI 1;
paulson@1913
   346
be analz.induct 1;
paulson@1885
   347
by (Auto_tac());
paulson@1913
   348
be analz.induct 1;
paulson@1913
   349
by (ALLGOALS (deepen_tac (!claset addIs [analz.Fst, analz.Snd, analz.Decrypt]) 0));
paulson@1913
   350
qed "analz_insert_MPair";
paulson@1885
   351
paulson@1885
   352
(*Can pull out enCrypted message if the Key is not known*)
paulson@1913
   353
goal thy "!!H. Key (invKey K) ~: analz H ==>  \
paulson@1913
   354
\              analz (insert (Crypt X K) H) = \
paulson@1913
   355
\              insert (Crypt X K) (analz H)";
paulson@1913
   356
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@1839
   357
br subsetI 1;
paulson@1913
   358
be analz.induct 1;
paulson@1839
   359
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   360
qed "analz_insert_Crypt";
paulson@1839
   361
paulson@1913
   362
goal thy "!!H. Key (invKey K) : analz H ==>  \
paulson@1913
   363
\              analz (insert (Crypt X K) H) <= \
paulson@1913
   364
\              insert (Crypt X K) (analz (insert X H))";
paulson@1839
   365
br subsetI 1;
paulson@1913
   366
by (eres_inst_tac [("za","x")] analz.induct 1);
paulson@1839
   367
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   368
val lemma1 = result();
paulson@1839
   369
paulson@1913
   370
goal thy "!!H. Key (invKey K) : analz H ==>  \
paulson@1913
   371
\              insert (Crypt X K) (analz (insert X H)) <= \
paulson@1913
   372
\              analz (insert (Crypt X K) H)";
paulson@1839
   373
by (Auto_tac());
paulson@1913
   374
by (eres_inst_tac [("za","x")] analz.induct 1);
paulson@1839
   375
by (Auto_tac());
paulson@1913
   376
by (best_tac (!claset addIs [subset_insertI RS analz_mono RS subsetD,
paulson@1913
   377
			     analz.Decrypt]) 1);
paulson@1839
   378
val lemma2 = result();
paulson@1839
   379
paulson@1913
   380
goal thy "!!H. Key (invKey K) : analz H ==>  \
paulson@1913
   381
\              analz (insert (Crypt X K) H) = \
paulson@1913
   382
\              insert (Crypt X K) (analz (insert X H))";
paulson@1839
   383
by (REPEAT (ares_tac [equalityI, lemma1, lemma2] 1));
paulson@1913
   384
qed "analz_insert_Decrypt";
paulson@1839
   385
paulson@1885
   386
(*Case analysis: either the message is secure, or it is not!
paulson@1885
   387
  Use with expand_if;  apparently split_tac does not cope with patterns
paulson@1913
   388
  such as "analz (insert (Crypt X' K) H)" *)
paulson@1913
   389
goal thy "analz (insert (Crypt X' K) H) = \
paulson@1913
   390
\         (if (Key (invKey K)  : analz H) then    \
paulson@1913
   391
\               insert (Crypt X' K) (analz (insert X' H)) \
paulson@1913
   392
\          else insert (Crypt X' K) (analz H))";
paulson@1913
   393
by (excluded_middle_tac "Key (invKey K)  : analz H " 1);
paulson@1913
   394
by (ALLGOALS (asm_simp_tac (!simpset addsimps [analz_insert_Crypt, 
paulson@1913
   395
					       analz_insert_Decrypt])));
paulson@1913
   396
qed "analz_Crypt_if";
paulson@1885
   397
paulson@1913
   398
Addsimps [analz_insert_Agent, analz_insert_Nonce, 
paulson@1913
   399
	  analz_insert_Key, analz_insert_MPair, 
paulson@1913
   400
	  analz_Crypt_if];
paulson@1839
   401
paulson@1839
   402
(*This rule supposes "for the sake of argument" that we have the key.*)
paulson@1913
   403
goal thy  "analz (insert (Crypt X K) H) <=  \
paulson@1913
   404
\          insert (Crypt X K) (analz (insert X H))";
paulson@1839
   405
br subsetI 1;
paulson@1913
   406
be analz.induct 1;
paulson@1839
   407
by (Auto_tac());
paulson@1913
   408
qed "analz_insert_Crypt_subset";
paulson@1839
   409
paulson@1839
   410
paulson@1839
   411
(** Idempotence and transitivity **)
paulson@1839
   412
paulson@1913
   413
goal thy "!!H. X: analz (analz H) ==> X: analz H";
paulson@1913
   414
be analz.induct 1;
paulson@1839
   415
by (ALLGOALS Fast_tac);
paulson@1913
   416
qed "analz_analzE";
paulson@1913
   417
AddSEs [analz_analzE];
paulson@1839
   418
paulson@1913
   419
goal thy "analz (analz H) = analz H";
paulson@1839
   420
by (Fast_tac 1);
paulson@1913
   421
qed "analz_idem";
paulson@1913
   422
Addsimps [analz_idem];
paulson@1839
   423
paulson@1913
   424
goal thy "!!H. [| X: analz G;  G <= analz H |] ==> X: analz H";
paulson@1913
   425
by (dtac analz_mono 1);
paulson@1839
   426
by (Fast_tac 1);
paulson@1913
   427
qed "analz_trans";
paulson@1839
   428
paulson@1839
   429
(*Cut; Lemma 2 of Lowe*)
paulson@1913
   430
goal thy "!!H. [| X: analz H;  Y: analz (insert X H) |] ==> Y: analz H";
paulson@1913
   431
be analz_trans 1;
paulson@1839
   432
by (Fast_tac 1);
paulson@1913
   433
qed "analz_cut";
paulson@1839
   434
paulson@1839
   435
(*Cut can be proved easily by induction on
paulson@1913
   436
   "!!H. Y: analz (insert X H) ==> X: analz H --> Y: analz H"
paulson@1839
   437
*)
paulson@1839
   438
paulson@1885
   439
paulson@1913
   440
(** A congruence rule for "analz" **)
paulson@1885
   441
paulson@1913
   442
goal thy "!!H. [| analz G <= analz G'; analz H <= analz H' \
paulson@1913
   443
\              |] ==> analz (G Un H) <= analz (G' Un H')";
paulson@1885
   444
by (Step_tac 1);
paulson@1913
   445
be analz.induct 1;
paulson@1913
   446
by (ALLGOALS (best_tac (!claset addIs [analz_mono RS subsetD])));
paulson@1913
   447
qed "analz_subset_cong";
paulson@1885
   448
paulson@1913
   449
goal thy "!!H. [| analz G = analz G'; analz H = analz H' \
paulson@1913
   450
\              |] ==> analz (G Un H) = analz (G' Un H')";
paulson@1913
   451
by (REPEAT_FIRST (ares_tac [equalityI, analz_subset_cong]
paulson@1885
   452
	  ORELSE' etac equalityE));
paulson@1913
   453
qed "analz_cong";
paulson@1885
   454
paulson@1885
   455
paulson@1913
   456
goal thy "!!H. analz H = analz H' ==> analz(insert X H) = analz(insert X H')";
paulson@1885
   457
by (asm_simp_tac (!simpset addsimps [insert_def] 
paulson@1913
   458
		           setloop (rtac analz_cong)) 1);
paulson@1913
   459
qed "analz_insert_cong";
paulson@1885
   460
paulson@1913
   461
(*If there are no pairs or encryptions then analz does nothing*)
paulson@1839
   462
goal thy "!!H. [| ALL X Y. {|X,Y|} ~: H;  ALL X K. Crypt X K ~: H |] ==> \
paulson@1913
   463
\         analz H = H";
paulson@1839
   464
by (Step_tac 1);
paulson@1913
   465
be analz.induct 1;
paulson@1839
   466
by (ALLGOALS Fast_tac);
paulson@1913
   467
qed "analz_trivial";
paulson@1839
   468
paulson@1839
   469
(*Helps to prove Fake cases*)
paulson@1913
   470
goal thy "!!X. X: analz (UN i. analz (H i)) ==> X: analz (UN i. H i)";
paulson@1913
   471
be analz.induct 1;
paulson@1913
   472
by (ALLGOALS (fast_tac (!claset addEs [impOfSubs analz_mono])));
paulson@1839
   473
val lemma = result();
paulson@1839
   474
paulson@1913
   475
goal thy "analz (UN i. analz (H i)) = analz (UN i. H i)";
paulson@1839
   476
by (fast_tac (!claset addIs [lemma]
paulson@1913
   477
		      addEs [impOfSubs analz_mono]) 1);
paulson@1913
   478
qed "analz_UN_analz";
paulson@1913
   479
Addsimps [analz_UN_analz];
paulson@1839
   480
paulson@1839
   481
paulson@1913
   482
(**** Inductive relation "synth" ****)
paulson@1839
   483
paulson@1913
   484
AddIs  synth.intrs;
paulson@1839
   485
paulson@1913
   486
goal thy "H <= synth(H)";
paulson@1839
   487
by (Fast_tac 1);
paulson@1913
   488
qed "synth_increasing";
paulson@1839
   489
paulson@1839
   490
(*Monotonicity*)
paulson@1913
   491
goalw thy synth.defs "!!G H. G<=H ==> synth(G) <= synth(H)";
paulson@1839
   492
by (rtac lfp_mono 1);
paulson@1839
   493
by (REPEAT (ares_tac basic_monos 1));
paulson@1913
   494
qed "synth_mono";
paulson@1839
   495
paulson@1839
   496
(** Unions **)
paulson@1839
   497
paulson@1913
   498
(*Converse fails: we can synth more from the union than from the 
paulson@1839
   499
  separate parts, building a compound message using elements of each.*)
paulson@1913
   500
goal thy "synth(G) Un synth(H) <= synth(G Un H)";
paulson@1913
   501
by (REPEAT (ares_tac [Un_least, synth_mono, Un_upper1, Un_upper2] 1));
paulson@1913
   502
qed "synth_Un";
paulson@1839
   503
paulson@1913
   504
goal thy "insert X (synth H) <= synth(insert X H)";
paulson@1913
   505
by (fast_tac (!claset addEs [impOfSubs synth_mono]) 1);
paulson@1913
   506
qed "synth_insert";
paulson@1885
   507
paulson@1839
   508
(** Idempotence and transitivity **)
paulson@1839
   509
paulson@1913
   510
goal thy "!!H. X: synth (synth H) ==> X: synth H";
paulson@1913
   511
be synth.induct 1;
paulson@1839
   512
by (ALLGOALS Fast_tac);
paulson@1913
   513
qed "synth_synthE";
paulson@1913
   514
AddSEs [synth_synthE];
paulson@1839
   515
paulson@1913
   516
goal thy "synth (synth H) = synth H";
paulson@1839
   517
by (Fast_tac 1);
paulson@1913
   518
qed "synth_idem";
paulson@1839
   519
paulson@1913
   520
goal thy "!!H. [| X: synth G;  G <= synth H |] ==> X: synth H";
paulson@1913
   521
by (dtac synth_mono 1);
paulson@1839
   522
by (Fast_tac 1);
paulson@1913
   523
qed "synth_trans";
paulson@1839
   524
paulson@1839
   525
(*Cut; Lemma 2 of Lowe*)
paulson@1913
   526
goal thy "!!H. [| X: synth H;  Y: synth (insert X H) |] ==> Y: synth H";
paulson@1913
   527
be synth_trans 1;
paulson@1839
   528
by (Fast_tac 1);
paulson@1913
   529
qed "synth_cut";
paulson@1839
   530
paulson@1839
   531
paulson@1839
   532
(*Can only produce a nonce or key if it is already known,
paulson@1913
   533
  but can synth a pair or encryption from its components...*)
paulson@1913
   534
val mk_cases = synth.mk_cases msg.simps;
paulson@1839
   535
paulson@1913
   536
(*NO Agent_synth, as any Agent name can be synthd*)
paulson@1913
   537
val Nonce_synth = mk_cases "Nonce n : synth H";
paulson@1913
   538
val Key_synth   = mk_cases "Key K : synth H";
paulson@1913
   539
val MPair_synth = mk_cases "{|X,Y|} : synth H";
paulson@1913
   540
val Crypt_synth = mk_cases "Crypt X K : synth H";
paulson@1839
   541
paulson@1913
   542
AddSEs [Nonce_synth, Key_synth, MPair_synth, Crypt_synth];
paulson@1839
   543
paulson@1913
   544
goal thy "(Nonce N : synth H) = (Nonce N : H)";
paulson@1839
   545
by (Fast_tac 1);
paulson@1913
   546
qed "Nonce_synth_eq";
paulson@1839
   547
paulson@1913
   548
goal thy "(Key K : synth H) = (Key K : H)";
paulson@1839
   549
by (Fast_tac 1);
paulson@1913
   550
qed "Key_synth_eq";
paulson@1839
   551
paulson@1913
   552
Addsimps [Nonce_synth_eq, Key_synth_eq];
paulson@1839
   553
paulson@1839
   554
paulson@1839
   555
goalw thy [keysFor_def]
paulson@1913
   556
    "keysFor (synth H) = keysFor H Un invKey``{K. Key K : H}";
paulson@1839
   557
by (Fast_tac 1);
paulson@1913
   558
qed "keysFor_synth";
paulson@1913
   559
Addsimps [keysFor_synth];
paulson@1839
   560
paulson@1839
   561
paulson@1913
   562
(*** Combinations of parts, analz and synth ***)
paulson@1839
   563
paulson@1913
   564
goal thy "parts (synth H) = parts H Un synth H";
paulson@1839
   565
br equalityI 1;
paulson@1839
   566
br subsetI 1;
paulson@1839
   567
be parts.induct 1;
paulson@1839
   568
by (ALLGOALS
paulson@1913
   569
    (best_tac (!claset addIs ((synth_increasing RS parts_mono RS subsetD)
paulson@1839
   570
			     ::parts.intrs))));
paulson@1913
   571
qed "parts_synth";
paulson@1913
   572
Addsimps [parts_synth];
paulson@1839
   573
paulson@1913
   574
goal thy "analz (synth H) = analz H Un synth H";
paulson@1839
   575
br equalityI 1;
paulson@1839
   576
br subsetI 1;
paulson@1913
   577
be analz.induct 1;
paulson@1839
   578
by (best_tac
paulson@1913
   579
    (!claset addIs [synth_increasing RS analz_mono RS subsetD]) 5);
paulson@1839
   580
(*Strange that best_tac just can't hack this one...*)
paulson@1913
   581
by (ALLGOALS (deepen_tac (!claset addIs analz.intrs) 0));
paulson@1913
   582
qed "analz_synth";
paulson@1913
   583
Addsimps [analz_synth];
paulson@1839
   584
paulson@1839
   585
(*Hard to prove; still needed now that there's only one Enemy?*)
paulson@1913
   586
goal thy "analz (UN i. synth (H i)) = \
paulson@1913
   587
\         analz (UN i. H i) Un (UN i. synth (H i))";
paulson@1839
   588
br equalityI 1;
paulson@1839
   589
br subsetI 1;
paulson@1913
   590
be analz.induct 1;
paulson@1839
   591
by (best_tac
paulson@1913
   592
    (!claset addEs [impOfSubs synth_increasing,
paulson@1913
   593
		    impOfSubs analz_mono]) 5);
paulson@1839
   594
by (Best_tac 1);
paulson@1913
   595
by (deepen_tac (!claset addIs [analz.Fst]) 0 1);
paulson@1913
   596
by (deepen_tac (!claset addIs [analz.Snd]) 0 1);
paulson@1913
   597
by (deepen_tac (!claset addSEs [analz.Decrypt]
paulson@1913
   598
			addIs  [analz.Decrypt]) 0 1);
paulson@1913
   599
qed "analz_UN1_synth";
paulson@1913
   600
Addsimps [analz_UN1_synth];