src/HOL/UNITY/UNITY.ML
author paulson
Thu Apr 29 10:51:58 1999 +0200 (1999-04-29)
changeset 6536 281d44905cab
parent 6535 880f31a62784
child 6712 d1bebb7f1c50
permissions -rw-r--r--
made many specification operators infix
paulson@4776
     1
(*  Title:      HOL/UNITY/UNITY
paulson@4776
     2
    ID:         $Id$
paulson@4776
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@4776
     4
    Copyright   1998  University of Cambridge
paulson@4776
     5
paulson@4776
     6
The basic UNITY theory (revised version, based upon the "co" operator)
paulson@4776
     7
paulson@4776
     8
From Misra, "A Logic for Concurrent Programming", 1994
paulson@4776
     9
*)
paulson@4776
    10
paulson@4776
    11
set proof_timing;
paulson@4776
    12
HOL_quantifiers := false;
paulson@4776
    13
paulson@4776
    14
paulson@6012
    15
(*** General lemmas ***)
paulson@6012
    16
paulson@6012
    17
Goal "UNIV Times UNIV = UNIV";
paulson@6012
    18
by Auto_tac;
paulson@6012
    19
qed "UNIV_Times_UNIV"; 
paulson@6012
    20
Addsimps [UNIV_Times_UNIV];
paulson@6012
    21
paulson@6012
    22
Goal "- (UNIV Times A) = UNIV Times (-A)";
paulson@6012
    23
by Auto_tac;
paulson@6012
    24
qed "Compl_Times_UNIV1"; 
paulson@6012
    25
paulson@6012
    26
Goal "- (A Times UNIV) = (-A) Times UNIV";
paulson@6012
    27
by Auto_tac;
paulson@6012
    28
qed "Compl_Times_UNIV2"; 
paulson@6012
    29
paulson@6012
    30
Addsimps [Compl_Times_UNIV1, Compl_Times_UNIV2]; 
paulson@6012
    31
paulson@6012
    32
paulson@6535
    33
(*** The abstract type of programs ***)
paulson@6535
    34
paulson@6535
    35
val rep_ss = simpset() addsimps 
paulson@6535
    36
                [Init_def, Acts_def, mk_program_def, Program_def, Rep_Program, 
paulson@6535
    37
		 Rep_Program_inverse, Abs_Program_inverse];
paulson@6535
    38
paulson@6535
    39
paulson@6535
    40
Goal "Id : Acts F";
paulson@6535
    41
by (cut_inst_tac [("x", "F")] Rep_Program 1);
paulson@6535
    42
by (auto_tac (claset(), rep_ss));
paulson@6535
    43
qed "Id_in_Acts";
paulson@6535
    44
AddIffs [Id_in_Acts];
paulson@6535
    45
paulson@6535
    46
Goal "insert Id (Acts F) = Acts F";
paulson@6535
    47
by (simp_tac (simpset() addsimps [insert_absorb, Id_in_Acts]) 1);
paulson@6535
    48
qed "insert_Id_Acts";
paulson@6535
    49
AddIffs [insert_Id_Acts];
paulson@6535
    50
paulson@6535
    51
(** Inspectors for type "program" **)
paulson@6535
    52
paulson@6535
    53
Goal "Init (mk_program (init,acts)) = init";
paulson@6535
    54
by (auto_tac (claset(), rep_ss));
paulson@6535
    55
qed "Init_eq";
paulson@6535
    56
paulson@6535
    57
Goal "Acts (mk_program (init,acts)) = insert Id acts";
paulson@6535
    58
by (auto_tac (claset(), rep_ss));
paulson@6535
    59
qed "Acts_eq";
paulson@6535
    60
paulson@6535
    61
Addsimps [Acts_eq, Init_eq];
paulson@6535
    62
paulson@6535
    63
paulson@6535
    64
(** The notation of equality for type "program" **)
paulson@6535
    65
paulson@6535
    66
Goal "[| Init F = Init G; Acts F = Acts G |] ==> F = G";
paulson@6535
    67
by (subgoals_tac ["EX x. Rep_Program F = x",
paulson@6535
    68
		  "EX x. Rep_Program G = x"] 1);
paulson@6535
    69
by (REPEAT (Blast_tac 2));
paulson@6535
    70
by (Clarify_tac 1);
paulson@6535
    71
by (auto_tac (claset(), rep_ss));
paulson@6535
    72
by (REPEAT (dres_inst_tac [("f", "Abs_Program")] arg_cong 1));
paulson@6535
    73
by (asm_full_simp_tac rep_ss 1);
paulson@6535
    74
qed "program_equalityI";
paulson@6535
    75
paulson@6535
    76
val [major,minor] =
paulson@6535
    77
Goal "[| F = G; [| Init F = Init G; Acts F = Acts G |] ==> P |] ==> P";
paulson@6535
    78
by (rtac minor 1);
paulson@6535
    79
by (auto_tac (claset(), simpset() addsimps [major]));
paulson@6535
    80
qed "program_equalityE";
paulson@6535
    81
paulson@6535
    82
paulson@6535
    83
(*** These rules allow "lazy" definition expansion 
paulson@6535
    84
     They avoid expanding the full program, which is a large expression
paulson@6535
    85
***)
paulson@6535
    86
paulson@6535
    87
Goal "F == mk_program (init,acts) ==> Init F = init";
paulson@6535
    88
by Auto_tac;
paulson@6535
    89
qed "def_prg_Init";
paulson@6535
    90
paulson@6535
    91
(*The program is not expanded, but its Init and Acts are*)
paulson@6535
    92
val [rew] = goal thy
paulson@6535
    93
    "[| F == mk_program (init,acts) |] \
paulson@6535
    94
\    ==> Init F = init & Acts F = insert Id acts";
paulson@6535
    95
by (rewtac rew);
paulson@6535
    96
by Auto_tac;
paulson@6535
    97
qed "def_prg_simps";
paulson@6535
    98
paulson@6535
    99
(*An action is expanded only if a pair of states is being tested against it*)
paulson@6535
   100
Goal "[| act == {(s,s'). P s s'} |] ==> ((s,s') : act) = P s s'";
paulson@6535
   101
by Auto_tac;
paulson@6535
   102
qed "def_act_simp";
paulson@6535
   103
paulson@6535
   104
fun simp_of_act def = def RS def_act_simp;
paulson@6535
   105
paulson@6535
   106
(*A set is expanded only if an element is being tested against it*)
paulson@6535
   107
Goal "A == B ==> (x : A) = (x : B)";
paulson@6535
   108
by Auto_tac;
paulson@6535
   109
qed "def_set_simp";
paulson@6535
   110
paulson@6535
   111
fun simp_of_set def = def RS def_set_simp;
paulson@6535
   112
paulson@6535
   113
paulson@6536
   114
(*** co ***)
paulson@4776
   115
paulson@6536
   116
overload_1st_set "UNITY.op co";
paulson@5648
   117
overload_1st_set "UNITY.stable";
paulson@5648
   118
overload_1st_set "UNITY.unless";
paulson@5340
   119
paulson@5277
   120
val prems = Goalw [constrains_def]
paulson@5648
   121
    "(!!act s s'. [| act: Acts F;  (s,s') : act;  s: A |] ==> s': A') \
paulson@6536
   122
\    ==> F : A co A'";
paulson@4776
   123
by (blast_tac (claset() addIs prems) 1);
paulson@4776
   124
qed "constrainsI";
paulson@4776
   125
wenzelm@5069
   126
Goalw [constrains_def]
paulson@6536
   127
    "[| F : A co A'; act: Acts F;  (s,s'): act;  s: A |] ==> s': A'";
paulson@4776
   128
by (Blast_tac 1);
paulson@4776
   129
qed "constrainsD";
paulson@4776
   130
paulson@6536
   131
Goalw [constrains_def] "F : {} co B";
paulson@4776
   132
by (Blast_tac 1);
paulson@4776
   133
qed "constrains_empty";
paulson@4776
   134
paulson@6536
   135
Goalw [constrains_def] "F : A co UNIV";
paulson@4776
   136
by (Blast_tac 1);
paulson@4776
   137
qed "constrains_UNIV";
paulson@4776
   138
AddIffs [constrains_empty, constrains_UNIV];
paulson@4776
   139
paulson@5648
   140
(*monotonic in 2nd argument*)
wenzelm@5069
   141
Goalw [constrains_def]
paulson@6536
   142
    "[| F : A co A'; A'<=B' |] ==> F : A co B'";
paulson@4776
   143
by (Blast_tac 1);
paulson@4776
   144
qed "constrains_weaken_R";
paulson@4776
   145
paulson@5648
   146
(*anti-monotonic in 1st argument*)
wenzelm@5069
   147
Goalw [constrains_def]
paulson@6536
   148
    "[| F : A co A'; B<=A |] ==> F : B co A'";
paulson@4776
   149
by (Blast_tac 1);
paulson@4776
   150
qed "constrains_weaken_L";
paulson@4776
   151
wenzelm@5069
   152
Goalw [constrains_def]
paulson@6536
   153
   "[| F : A co A'; B<=A; A'<=B' |] ==> F : B co B'";
paulson@4776
   154
by (Blast_tac 1);
paulson@4776
   155
qed "constrains_weaken";
paulson@4776
   156
paulson@4776
   157
(** Union **)
paulson@4776
   158
wenzelm@5069
   159
Goalw [constrains_def]
paulson@6536
   160
    "[| F : A co A'; F : B co B' |]   \
paulson@6536
   161
\    ==> F : (A Un B) co (A' Un B')";
paulson@4776
   162
by (Blast_tac 1);
paulson@4776
   163
qed "constrains_Un";
paulson@4776
   164
wenzelm@5069
   165
Goalw [constrains_def]
paulson@6536
   166
    "ALL i:I. F : (A i) co (A' i) \
paulson@6536
   167
\    ==> F : (UN i:I. A i) co (UN i:I. A' i)";
paulson@4776
   168
by (Blast_tac 1);
paulson@4776
   169
qed "ball_constrains_UN";
paulson@4776
   170
paulson@4776
   171
(** Intersection **)
paulson@4776
   172
wenzelm@5069
   173
Goalw [constrains_def]
paulson@6536
   174
    "[| F : A co A'; F : B co B' |]   \
paulson@6536
   175
\    ==> F : (A Int B) co (A' Int B')";
paulson@4776
   176
by (Blast_tac 1);
paulson@4776
   177
qed "constrains_Int";
paulson@4776
   178
wenzelm@5069
   179
Goalw [constrains_def]
paulson@6536
   180
    "ALL i:I. F : (A i) co (A' i) \
paulson@6536
   181
\    ==> F : (INT i:I. A i) co (INT i:I. A' i)";
paulson@4776
   182
by (Blast_tac 1);
paulson@4776
   183
qed "ball_constrains_INT";
paulson@4776
   184
paulson@6536
   185
Goalw [constrains_def] "F : A co A' ==> A <= A'";
paulson@6295
   186
by Auto_tac;
paulson@5277
   187
qed "constrains_imp_subset";
paulson@4776
   188
paulson@6536
   189
(*The reasoning is by subsets since "co" refers to single actions
paulson@6012
   190
  only.  So this rule isn't that useful.*)
paulson@6295
   191
Goalw [constrains_def]
paulson@6536
   192
    "[| F : A co B; F : B co C |] ==> F : A co C";
paulson@6295
   193
by (Blast_tac 1);
paulson@5277
   194
qed "constrains_trans";
paulson@4776
   195
paulson@6295
   196
Goalw [constrains_def]
paulson@6536
   197
   "[| F : A co (A' Un B); F : B co B' |] \
paulson@6536
   198
\   ==> F : A co (A' Un B')";
paulson@6295
   199
by (Clarify_tac 1);
paulson@6295
   200
by (Blast_tac 1);
paulson@6012
   201
qed "constrains_cancel";
paulson@6012
   202
paulson@4776
   203
paulson@4776
   204
(*** stable ***)
paulson@4776
   205
paulson@6536
   206
Goalw [stable_def] "F : A co A ==> F : stable A";
paulson@4776
   207
by (assume_tac 1);
paulson@4776
   208
qed "stableI";
paulson@4776
   209
paulson@6536
   210
Goalw [stable_def] "F : stable A ==> F : A co A";
paulson@4776
   211
by (assume_tac 1);
paulson@4776
   212
qed "stableD";
paulson@4776
   213
paulson@5804
   214
(** Union **)
paulson@5804
   215
wenzelm@5069
   216
Goalw [stable_def]
paulson@5648
   217
    "[| F : stable A; F : stable A' |] ==> F : stable (A Un A')";
paulson@4776
   218
by (blast_tac (claset() addIs [constrains_Un]) 1);
paulson@4776
   219
qed "stable_Un";
paulson@4776
   220
wenzelm@5069
   221
Goalw [stable_def]
paulson@5804
   222
    "ALL i:I. F : stable (A i) ==> F : stable (UN i:I. A i)";
paulson@5804
   223
by (blast_tac (claset() addIs [ball_constrains_UN]) 1);
paulson@5804
   224
qed "ball_stable_UN";
paulson@5804
   225
paulson@5804
   226
(** Intersection **)
paulson@5804
   227
paulson@5804
   228
Goalw [stable_def]
paulson@5648
   229
    "[| F : stable A; F : stable A' |] ==> F : stable (A Int A')";
paulson@4776
   230
by (blast_tac (claset() addIs [constrains_Int]) 1);
paulson@4776
   231
qed "stable_Int";
paulson@4776
   232
paulson@5804
   233
Goalw [stable_def]
paulson@5804
   234
    "ALL i:I. F : stable (A i) ==> F : stable (INT i:I. A i)";
paulson@5804
   235
by (blast_tac (claset() addIs [ball_constrains_INT]) 1);
paulson@5804
   236
qed "ball_stable_INT";
paulson@5804
   237
paulson@5277
   238
Goalw [stable_def, constrains_def]
paulson@6536
   239
    "[| F : stable C; F : A co (C Un A') |]   \
paulson@6536
   240
\    ==> F : (C Un A) co (C Un A')";
paulson@4776
   241
by (Blast_tac 1);
paulson@5277
   242
qed "stable_constrains_Un";
paulson@4776
   243
paulson@5277
   244
Goalw [stable_def, constrains_def]
paulson@6536
   245
    "[| F : stable C; F :  (C Int A) co  A' |]   \
paulson@6536
   246
\    ==> F : (C Int A) co (C Int A')";
paulson@4776
   247
by (Blast_tac 1);
paulson@5277
   248
qed "stable_constrains_Int";
paulson@4776
   249
paulson@6536
   250
(*[| F : stable C; F :  co (C Int A) A |] ==> F : stable (C Int A)*)
paulson@5648
   251
bind_thm ("stable_constrains_stable", stable_constrains_Int RS stableI);
paulson@5648
   252
paulson@5648
   253
paulson@5804
   254
(*** invariant ***)
paulson@5648
   255
paulson@5648
   256
Goal "[| Init F<=A;  F: stable A |] ==> F : invariant A";
paulson@5648
   257
by (asm_simp_tac (simpset() addsimps [invariant_def]) 1);
paulson@5648
   258
qed "invariantI";
paulson@5648
   259
paulson@5648
   260
(*Could also say "invariant A Int invariant B <= invariant (A Int B)"*)
paulson@5648
   261
Goal "[| F : invariant A;  F : invariant B |] ==> F : invariant (A Int B)";
paulson@5648
   262
by (auto_tac (claset(), simpset() addsimps [invariant_def, stable_Int]));
paulson@5648
   263
qed "invariant_Int";
paulson@5648
   264
paulson@5648
   265
paulson@5648
   266
(*** increasing ***)
paulson@5648
   267
paulson@5648
   268
Goalw [increasing_def, stable_def, constrains_def]
paulson@5648
   269
     "increasing f <= increasing (length o f)";
paulson@5648
   270
by Auto_tac;
paulson@5648
   271
by (blast_tac (claset() addIs [prefix_length_le, le_trans]) 1);
paulson@5804
   272
qed "increasing_size";
paulson@5648
   273
paulson@5648
   274
Goalw [increasing_def]
paulson@5648
   275
     "increasing f <= {F. ALL z::nat. F: stable {s. z < f s}}";
paulson@5648
   276
by (simp_tac (simpset() addsimps [Suc_le_eq RS sym]) 1);
paulson@5648
   277
by (Blast_tac 1);
paulson@5804
   278
qed "increasing_stable_less";
paulson@5648
   279
paulson@5648
   280
paulson@5648
   281
(** The Elimination Theorem.  The "free" m has become universally quantified!
paulson@5648
   282
    Should the premise be !!m instead of ALL m ?  Would make it harder to use
paulson@5648
   283
    in forward proof. **)
paulson@5648
   284
wenzelm@5069
   285
Goalw [constrains_def]
paulson@6536
   286
    "[| ALL m:M. F : {s. s x = m} co (B m) |] \
paulson@6536
   287
\    ==> F : {s. s x : M} co (UN m:M. B m)";
paulson@4776
   288
by (Blast_tac 1);
paulson@4776
   289
qed "elimination";
paulson@4776
   290
paulson@4776
   291
(*As above, but for the trivial case of a one-variable state, in which the
paulson@4776
   292
  state is identified with its one variable.*)
wenzelm@5069
   293
Goalw [constrains_def]
paulson@6536
   294
    "(ALL m:M. F : {m} co (B m)) ==> F : M co (UN m:M. B m)";
paulson@4776
   295
by (Blast_tac 1);
paulson@4776
   296
qed "elimination_sing";
paulson@4776
   297
paulson@4776
   298
paulson@4776
   299
paulson@4776
   300
(*** Theoretical Results from Section 6 ***)
paulson@4776
   301
wenzelm@5069
   302
Goalw [constrains_def, strongest_rhs_def]
paulson@6536
   303
    "F : A co (strongest_rhs F A )";
paulson@4776
   304
by (Blast_tac 1);
paulson@4776
   305
qed "constrains_strongest_rhs";
paulson@4776
   306
wenzelm@5069
   307
Goalw [constrains_def, strongest_rhs_def]
paulson@6536
   308
    "F : A co B ==> strongest_rhs F A <= B";
paulson@4776
   309
by (Blast_tac 1);
paulson@4776
   310
qed "strongest_rhs_is_strongest";