src/HOL/NatBin.thy
author huffman
Mon Feb 23 16:25:52 2009 -0800 (2009-02-23)
changeset 30079 293b896b9c25
parent 29958 6d84e2f9f5cf
child 30081 46b9c8ae3897
permissions -rw-r--r--
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
wenzelm@23164
     1
(*  Title:      HOL/NatBin.thy
wenzelm@23164
     2
    ID:         $Id$
wenzelm@23164
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@23164
     4
    Copyright   1999  University of Cambridge
wenzelm@23164
     5
*)
wenzelm@23164
     6
wenzelm@23164
     7
header {* Binary arithmetic for the natural numbers *}
wenzelm@23164
     8
wenzelm@23164
     9
theory NatBin
wenzelm@23164
    10
imports IntDiv
wenzelm@23164
    11
begin
wenzelm@23164
    12
wenzelm@23164
    13
text {*
wenzelm@23164
    14
  Arithmetic for naturals is reduced to that for the non-negative integers.
wenzelm@23164
    15
*}
wenzelm@23164
    16
haftmann@25571
    17
instantiation nat :: number
haftmann@25571
    18
begin
haftmann@25571
    19
haftmann@25571
    20
definition
haftmann@28562
    21
  nat_number_of_def [code inline, code del]: "number_of v = nat (number_of v)"
haftmann@25571
    22
haftmann@25571
    23
instance ..
haftmann@25571
    24
haftmann@25571
    25
end
wenzelm@23164
    26
haftmann@25965
    27
lemma [code post]:
haftmann@25965
    28
  "nat (number_of v) = number_of v"
haftmann@25965
    29
  unfolding nat_number_of_def ..
haftmann@25965
    30
wenzelm@23164
    31
abbreviation (xsymbols)
huffman@29401
    32
  power2 :: "'a::power => 'a"  ("(_\<twosuperior>)" [1000] 999) where
wenzelm@23164
    33
  "x\<twosuperior> == x^2"
wenzelm@23164
    34
wenzelm@23164
    35
notation (latex output)
huffman@29401
    36
  power2  ("(_\<twosuperior>)" [1000] 999)
wenzelm@23164
    37
wenzelm@23164
    38
notation (HTML output)
huffman@29401
    39
  power2  ("(_\<twosuperior>)" [1000] 999)
wenzelm@23164
    40
wenzelm@23164
    41
huffman@29040
    42
subsection {* Predicate for negative binary numbers *}
huffman@29040
    43
huffman@29040
    44
definition
huffman@29040
    45
  neg  :: "int \<Rightarrow> bool"
huffman@29040
    46
where
huffman@29040
    47
  "neg Z \<longleftrightarrow> Z < 0"
huffman@29040
    48
huffman@29040
    49
lemma not_neg_int [simp]: "~ neg (of_nat n)"
huffman@29040
    50
by (simp add: neg_def)
huffman@29040
    51
huffman@29040
    52
lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"
huffman@29040
    53
by (simp add: neg_def neg_less_0_iff_less del: of_nat_Suc)
huffman@29040
    54
huffman@29040
    55
lemmas neg_eq_less_0 = neg_def
huffman@29040
    56
huffman@29040
    57
lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"
huffman@29040
    58
by (simp add: neg_def linorder_not_less)
huffman@29040
    59
huffman@29040
    60
text{*To simplify inequalities when Numeral1 can get simplified to 1*}
huffman@29040
    61
huffman@29040
    62
lemma not_neg_0: "~ neg 0"
huffman@29040
    63
by (simp add: One_int_def neg_def)
huffman@29040
    64
huffman@29040
    65
lemma not_neg_1: "~ neg 1"
huffman@29040
    66
by (simp add: neg_def linorder_not_less zero_le_one)
huffman@29040
    67
huffman@29040
    68
lemma neg_nat: "neg z ==> nat z = 0"
huffman@29040
    69
by (simp add: neg_def order_less_imp_le) 
huffman@29040
    70
huffman@29040
    71
lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"
huffman@29040
    72
by (simp add: linorder_not_less neg_def)
huffman@29040
    73
huffman@29040
    74
text {*
huffman@29040
    75
  If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
huffman@29040
    76
  @{term Numeral0} IS @{term "number_of Pls"}
huffman@29040
    77
*}
huffman@29040
    78
huffman@29040
    79
lemma not_neg_number_of_Pls: "~ neg (number_of Int.Pls)"
huffman@29040
    80
  by (simp add: neg_def)
huffman@29040
    81
huffman@29040
    82
lemma neg_number_of_Min: "neg (number_of Int.Min)"
huffman@29040
    83
  by (simp add: neg_def)
huffman@29040
    84
huffman@29040
    85
lemma neg_number_of_Bit0:
huffman@29040
    86
  "neg (number_of (Int.Bit0 w)) = neg (number_of w)"
huffman@29040
    87
  by (simp add: neg_def)
huffman@29040
    88
huffman@29040
    89
lemma neg_number_of_Bit1:
huffman@29040
    90
  "neg (number_of (Int.Bit1 w)) = neg (number_of w)"
huffman@29040
    91
  by (simp add: neg_def)
huffman@29040
    92
huffman@29040
    93
lemmas neg_simps [simp] =
huffman@29040
    94
  not_neg_0 not_neg_1
huffman@29040
    95
  not_neg_number_of_Pls neg_number_of_Min
huffman@29040
    96
  neg_number_of_Bit0 neg_number_of_Bit1
huffman@29040
    97
huffman@29040
    98
wenzelm@23164
    99
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
wenzelm@23164
   100
wenzelm@23164
   101
declare nat_0 [simp] nat_1 [simp]
wenzelm@23164
   102
wenzelm@23164
   103
lemma nat_number_of [simp]: "nat (number_of w) = number_of w"
wenzelm@23164
   104
by (simp add: nat_number_of_def)
wenzelm@23164
   105
wenzelm@23164
   106
lemma nat_numeral_0_eq_0 [simp]: "Numeral0 = (0::nat)"
wenzelm@23164
   107
by (simp add: nat_number_of_def)
wenzelm@23164
   108
wenzelm@23164
   109
lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)"
wenzelm@23164
   110
by (simp add: nat_1 nat_number_of_def)
wenzelm@23164
   111
wenzelm@23164
   112
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0"
wenzelm@23164
   113
by (simp add: nat_numeral_1_eq_1)
wenzelm@23164
   114
wenzelm@23164
   115
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
wenzelm@23164
   116
apply (unfold nat_number_of_def)
wenzelm@23164
   117
apply (rule nat_2)
wenzelm@23164
   118
done
wenzelm@23164
   119
wenzelm@23164
   120
wenzelm@23164
   121
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
wenzelm@23164
   122
wenzelm@23164
   123
lemma int_nat_number_of [simp]:
huffman@23365
   124
     "int (number_of v) =  
huffman@23307
   125
         (if neg (number_of v :: int) then 0  
huffman@23307
   126
          else (number_of v :: int))"
huffman@28984
   127
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28984
   128
  by simp
huffman@23307
   129
wenzelm@23164
   130
wenzelm@23164
   131
subsubsection{*Successor *}
wenzelm@23164
   132
wenzelm@23164
   133
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
wenzelm@23164
   134
apply (rule sym)
wenzelm@23164
   135
apply (simp add: nat_eq_iff int_Suc)
wenzelm@23164
   136
done
wenzelm@23164
   137
wenzelm@23164
   138
lemma Suc_nat_number_of_add:
wenzelm@23164
   139
     "Suc (number_of v + n) =  
huffman@28984
   140
        (if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)"
huffman@28984
   141
  unfolding nat_number_of_def number_of_is_id neg_def numeral_simps
huffman@28984
   142
  by (simp add: Suc_nat_eq_nat_zadd1 add_ac)
wenzelm@23164
   143
wenzelm@23164
   144
lemma Suc_nat_number_of [simp]:
wenzelm@23164
   145
     "Suc (number_of v) =  
haftmann@25919
   146
        (if neg (number_of v :: int) then 1 else number_of (Int.succ v))"
wenzelm@23164
   147
apply (cut_tac n = 0 in Suc_nat_number_of_add)
wenzelm@23164
   148
apply (simp cong del: if_weak_cong)
wenzelm@23164
   149
done
wenzelm@23164
   150
wenzelm@23164
   151
wenzelm@23164
   152
subsubsection{*Addition *}
wenzelm@23164
   153
wenzelm@23164
   154
lemma add_nat_number_of [simp]:
wenzelm@23164
   155
     "(number_of v :: nat) + number_of v' =  
huffman@29012
   156
         (if v < Int.Pls then number_of v'  
huffman@29012
   157
          else if v' < Int.Pls then number_of v  
wenzelm@23164
   158
          else number_of (v + v'))"
huffman@29012
   159
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@28984
   160
  by (simp add: nat_add_distrib)
wenzelm@23164
   161
wenzelm@23164
   162
wenzelm@23164
   163
subsubsection{*Subtraction *}
wenzelm@23164
   164
wenzelm@23164
   165
lemma diff_nat_eq_if:
wenzelm@23164
   166
     "nat z - nat z' =  
wenzelm@23164
   167
        (if neg z' then nat z   
wenzelm@23164
   168
         else let d = z-z' in     
wenzelm@23164
   169
              if neg d then 0 else nat d)"
haftmann@27651
   170
by (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0)
haftmann@27651
   171
wenzelm@23164
   172
wenzelm@23164
   173
lemma diff_nat_number_of [simp]: 
wenzelm@23164
   174
     "(number_of v :: nat) - number_of v' =  
huffman@29012
   175
        (if v' < Int.Pls then number_of v  
wenzelm@23164
   176
         else let d = number_of (v + uminus v') in     
wenzelm@23164
   177
              if neg d then 0 else nat d)"
huffman@29012
   178
  unfolding nat_number_of_def number_of_is_id numeral_simps neg_def
huffman@29012
   179
  by auto
wenzelm@23164
   180
wenzelm@23164
   181
wenzelm@23164
   182
subsubsection{*Multiplication *}
wenzelm@23164
   183
wenzelm@23164
   184
lemma mult_nat_number_of [simp]:
wenzelm@23164
   185
     "(number_of v :: nat) * number_of v' =  
huffman@29012
   186
       (if v < Int.Pls then 0 else number_of (v * v'))"
huffman@29012
   187
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@28984
   188
  by (simp add: nat_mult_distrib)
wenzelm@23164
   189
wenzelm@23164
   190
wenzelm@23164
   191
subsubsection{*Quotient *}
wenzelm@23164
   192
wenzelm@23164
   193
lemma div_nat_number_of [simp]:
wenzelm@23164
   194
     "(number_of v :: nat)  div  number_of v' =  
wenzelm@23164
   195
          (if neg (number_of v :: int) then 0  
wenzelm@23164
   196
           else nat (number_of v div number_of v'))"
huffman@28984
   197
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28984
   198
  by (simp add: nat_div_distrib)
wenzelm@23164
   199
wenzelm@23164
   200
lemma one_div_nat_number_of [simp]:
haftmann@27651
   201
     "Suc 0 div number_of v' = nat (1 div number_of v')" 
wenzelm@23164
   202
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
wenzelm@23164
   203
wenzelm@23164
   204
wenzelm@23164
   205
subsubsection{*Remainder *}
wenzelm@23164
   206
wenzelm@23164
   207
lemma mod_nat_number_of [simp]:
wenzelm@23164
   208
     "(number_of v :: nat)  mod  number_of v' =  
wenzelm@23164
   209
        (if neg (number_of v :: int) then 0  
wenzelm@23164
   210
         else if neg (number_of v' :: int) then number_of v  
wenzelm@23164
   211
         else nat (number_of v mod number_of v'))"
huffman@28984
   212
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28984
   213
  by (simp add: nat_mod_distrib)
wenzelm@23164
   214
wenzelm@23164
   215
lemma one_mod_nat_number_of [simp]:
haftmann@27651
   216
     "Suc 0 mod number_of v' =  
wenzelm@23164
   217
        (if neg (number_of v' :: int) then Suc 0
wenzelm@23164
   218
         else nat (1 mod number_of v'))"
wenzelm@23164
   219
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
wenzelm@23164
   220
wenzelm@23164
   221
wenzelm@23164
   222
subsubsection{* Divisibility *}
wenzelm@23164
   223
wenzelm@23164
   224
lemmas dvd_eq_mod_eq_0_number_of =
wenzelm@23164
   225
  dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard]
wenzelm@23164
   226
wenzelm@23164
   227
declare dvd_eq_mod_eq_0_number_of [simp]
wenzelm@23164
   228
wenzelm@23164
   229
ML
wenzelm@23164
   230
{*
wenzelm@23164
   231
val nat_number_of_def = thm"nat_number_of_def";
wenzelm@23164
   232
wenzelm@23164
   233
val nat_number_of = thm"nat_number_of";
wenzelm@23164
   234
val nat_numeral_0_eq_0 = thm"nat_numeral_0_eq_0";
wenzelm@23164
   235
val nat_numeral_1_eq_1 = thm"nat_numeral_1_eq_1";
wenzelm@23164
   236
val numeral_1_eq_Suc_0 = thm"numeral_1_eq_Suc_0";
wenzelm@23164
   237
val numeral_2_eq_2 = thm"numeral_2_eq_2";
wenzelm@23164
   238
val nat_div_distrib = thm"nat_div_distrib";
wenzelm@23164
   239
val nat_mod_distrib = thm"nat_mod_distrib";
wenzelm@23164
   240
val int_nat_number_of = thm"int_nat_number_of";
wenzelm@23164
   241
val Suc_nat_eq_nat_zadd1 = thm"Suc_nat_eq_nat_zadd1";
wenzelm@23164
   242
val Suc_nat_number_of_add = thm"Suc_nat_number_of_add";
wenzelm@23164
   243
val Suc_nat_number_of = thm"Suc_nat_number_of";
wenzelm@23164
   244
val add_nat_number_of = thm"add_nat_number_of";
wenzelm@23164
   245
val diff_nat_eq_if = thm"diff_nat_eq_if";
wenzelm@23164
   246
val diff_nat_number_of = thm"diff_nat_number_of";
wenzelm@23164
   247
val mult_nat_number_of = thm"mult_nat_number_of";
wenzelm@23164
   248
val div_nat_number_of = thm"div_nat_number_of";
wenzelm@23164
   249
val mod_nat_number_of = thm"mod_nat_number_of";
wenzelm@23164
   250
*}
wenzelm@23164
   251
wenzelm@23164
   252
wenzelm@23164
   253
subsection{*Comparisons*}
wenzelm@23164
   254
wenzelm@23164
   255
subsubsection{*Equals (=) *}
wenzelm@23164
   256
wenzelm@23164
   257
lemma eq_nat_nat_iff:
wenzelm@23164
   258
     "[| (0::int) <= z;  0 <= z' |] ==> (nat z = nat z') = (z=z')"
wenzelm@23164
   259
by (auto elim!: nonneg_eq_int)
wenzelm@23164
   260
wenzelm@23164
   261
lemma eq_nat_number_of [simp]:
wenzelm@23164
   262
     "((number_of v :: nat) = number_of v') =  
huffman@28969
   263
      (if neg (number_of v :: int) then (number_of v' :: int) \<le> 0
huffman@28969
   264
       else if neg (number_of v' :: int) then (number_of v :: int) = 0
huffman@28969
   265
       else v = v')"
huffman@28969
   266
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28969
   267
  by auto
wenzelm@23164
   268
wenzelm@23164
   269
wenzelm@23164
   270
subsubsection{*Less-than (<) *}
wenzelm@23164
   271
wenzelm@23164
   272
lemma less_nat_number_of [simp]:
huffman@29011
   273
  "(number_of v :: nat) < number_of v' \<longleftrightarrow>
huffman@29011
   274
    (if v < v' then Int.Pls < v' else False)"
huffman@29011
   275
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@28961
   276
  by auto
wenzelm@23164
   277
wenzelm@23164
   278
huffman@29010
   279
subsubsection{*Less-than-or-equal *}
huffman@29010
   280
huffman@29010
   281
lemma le_nat_number_of [simp]:
huffman@29010
   282
  "(number_of v :: nat) \<le> number_of v' \<longleftrightarrow>
huffman@29010
   283
    (if v \<le> v' then True else v \<le> Int.Pls)"
huffman@29010
   284
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@29010
   285
  by auto
huffman@29010
   286
wenzelm@23164
   287
(*Maps #n to n for n = 0, 1, 2*)
wenzelm@23164
   288
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2
wenzelm@23164
   289
wenzelm@23164
   290
wenzelm@23164
   291
subsection{*Powers with Numeric Exponents*}
wenzelm@23164
   292
wenzelm@23164
   293
text{*We cannot refer to the number @{term 2} in @{text Ring_and_Field.thy}.
wenzelm@23164
   294
We cannot prove general results about the numeral @{term "-1"}, so we have to
wenzelm@23164
   295
use @{term "- 1"} instead.*}
wenzelm@23164
   296
huffman@23277
   297
lemma power2_eq_square: "(a::'a::recpower)\<twosuperior> = a * a"
wenzelm@23164
   298
  by (simp add: numeral_2_eq_2 Power.power_Suc)
wenzelm@23164
   299
huffman@23277
   300
lemma zero_power2 [simp]: "(0::'a::{semiring_1,recpower})\<twosuperior> = 0"
wenzelm@23164
   301
  by (simp add: power2_eq_square)
wenzelm@23164
   302
huffman@23277
   303
lemma one_power2 [simp]: "(1::'a::{semiring_1,recpower})\<twosuperior> = 1"
wenzelm@23164
   304
  by (simp add: power2_eq_square)
wenzelm@23164
   305
wenzelm@23164
   306
lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x"
wenzelm@23164
   307
  apply (subgoal_tac "3 = Suc (Suc (Suc 0))")
wenzelm@23164
   308
  apply (erule ssubst)
wenzelm@23164
   309
  apply (simp add: power_Suc mult_ac)
wenzelm@23164
   310
  apply (unfold nat_number_of_def)
wenzelm@23164
   311
  apply (subst nat_eq_iff)
wenzelm@23164
   312
  apply simp
wenzelm@23164
   313
done
wenzelm@23164
   314
wenzelm@23164
   315
text{*Squares of literal numerals will be evaluated.*}
wenzelm@23164
   316
lemmas power2_eq_square_number_of =
wenzelm@23164
   317
    power2_eq_square [of "number_of w", standard]
wenzelm@23164
   318
declare power2_eq_square_number_of [simp]
wenzelm@23164
   319
wenzelm@23164
   320
wenzelm@23164
   321
lemma zero_le_power2[simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_idom,recpower})"
wenzelm@23164
   322
  by (simp add: power2_eq_square)
wenzelm@23164
   323
wenzelm@23164
   324
lemma zero_less_power2[simp]:
wenzelm@23164
   325
     "(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_idom,recpower}))"
wenzelm@23164
   326
  by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)
wenzelm@23164
   327
wenzelm@23164
   328
lemma power2_less_0[simp]:
wenzelm@23164
   329
  fixes a :: "'a::{ordered_idom,recpower}"
wenzelm@23164
   330
  shows "~ (a\<twosuperior> < 0)"
wenzelm@23164
   331
by (force simp add: power2_eq_square mult_less_0_iff) 
wenzelm@23164
   332
wenzelm@23164
   333
lemma zero_eq_power2[simp]:
wenzelm@23164
   334
     "(a\<twosuperior> = 0) = (a = (0::'a::{ordered_idom,recpower}))"
wenzelm@23164
   335
  by (force simp add: power2_eq_square mult_eq_0_iff)
wenzelm@23164
   336
wenzelm@23164
   337
lemma abs_power2[simp]:
wenzelm@23164
   338
     "abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_idom,recpower})"
wenzelm@23164
   339
  by (simp add: power2_eq_square abs_mult abs_mult_self)
wenzelm@23164
   340
wenzelm@23164
   341
lemma power2_abs[simp]:
wenzelm@23164
   342
     "(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_idom,recpower})"
wenzelm@23164
   343
  by (simp add: power2_eq_square abs_mult_self)
wenzelm@23164
   344
wenzelm@23164
   345
lemma power2_minus[simp]:
wenzelm@23164
   346
     "(- a)\<twosuperior> = (a\<twosuperior>::'a::{comm_ring_1,recpower})"
wenzelm@23164
   347
  by (simp add: power2_eq_square)
wenzelm@23164
   348
wenzelm@23164
   349
lemma power2_le_imp_le:
wenzelm@23164
   350
  fixes x y :: "'a::{ordered_semidom,recpower}"
wenzelm@23164
   351
  shows "\<lbrakk>x\<twosuperior> \<le> y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x \<le> y"
wenzelm@23164
   352
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)
wenzelm@23164
   353
wenzelm@23164
   354
lemma power2_less_imp_less:
wenzelm@23164
   355
  fixes x y :: "'a::{ordered_semidom,recpower}"
wenzelm@23164
   356
  shows "\<lbrakk>x\<twosuperior> < y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x < y"
wenzelm@23164
   357
by (rule power_less_imp_less_base)
wenzelm@23164
   358
wenzelm@23164
   359
lemma power2_eq_imp_eq:
wenzelm@23164
   360
  fixes x y :: "'a::{ordered_semidom,recpower}"
wenzelm@23164
   361
  shows "\<lbrakk>x\<twosuperior> = y\<twosuperior>; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> x = y"
wenzelm@23164
   362
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base, simp)
wenzelm@23164
   363
wenzelm@23164
   364
lemma power_minus1_even[simp]: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})"
paulson@29958
   365
proof (induct n)
paulson@29958
   366
  case 0 show ?case by simp
paulson@29958
   367
next
paulson@29958
   368
  case (Suc n) then show ?case by (simp add: power_Suc power_add)
paulson@29958
   369
qed
paulson@29958
   370
paulson@29958
   371
lemma power_minus1_odd: "(- 1) ^ Suc(2*n) = -(1::'a::{comm_ring_1,recpower})"
paulson@29958
   372
  by (simp add: power_Suc) 
wenzelm@23164
   373
wenzelm@23164
   374
lemma power_even_eq: "(a::'a::recpower) ^ (2*n) = (a^n)^2"
wenzelm@23164
   375
by (subst mult_commute) (simp add: power_mult)
wenzelm@23164
   376
wenzelm@23164
   377
lemma power_odd_eq: "(a::int) ^ Suc(2*n) = a * (a^n)^2"
wenzelm@23164
   378
by (simp add: power_even_eq) 
wenzelm@23164
   379
wenzelm@23164
   380
lemma power_minus_even [simp]:
wenzelm@23164
   381
     "(-a) ^ (2*n) = (a::'a::{comm_ring_1,recpower}) ^ (2*n)"
wenzelm@23164
   382
by (simp add: power_minus1_even power_minus [of a]) 
wenzelm@23164
   383
wenzelm@23164
   384
lemma zero_le_even_power'[simp]:
wenzelm@23164
   385
     "0 \<le> (a::'a::{ordered_idom,recpower}) ^ (2*n)"
wenzelm@23164
   386
proof (induct "n")
wenzelm@23164
   387
  case 0
wenzelm@23164
   388
    show ?case by (simp add: zero_le_one)
wenzelm@23164
   389
next
wenzelm@23164
   390
  case (Suc n)
wenzelm@23164
   391
    have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" 
wenzelm@23164
   392
      by (simp add: mult_ac power_add power2_eq_square)
wenzelm@23164
   393
    thus ?case
wenzelm@23164
   394
      by (simp add: prems zero_le_mult_iff)
wenzelm@23164
   395
qed
wenzelm@23164
   396
wenzelm@23164
   397
lemma odd_power_less_zero:
wenzelm@23164
   398
     "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0"
wenzelm@23164
   399
proof (induct "n")
wenzelm@23164
   400
  case 0
wenzelm@23389
   401
  then show ?case by (simp add: Power.power_Suc)
wenzelm@23164
   402
next
wenzelm@23164
   403
  case (Suc n)
wenzelm@23389
   404
  have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" 
wenzelm@23389
   405
    by (simp add: mult_ac power_add power2_eq_square Power.power_Suc)
wenzelm@23389
   406
  thus ?case
wenzelm@23389
   407
    by (simp add: prems mult_less_0_iff mult_neg_neg)
wenzelm@23164
   408
qed
wenzelm@23164
   409
wenzelm@23164
   410
lemma odd_0_le_power_imp_0_le:
wenzelm@23164
   411
     "0 \<le> a  ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_idom,recpower})"
wenzelm@23164
   412
apply (insert odd_power_less_zero [of a n]) 
wenzelm@23164
   413
apply (force simp add: linorder_not_less [symmetric]) 
wenzelm@23164
   414
done
wenzelm@23164
   415
wenzelm@23164
   416
text{*Simprules for comparisons where common factors can be cancelled.*}
wenzelm@23164
   417
lemmas zero_compare_simps =
wenzelm@23164
   418
    add_strict_increasing add_strict_increasing2 add_increasing
wenzelm@23164
   419
    zero_le_mult_iff zero_le_divide_iff 
wenzelm@23164
   420
    zero_less_mult_iff zero_less_divide_iff 
wenzelm@23164
   421
    mult_le_0_iff divide_le_0_iff 
wenzelm@23164
   422
    mult_less_0_iff divide_less_0_iff 
wenzelm@23164
   423
    zero_le_power2 power2_less_0
wenzelm@23164
   424
wenzelm@23164
   425
subsubsection{*Nat *}
wenzelm@23164
   426
wenzelm@23164
   427
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
wenzelm@23164
   428
by (simp add: numerals)
wenzelm@23164
   429
wenzelm@23164
   430
(*Expresses a natural number constant as the Suc of another one.
wenzelm@23164
   431
  NOT suitable for rewriting because n recurs in the condition.*)
wenzelm@23164
   432
lemmas expand_Suc = Suc_pred' [of "number_of v", standard]
wenzelm@23164
   433
wenzelm@23164
   434
subsubsection{*Arith *}
wenzelm@23164
   435
wenzelm@23164
   436
lemma Suc_eq_add_numeral_1: "Suc n = n + 1"
wenzelm@23164
   437
by (simp add: numerals)
wenzelm@23164
   438
wenzelm@23164
   439
lemma Suc_eq_add_numeral_1_left: "Suc n = 1 + n"
wenzelm@23164
   440
by (simp add: numerals)
wenzelm@23164
   441
wenzelm@23164
   442
(* These two can be useful when m = number_of... *)
wenzelm@23164
   443
wenzelm@23164
   444
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
huffman@30079
   445
  unfolding One_nat_def by (cases m) simp_all
wenzelm@23164
   446
wenzelm@23164
   447
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
huffman@30079
   448
  unfolding One_nat_def by (cases m) simp_all
wenzelm@23164
   449
wenzelm@23164
   450
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"
huffman@30079
   451
  unfolding One_nat_def by (cases m) simp_all
wenzelm@23164
   452
wenzelm@23164
   453
wenzelm@23164
   454
subsection{*Comparisons involving (0::nat) *}
wenzelm@23164
   455
wenzelm@23164
   456
text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
wenzelm@23164
   457
wenzelm@23164
   458
lemma eq_number_of_0 [simp]:
huffman@29012
   459
  "number_of v = (0::nat) \<longleftrightarrow> v \<le> Int.Pls"
huffman@29012
   460
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@29012
   461
  by auto
wenzelm@23164
   462
wenzelm@23164
   463
lemma eq_0_number_of [simp]:
huffman@29012
   464
  "(0::nat) = number_of v \<longleftrightarrow> v \<le> Int.Pls"
wenzelm@23164
   465
by (rule trans [OF eq_sym_conv eq_number_of_0])
wenzelm@23164
   466
wenzelm@23164
   467
lemma less_0_number_of [simp]:
huffman@29012
   468
   "(0::nat) < number_of v \<longleftrightarrow> Int.Pls < v"
huffman@29012
   469
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@29012
   470
  by simp
wenzelm@23164
   471
wenzelm@23164
   472
lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)"
huffman@28969
   473
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric])
wenzelm@23164
   474
wenzelm@23164
   475
wenzelm@23164
   476
wenzelm@23164
   477
subsection{*Comparisons involving  @{term Suc} *}
wenzelm@23164
   478
wenzelm@23164
   479
lemma eq_number_of_Suc [simp]:
wenzelm@23164
   480
     "(number_of v = Suc n) =  
haftmann@25919
   481
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   482
         if neg pv then False else nat pv = n)"
wenzelm@23164
   483
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less 
wenzelm@23164
   484
                  number_of_pred nat_number_of_def 
wenzelm@23164
   485
            split add: split_if)
wenzelm@23164
   486
apply (rule_tac x = "number_of v" in spec)
wenzelm@23164
   487
apply (auto simp add: nat_eq_iff)
wenzelm@23164
   488
done
wenzelm@23164
   489
wenzelm@23164
   490
lemma Suc_eq_number_of [simp]:
wenzelm@23164
   491
     "(Suc n = number_of v) =  
haftmann@25919
   492
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   493
         if neg pv then False else nat pv = n)"
wenzelm@23164
   494
by (rule trans [OF eq_sym_conv eq_number_of_Suc])
wenzelm@23164
   495
wenzelm@23164
   496
lemma less_number_of_Suc [simp]:
wenzelm@23164
   497
     "(number_of v < Suc n) =  
haftmann@25919
   498
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   499
         if neg pv then True else nat pv < n)"
wenzelm@23164
   500
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less 
wenzelm@23164
   501
                  number_of_pred nat_number_of_def  
wenzelm@23164
   502
            split add: split_if)
wenzelm@23164
   503
apply (rule_tac x = "number_of v" in spec)
wenzelm@23164
   504
apply (auto simp add: nat_less_iff)
wenzelm@23164
   505
done
wenzelm@23164
   506
wenzelm@23164
   507
lemma less_Suc_number_of [simp]:
wenzelm@23164
   508
     "(Suc n < number_of v) =  
haftmann@25919
   509
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   510
         if neg pv then False else n < nat pv)"
wenzelm@23164
   511
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less 
wenzelm@23164
   512
                  number_of_pred nat_number_of_def
wenzelm@23164
   513
            split add: split_if)
wenzelm@23164
   514
apply (rule_tac x = "number_of v" in spec)
wenzelm@23164
   515
apply (auto simp add: zless_nat_eq_int_zless)
wenzelm@23164
   516
done
wenzelm@23164
   517
wenzelm@23164
   518
lemma le_number_of_Suc [simp]:
wenzelm@23164
   519
     "(number_of v <= Suc n) =  
haftmann@25919
   520
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   521
         if neg pv then True else nat pv <= n)"
wenzelm@23164
   522
by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric])
wenzelm@23164
   523
wenzelm@23164
   524
lemma le_Suc_number_of [simp]:
wenzelm@23164
   525
     "(Suc n <= number_of v) =  
haftmann@25919
   526
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   527
         if neg pv then False else n <= nat pv)"
wenzelm@23164
   528
by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric])
wenzelm@23164
   529
wenzelm@23164
   530
haftmann@25919
   531
lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min"
wenzelm@23164
   532
by auto
wenzelm@23164
   533
wenzelm@23164
   534
wenzelm@23164
   535
wenzelm@23164
   536
subsection{*Max and Min Combined with @{term Suc} *}
wenzelm@23164
   537
wenzelm@23164
   538
lemma max_number_of_Suc [simp]:
wenzelm@23164
   539
     "max (Suc n) (number_of v) =  
haftmann@25919
   540
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   541
         if neg pv then Suc n else Suc(max n (nat pv)))"
wenzelm@23164
   542
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   543
            split add: split_if nat.split)
wenzelm@23164
   544
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   545
apply auto
wenzelm@23164
   546
done
wenzelm@23164
   547
 
wenzelm@23164
   548
lemma max_Suc_number_of [simp]:
wenzelm@23164
   549
     "max (number_of v) (Suc n) =  
haftmann@25919
   550
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   551
         if neg pv then Suc n else Suc(max (nat pv) n))"
wenzelm@23164
   552
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   553
            split add: split_if nat.split)
wenzelm@23164
   554
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   555
apply auto
wenzelm@23164
   556
done
wenzelm@23164
   557
 
wenzelm@23164
   558
lemma min_number_of_Suc [simp]:
wenzelm@23164
   559
     "min (Suc n) (number_of v) =  
haftmann@25919
   560
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   561
         if neg pv then 0 else Suc(min n (nat pv)))"
wenzelm@23164
   562
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   563
            split add: split_if nat.split)
wenzelm@23164
   564
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   565
apply auto
wenzelm@23164
   566
done
wenzelm@23164
   567
 
wenzelm@23164
   568
lemma min_Suc_number_of [simp]:
wenzelm@23164
   569
     "min (number_of v) (Suc n) =  
haftmann@25919
   570
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   571
         if neg pv then 0 else Suc(min (nat pv) n))"
wenzelm@23164
   572
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   573
            split add: split_if nat.split)
wenzelm@23164
   574
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   575
apply auto
wenzelm@23164
   576
done
wenzelm@23164
   577
 
wenzelm@23164
   578
subsection{*Literal arithmetic involving powers*}
wenzelm@23164
   579
wenzelm@23164
   580
lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n"
wenzelm@23164
   581
apply (induct "n")
wenzelm@23164
   582
apply (simp_all (no_asm_simp) add: nat_mult_distrib)
wenzelm@23164
   583
done
wenzelm@23164
   584
wenzelm@23164
   585
lemma power_nat_number_of:
wenzelm@23164
   586
     "(number_of v :: nat) ^ n =  
wenzelm@23164
   587
       (if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))"
wenzelm@23164
   588
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq
wenzelm@23164
   589
         split add: split_if cong: imp_cong)
wenzelm@23164
   590
wenzelm@23164
   591
wenzelm@23164
   592
lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard]
wenzelm@23164
   593
declare power_nat_number_of_number_of [simp]
wenzelm@23164
   594
wenzelm@23164
   595
wenzelm@23164
   596
huffman@23294
   597
text{*For arbitrary rings*}
wenzelm@23164
   598
huffman@23294
   599
lemma power_number_of_even:
huffman@23294
   600
  fixes z :: "'a::{number_ring,recpower}"
huffman@26086
   601
  shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)"
huffman@26086
   602
unfolding Let_def nat_number_of_def number_of_Bit0
wenzelm@23164
   603
apply (rule_tac x = "number_of w" in spec, clarify)
wenzelm@23164
   604
apply (case_tac " (0::int) <= x")
wenzelm@23164
   605
apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square)
wenzelm@23164
   606
done
wenzelm@23164
   607
huffman@23294
   608
lemma power_number_of_odd:
huffman@23294
   609
  fixes z :: "'a::{number_ring,recpower}"
huffman@26086
   610
  shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w
wenzelm@23164
   611
     then (let w = z ^ (number_of w) in z * w * w) else 1)"
huffman@26086
   612
unfolding Let_def nat_number_of_def number_of_Bit1
wenzelm@23164
   613
apply (rule_tac x = "number_of w" in spec, auto)
wenzelm@23164
   614
apply (simp only: nat_add_distrib nat_mult_distrib)
wenzelm@23164
   615
apply simp
huffman@23294
   616
apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc)
wenzelm@23164
   617
done
wenzelm@23164
   618
huffman@23294
   619
lemmas zpower_number_of_even = power_number_of_even [where 'a=int]
huffman@23294
   620
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int]
wenzelm@23164
   621
huffman@23294
   622
lemmas power_number_of_even_number_of [simp] =
huffman@23294
   623
    power_number_of_even [of "number_of v", standard]
wenzelm@23164
   624
huffman@23294
   625
lemmas power_number_of_odd_number_of [simp] =
huffman@23294
   626
    power_number_of_odd [of "number_of v", standard]
wenzelm@23164
   627
wenzelm@23164
   628
wenzelm@23164
   629
wenzelm@23164
   630
ML
wenzelm@23164
   631
{*
wenzelm@26342
   632
val numeral_ss = @{simpset} addsimps @{thms numerals};
wenzelm@23164
   633
wenzelm@23164
   634
val nat_bin_arith_setup =
wenzelm@24093
   635
 LinArith.map_data
wenzelm@23164
   636
   (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
wenzelm@23164
   637
     {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
wenzelm@23164
   638
      inj_thms = inj_thms,
wenzelm@23164
   639
      lessD = lessD, neqE = neqE,
huffman@29039
   640
      simpset = simpset addsimps @{thms neg_simps} @
huffman@29039
   641
        [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}]})
wenzelm@23164
   642
*}
wenzelm@23164
   643
wenzelm@24075
   644
declaration {* K nat_bin_arith_setup *}
wenzelm@23164
   645
wenzelm@23164
   646
(* Enable arith to deal with div/mod k where k is a numeral: *)
wenzelm@23164
   647
declare split_div[of _ _ "number_of k", standard, arith_split]
wenzelm@23164
   648
declare split_mod[of _ _ "number_of k", standard, arith_split]
wenzelm@23164
   649
wenzelm@23164
   650
lemma nat_number_of_Pls: "Numeral0 = (0::nat)"
wenzelm@23164
   651
  by (simp add: number_of_Pls nat_number_of_def)
wenzelm@23164
   652
haftmann@25919
   653
lemma nat_number_of_Min: "number_of Int.Min = (0::nat)"
wenzelm@23164
   654
  apply (simp only: number_of_Min nat_number_of_def nat_zminus_int)
wenzelm@23164
   655
  done
wenzelm@23164
   656
huffman@26086
   657
lemma nat_number_of_Bit0:
huffman@26086
   658
    "number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)"
huffman@28969
   659
  unfolding nat_number_of_def number_of_is_id numeral_simps Let_def
huffman@28969
   660
  by auto
huffman@26086
   661
huffman@26086
   662
lemma nat_number_of_Bit1:
huffman@26086
   663
  "number_of (Int.Bit1 w) =
wenzelm@23164
   664
    (if neg (number_of w :: int) then 0
wenzelm@23164
   665
     else let n = number_of w in Suc (n + n))"
huffman@28969
   666
  unfolding nat_number_of_def number_of_is_id numeral_simps neg_def Let_def
huffman@28968
   667
  by auto
wenzelm@23164
   668
wenzelm@23164
   669
lemmas nat_number =
wenzelm@23164
   670
  nat_number_of_Pls nat_number_of_Min
huffman@26086
   671
  nat_number_of_Bit0 nat_number_of_Bit1
wenzelm@23164
   672
wenzelm@23164
   673
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
wenzelm@23164
   674
  by (simp add: Let_def)
wenzelm@23164
   675
wenzelm@23164
   676
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring,recpower})"
huffman@23294
   677
by (simp add: power_mult power_Suc); 
wenzelm@23164
   678
wenzelm@23164
   679
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring,recpower})"
wenzelm@23164
   680
by (simp add: power_mult power_Suc); 
wenzelm@23164
   681
wenzelm@23164
   682
wenzelm@23164
   683
subsection{*Literal arithmetic and @{term of_nat}*}
wenzelm@23164
   684
wenzelm@23164
   685
lemma of_nat_double:
wenzelm@23164
   686
     "0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"
wenzelm@23164
   687
by (simp only: mult_2 nat_add_distrib of_nat_add) 
wenzelm@23164
   688
wenzelm@23164
   689
lemma nat_numeral_m1_eq_0: "-1 = (0::nat)"
wenzelm@23164
   690
by (simp only: nat_number_of_def)
wenzelm@23164
   691
wenzelm@23164
   692
lemma of_nat_number_of_lemma:
wenzelm@23164
   693
     "of_nat (number_of v :: nat) =  
wenzelm@23164
   694
         (if 0 \<le> (number_of v :: int) 
wenzelm@23164
   695
          then (number_of v :: 'a :: number_ring)
wenzelm@23164
   696
          else 0)"
wenzelm@23164
   697
by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat);
wenzelm@23164
   698
wenzelm@23164
   699
lemma of_nat_number_of_eq [simp]:
wenzelm@23164
   700
     "of_nat (number_of v :: nat) =  
wenzelm@23164
   701
         (if neg (number_of v :: int) then 0  
wenzelm@23164
   702
          else (number_of v :: 'a :: number_ring))"
wenzelm@23164
   703
by (simp only: of_nat_number_of_lemma neg_def, simp) 
wenzelm@23164
   704
wenzelm@23164
   705
wenzelm@23164
   706
subsection {*Lemmas for the Combination and Cancellation Simprocs*}
wenzelm@23164
   707
wenzelm@23164
   708
lemma nat_number_of_add_left:
wenzelm@23164
   709
     "number_of v + (number_of v' + (k::nat)) =  
wenzelm@23164
   710
         (if neg (number_of v :: int) then number_of v' + k  
wenzelm@23164
   711
          else if neg (number_of v' :: int) then number_of v + k  
wenzelm@23164
   712
          else number_of (v + v') + k)"
huffman@28968
   713
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28968
   714
  by auto
wenzelm@23164
   715
wenzelm@23164
   716
lemma nat_number_of_mult_left:
wenzelm@23164
   717
     "number_of v * (number_of v' * (k::nat)) =  
huffman@29012
   718
         (if v < Int.Pls then 0
wenzelm@23164
   719
          else number_of (v * v') * k)"
wenzelm@23164
   720
by simp
wenzelm@23164
   721
wenzelm@23164
   722
wenzelm@23164
   723
subsubsection{*For @{text combine_numerals}*}
wenzelm@23164
   724
wenzelm@23164
   725
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
wenzelm@23164
   726
by (simp add: add_mult_distrib)
wenzelm@23164
   727
wenzelm@23164
   728
wenzelm@23164
   729
subsubsection{*For @{text cancel_numerals}*}
wenzelm@23164
   730
wenzelm@23164
   731
lemma nat_diff_add_eq1:
wenzelm@23164
   732
     "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
wenzelm@23164
   733
by (simp split add: nat_diff_split add: add_mult_distrib)
wenzelm@23164
   734
wenzelm@23164
   735
lemma nat_diff_add_eq2:
wenzelm@23164
   736
     "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
wenzelm@23164
   737
by (simp split add: nat_diff_split add: add_mult_distrib)
wenzelm@23164
   738
wenzelm@23164
   739
lemma nat_eq_add_iff1:
wenzelm@23164
   740
     "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
wenzelm@23164
   741
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   742
wenzelm@23164
   743
lemma nat_eq_add_iff2:
wenzelm@23164
   744
     "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
wenzelm@23164
   745
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   746
wenzelm@23164
   747
lemma nat_less_add_iff1:
wenzelm@23164
   748
     "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
wenzelm@23164
   749
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   750
wenzelm@23164
   751
lemma nat_less_add_iff2:
wenzelm@23164
   752
     "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
wenzelm@23164
   753
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   754
wenzelm@23164
   755
lemma nat_le_add_iff1:
wenzelm@23164
   756
     "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
wenzelm@23164
   757
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   758
wenzelm@23164
   759
lemma nat_le_add_iff2:
wenzelm@23164
   760
     "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
wenzelm@23164
   761
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   762
wenzelm@23164
   763
wenzelm@23164
   764
subsubsection{*For @{text cancel_numeral_factors} *}
wenzelm@23164
   765
wenzelm@23164
   766
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
wenzelm@23164
   767
by auto
wenzelm@23164
   768
wenzelm@23164
   769
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
wenzelm@23164
   770
by auto
wenzelm@23164
   771
wenzelm@23164
   772
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
wenzelm@23164
   773
by auto
wenzelm@23164
   774
wenzelm@23164
   775
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
wenzelm@23164
   776
by auto
wenzelm@23164
   777
nipkow@23969
   778
lemma nat_mult_dvd_cancel_disj[simp]:
nipkow@23969
   779
  "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
nipkow@23969
   780
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
nipkow@23969
   781
nipkow@23969
   782
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
nipkow@23969
   783
by(auto)
nipkow@23969
   784
wenzelm@23164
   785
wenzelm@23164
   786
subsubsection{*For @{text cancel_factor} *}
wenzelm@23164
   787
wenzelm@23164
   788
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
wenzelm@23164
   789
by auto
wenzelm@23164
   790
wenzelm@23164
   791
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
wenzelm@23164
   792
by auto
wenzelm@23164
   793
wenzelm@23164
   794
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
wenzelm@23164
   795
by auto
wenzelm@23164
   796
nipkow@23969
   797
lemma nat_mult_div_cancel_disj[simp]:
wenzelm@23164
   798
     "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
wenzelm@23164
   799
by (simp add: nat_mult_div_cancel1)
wenzelm@23164
   800
wenzelm@23164
   801
end