src/HOL/Map.thy
author wenzelm
Sat Jun 24 22:25:30 2006 +0200 (2006-06-24)
changeset 19947 29b376397cd5
parent 19656 09be06943252
child 20800 69c82605efcf
permissions -rw-r--r--
fixed translations for _MapUpd: CONST;
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
nipkow@15131
    11
theory Map
nipkow@15140
    12
imports List
nipkow@15131
    13
begin
nipkow@3981
    14
webertj@13908
    15
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
oheimb@14100
    16
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    17
wenzelm@19656
    18
syntax (xsymbols)
wenzelm@19656
    19
  "~=>"     :: "[type, type] => type"    (infixr "\<rightharpoonup>" 0)
wenzelm@19656
    20
nipkow@19378
    21
abbreviation
nipkow@19378
    22
  empty     ::  "'a ~=> 'b"
nipkow@19378
    23
  "empty == %x. None"
nipkow@19378
    24
wenzelm@19656
    25
definition
nipkow@19378
    26
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55)
nipkow@19378
    27
  "f o_m g  == (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
nipkow@19378
    28
wenzelm@19656
    29
const_syntax (xsymbols)
wenzelm@19656
    30
  map_comp  (infixl "\<circ>\<^sub>m" 55)
wenzelm@19656
    31
nipkow@3981
    32
consts
oheimb@14100
    33
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
nipkow@15693
    34
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`"  110)
oheimb@5300
    35
dom	:: "('a ~=> 'b) => 'a set"
oheimb@5300
    36
ran	:: "('a ~=> 'b) => 'b set"
oheimb@5300
    37
map_of	:: "('a * 'b)list => 'a ~=> 'b"
nipkow@19323
    38
map_upds:: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
nipkow@13910
    39
map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
nipkow@13910
    40
wenzelm@19656
    41
const_syntax (latex output)
wenzelm@19656
    42
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
wenzelm@19656
    43
nipkow@14180
    44
nonterminals
nipkow@14180
    45
  maplets maplet
nipkow@14180
    46
oheimb@5300
    47
syntax
nipkow@14180
    48
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    49
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    50
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    51
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    52
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    53
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    54
wenzelm@12114
    55
syntax (xsymbols)
nipkow@14180
    56
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    57
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    58
oheimb@5300
    59
translations
nipkow@14180
    60
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    61
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    62
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
wenzelm@19947
    63
  "_Map ms"                     == "_MapUpd (CONST empty) ms"
nipkow@14180
    64
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    65
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    66
nipkow@3981
    67
defs
oheimb@14100
    68
map_add_def:   "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y"
nipkow@15693
    69
restrict_map_def: "m|`A == %x. if x : A then m x else None"
nipkow@14025
    70
nipkow@14025
    71
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
nipkow@3981
    72
webertj@13908
    73
dom_def: "dom(m) == {a. m a ~= None}"
nipkow@14025
    74
ran_def: "ran(m) == {b. EX a. m a = Some b}"
nipkow@3981
    75
nipkow@14376
    76
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2  ==  ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a"
nipkow@13910
    77
berghofe@5183
    78
primrec
berghofe@5183
    79
  "map_of [] = empty"
oheimb@5300
    80
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    81
nipkow@19323
    82
(* special purpose constants that should be defined somewhere else and
nipkow@19323
    83
whose syntax is a bit odd as well:
nipkow@19323
    84
nipkow@19323
    85
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
nipkow@19323
    86
					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
nipkow@19323
    87
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
nipkow@19323
    88
nipkow@19323
    89
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
nipkow@19323
    90
	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
nipkow@19323
    91
map_subst::"('a ~=> 'b) => 'b => 'b => 
nipkow@19323
    92
	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
nipkow@19323
    93
nipkow@19323
    94
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
nipkow@19323
    95
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
nipkow@19323
    96
nipkow@19323
    97
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
nipkow@19323
    98
				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
nipkow@19323
    99
  map_subst :: "('a ~=> 'b) => 'b => 'b => 
nipkow@19323
   100
	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
nipkow@19323
   101
nipkow@19323
   102
nipkow@19323
   103
subsection {* @{term [source] map_upd_s} *}
nipkow@19323
   104
nipkow@19323
   105
lemma map_upd_s_apply [simp]: 
nipkow@19323
   106
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
nipkow@19323
   107
by (simp add: map_upd_s_def)
nipkow@19323
   108
nipkow@19323
   109
lemma map_subst_apply [simp]: 
nipkow@19323
   110
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)" 
nipkow@19323
   111
by (simp add: map_subst_def)
nipkow@19323
   112
nipkow@19323
   113
*)
webertj@13908
   114
wenzelm@17399
   115
subsection {* @{term [source] empty} *}
webertj@13908
   116
nipkow@13910
   117
lemma empty_upd_none[simp]: "empty(x := None) = empty"
webertj@13908
   118
apply (rule ext)
webertj@13908
   119
apply (simp (no_asm))
webertj@13908
   120
done
nipkow@13910
   121
webertj@13908
   122
webertj@13908
   123
(* FIXME: what is this sum_case nonsense?? *)
nipkow@13910
   124
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
webertj@13908
   125
apply (rule ext)
webertj@13908
   126
apply (simp (no_asm) split add: sum.split)
webertj@13908
   127
done
webertj@13908
   128
wenzelm@17399
   129
subsection {* @{term [source] map_upd} *}
webertj@13908
   130
webertj@13908
   131
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
webertj@13908
   132
apply (rule ext)
webertj@13908
   133
apply (simp (no_asm_simp))
webertj@13908
   134
done
webertj@13908
   135
nipkow@13910
   136
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty"
webertj@13908
   137
apply safe
paulson@14208
   138
apply (drule_tac x = k in fun_cong)
webertj@13908
   139
apply (simp (no_asm_use))
webertj@13908
   140
done
webertj@13908
   141
oheimb@14100
   142
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y"
oheimb@14100
   143
by (drule fun_cong [of _ _ a], auto)
oheimb@14100
   144
oheimb@14100
   145
lemma map_upd_Some_unfold: 
oheimb@14100
   146
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
oheimb@14100
   147
by auto
oheimb@14100
   148
nipkow@15303
   149
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@15303
   150
by fastsimp
nipkow@15303
   151
webertj@13908
   152
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
webertj@13908
   153
apply (unfold image_def)
webertj@13908
   154
apply (simp (no_asm_use) add: full_SetCompr_eq)
webertj@13908
   155
apply (rule finite_subset)
paulson@14208
   156
prefer 2 apply assumption
webertj@13908
   157
apply auto
webertj@13908
   158
done
webertj@13908
   159
webertj@13908
   160
webertj@13908
   161
(* FIXME: what is this sum_case nonsense?? *)
wenzelm@17399
   162
subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *}
webertj@13908
   163
nipkow@13910
   164
lemma sum_case_map_upd_empty[simp]:
nipkow@13910
   165
 "sum_case (m(k|->y)) empty =  (sum_case m empty)(Inl k|->y)"
webertj@13908
   166
apply (rule ext)
webertj@13908
   167
apply (simp (no_asm) split add: sum.split)
webertj@13908
   168
done
webertj@13908
   169
nipkow@13910
   170
lemma sum_case_empty_map_upd[simp]:
nipkow@13910
   171
 "sum_case empty (m(k|->y)) =  (sum_case empty m)(Inr k|->y)"
webertj@13908
   172
apply (rule ext)
webertj@13908
   173
apply (simp (no_asm) split add: sum.split)
webertj@13908
   174
done
webertj@13908
   175
nipkow@13910
   176
lemma sum_case_map_upd_map_upd[simp]:
nipkow@13910
   177
 "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
webertj@13908
   178
apply (rule ext)
webertj@13908
   179
apply (simp (no_asm) split add: sum.split)
webertj@13908
   180
done
webertj@13908
   181
webertj@13908
   182
wenzelm@17399
   183
subsection {* @{term [source] map_of} *}
webertj@13908
   184
nipkow@15304
   185
lemma map_of_eq_None_iff:
nipkow@15304
   186
 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@15304
   187
by (induct xys) simp_all
nipkow@15304
   188
nipkow@15304
   189
lemma map_of_is_SomeD:
nipkow@15304
   190
 "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
nipkow@15304
   191
apply(induct xys)
nipkow@15304
   192
 apply simp
nipkow@15304
   193
apply(clarsimp split:if_splits)
nipkow@15304
   194
done
nipkow@15304
   195
nipkow@15304
   196
lemma map_of_eq_Some_iff[simp]:
nipkow@15304
   197
 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@15304
   198
apply(induct xys)
nipkow@15304
   199
 apply(simp)
nipkow@15304
   200
apply(auto simp:map_of_eq_None_iff[symmetric])
nipkow@15304
   201
done
nipkow@15304
   202
nipkow@15304
   203
lemma Some_eq_map_of_iff[simp]:
nipkow@15304
   204
 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
nipkow@15304
   205
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric])
nipkow@15304
   206
paulson@17724
   207
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
nipkow@15304
   208
  \<Longrightarrow> map_of xys x = Some y"
nipkow@15304
   209
apply (induct xys)
nipkow@15304
   210
 apply simp
nipkow@15304
   211
apply force
nipkow@15304
   212
done
nipkow@15304
   213
nipkow@15110
   214
lemma map_of_zip_is_None[simp]:
nipkow@15110
   215
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@15110
   216
by (induct rule:list_induct2, simp_all)
nipkow@15110
   217
nipkow@15110
   218
lemma finite_range_map_of: "finite (range (map_of xys))"
paulson@15251
   219
apply (induct xys)
nipkow@15110
   220
apply  (simp_all (no_asm) add: image_constant)
nipkow@15110
   221
apply (rule finite_subset)
nipkow@15110
   222
prefer 2 apply assumption
nipkow@15110
   223
apply auto
nipkow@15110
   224
done
nipkow@15110
   225
paulson@15369
   226
lemma map_of_SomeD [rule_format]: "map_of xs k = Some y --> (k,y):set xs"
paulson@15251
   227
by (induct "xs", auto)
webertj@13908
   228
paulson@15369
   229
lemma map_of_mapk_SomeI [rule_format]:
paulson@15369
   230
     "inj f ==> map_of t k = Some x -->  
paulson@15369
   231
        map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
paulson@15251
   232
apply (induct "t")
webertj@13908
   233
apply  (auto simp add: inj_eq)
webertj@13908
   234
done
webertj@13908
   235
paulson@15369
   236
lemma weak_map_of_SomeI [rule_format]:
paulson@15369
   237
     "(k, x) : set l --> (\<exists>x. map_of l k = Some x)"
paulson@15251
   238
by (induct "l", auto)
webertj@13908
   239
webertj@13908
   240
lemma map_of_filter_in: 
webertj@13908
   241
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z"
webertj@13908
   242
apply (rule mp)
paulson@14208
   243
prefer 2 apply assumption
webertj@13908
   244
apply (erule thin_rl)
paulson@15251
   245
apply (induct "xs", auto)
webertj@13908
   246
done
webertj@13908
   247
webertj@13908
   248
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
paulson@15251
   249
by (induct "xs", auto)
webertj@13908
   250
webertj@13908
   251
wenzelm@17399
   252
subsection {* @{term [source] option_map} related *}
webertj@13908
   253
nipkow@13910
   254
lemma option_map_o_empty[simp]: "option_map f o empty = empty"
webertj@13908
   255
apply (rule ext)
webertj@13908
   256
apply (simp (no_asm))
webertj@13908
   257
done
webertj@13908
   258
nipkow@13910
   259
lemma option_map_o_map_upd[simp]:
nipkow@13910
   260
 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
webertj@13908
   261
apply (rule ext)
webertj@13908
   262
apply (simp (no_asm))
webertj@13908
   263
done
webertj@13908
   264
wenzelm@17399
   265
subsection {* @{term [source] map_comp} related *}
schirmer@17391
   266
schirmer@17391
   267
lemma map_comp_empty [simp]: 
schirmer@17391
   268
  "m \<circ>\<^sub>m empty = empty"
schirmer@17391
   269
  "empty \<circ>\<^sub>m m = empty"
schirmer@17391
   270
  by (auto simp add: map_comp_def intro: ext split: option.splits)
schirmer@17391
   271
schirmer@17391
   272
lemma map_comp_simps [simp]: 
schirmer@17391
   273
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
schirmer@17391
   274
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" 
schirmer@17391
   275
  by (auto simp add: map_comp_def)
schirmer@17391
   276
schirmer@17391
   277
lemma map_comp_Some_iff:
schirmer@17391
   278
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" 
schirmer@17391
   279
  by (auto simp add: map_comp_def split: option.splits)
schirmer@17391
   280
schirmer@17391
   281
lemma map_comp_None_iff:
schirmer@17391
   282
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " 
schirmer@17391
   283
  by (auto simp add: map_comp_def split: option.splits)
webertj@13908
   284
oheimb@14100
   285
subsection {* @{text "++"} *}
webertj@13908
   286
nipkow@14025
   287
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@14025
   288
apply (unfold map_add_def)
webertj@13908
   289
apply (simp (no_asm))
webertj@13908
   290
done
webertj@13908
   291
nipkow@14025
   292
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@14025
   293
apply (unfold map_add_def)
webertj@13908
   294
apply (rule ext)
webertj@13908
   295
apply (simp split add: option.split)
webertj@13908
   296
done
webertj@13908
   297
nipkow@14025
   298
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@14025
   299
apply(rule ext)
nipkow@14025
   300
apply(simp add: map_add_def split:option.split)
nipkow@14025
   301
done
nipkow@14025
   302
nipkow@14025
   303
lemma map_add_Some_iff: 
webertj@13908
   304
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@14025
   305
apply (unfold map_add_def)
webertj@13908
   306
apply (simp (no_asm) split add: option.split)
webertj@13908
   307
done
webertj@13908
   308
nipkow@14025
   309
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard]
nipkow@14025
   310
declare map_add_SomeD [dest!]
webertj@13908
   311
nipkow@14025
   312
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
paulson@14208
   313
by (subst map_add_Some_iff, fast)
webertj@13908
   314
nipkow@14025
   315
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@14025
   316
apply (unfold map_add_def)
webertj@13908
   317
apply (simp (no_asm) split add: option.split)
webertj@13908
   318
done
webertj@13908
   319
nipkow@14025
   320
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@14025
   321
apply (unfold map_add_def)
paulson@14208
   322
apply (rule ext, auto)
webertj@13908
   323
done
webertj@13908
   324
nipkow@14186
   325
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@14186
   326
by(simp add:map_upds_def)
nipkow@14186
   327
nipkow@14025
   328
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs"
nipkow@14025
   329
apply (unfold map_add_def)
paulson@15251
   330
apply (induct "xs")
webertj@13908
   331
apply (simp (no_asm))
webertj@13908
   332
apply (rule ext)
webertj@13908
   333
apply (simp (no_asm_simp) split add: option.split)
webertj@13908
   334
done
webertj@13908
   335
webertj@13908
   336
declare fun_upd_apply [simp del]
nipkow@14025
   337
lemma finite_range_map_of_map_add:
nipkow@14025
   338
 "finite (range f) ==> finite (range (f ++ map_of l))"
paulson@15251
   339
apply (induct "l", auto)
webertj@13908
   340
apply (erule finite_range_updI)
webertj@13908
   341
done
webertj@13908
   342
declare fun_upd_apply [simp]
webertj@13908
   343
nipkow@15304
   344
lemma inj_on_map_add_dom[iff]:
nipkow@15304
   345
 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@15304
   346
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits)
nipkow@15304
   347
wenzelm@17399
   348
subsection {* @{term [source] restrict_map} *}
oheimb@14100
   349
nipkow@15693
   350
lemma restrict_map_to_empty[simp]: "m|`{} = empty"
nipkow@14186
   351
by(simp add: restrict_map_def)
nipkow@14186
   352
nipkow@15693
   353
lemma restrict_map_empty[simp]: "empty|`D = empty"
nipkow@14186
   354
by(simp add: restrict_map_def)
nipkow@14186
   355
nipkow@15693
   356
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
oheimb@14100
   357
by (auto simp: restrict_map_def)
oheimb@14100
   358
nipkow@15693
   359
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
oheimb@14100
   360
by (auto simp: restrict_map_def)
oheimb@14100
   361
nipkow@15693
   362
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
oheimb@14100
   363
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   364
nipkow@15693
   365
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
oheimb@14100
   366
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   367
nipkow@15693
   368
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
oheimb@14100
   369
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   370
nipkow@15693
   371
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
oheimb@14100
   372
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   373
nipkow@14186
   374
lemma restrict_fun_upd[simp]:
nipkow@15693
   375
 "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@14186
   376
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   377
nipkow@14186
   378
lemma fun_upd_None_restrict[simp]:
nipkow@15693
   379
  "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
nipkow@14186
   380
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   381
nipkow@14186
   382
lemma fun_upd_restrict:
nipkow@15693
   383
 "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@14186
   384
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   385
nipkow@14186
   386
lemma fun_upd_restrict_conv[simp]:
nipkow@15693
   387
 "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@14186
   388
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   389
oheimb@14100
   390
wenzelm@17399
   391
subsection {* @{term [source] map_upds} *}
nipkow@14025
   392
nipkow@14025
   393
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m"
nipkow@14025
   394
by(simp add:map_upds_def)
nipkow@14025
   395
nipkow@14025
   396
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m"
nipkow@14025
   397
by(simp add:map_upds_def)
nipkow@14025
   398
nipkow@14025
   399
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@14025
   400
by(simp add:map_upds_def)
nipkow@14025
   401
nipkow@14187
   402
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@14187
   403
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@14187
   404
apply(induct xs)
nipkow@14187
   405
 apply(clarsimp simp add:neq_Nil_conv)
paulson@14208
   406
apply (case_tac ys, simp, simp)
nipkow@14187
   407
done
nipkow@14187
   408
nipkow@14187
   409
lemma map_upds_list_update2_drop[simp]:
nipkow@14187
   410
 "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
nipkow@14187
   411
     \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
paulson@14208
   412
apply (induct xs, simp)
paulson@14208
   413
apply (case_tac ys, simp)
nipkow@14187
   414
apply(simp split:nat.split)
nipkow@14187
   415
done
nipkow@14025
   416
nipkow@14025
   417
lemma map_upd_upds_conv_if: "!!x y ys f.
nipkow@14025
   418
 (f(x|->y))(xs [|->] ys) =
nipkow@14025
   419
 (if x : set(take (length ys) xs) then f(xs [|->] ys)
nipkow@14025
   420
                                  else (f(xs [|->] ys))(x|->y))"
paulson@14208
   421
apply (induct xs, simp)
nipkow@14025
   422
apply(case_tac ys)
nipkow@14025
   423
 apply(auto split:split_if simp:fun_upd_twist)
nipkow@14025
   424
done
nipkow@14025
   425
nipkow@14025
   426
lemma map_upds_twist [simp]:
nipkow@14025
   427
 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@14025
   428
apply(insert set_take_subset)
nipkow@14025
   429
apply (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   430
done
nipkow@14025
   431
nipkow@14025
   432
lemma map_upds_apply_nontin[simp]:
nipkow@14025
   433
 "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x"
paulson@14208
   434
apply (induct xs, simp)
nipkow@14025
   435
apply(case_tac ys)
nipkow@14025
   436
 apply(auto simp: map_upd_upds_conv_if)
nipkow@14025
   437
done
nipkow@14025
   438
nipkow@14300
   439
lemma fun_upds_append_drop[simp]:
nipkow@14300
   440
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@14300
   441
apply(induct xs)
nipkow@14300
   442
 apply (simp)
nipkow@14300
   443
apply(case_tac ys)
nipkow@14300
   444
apply simp_all
nipkow@14300
   445
done
nipkow@14300
   446
nipkow@14300
   447
lemma fun_upds_append2_drop[simp]:
nipkow@14300
   448
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@14300
   449
apply(induct xs)
nipkow@14300
   450
 apply (simp)
nipkow@14300
   451
apply(case_tac ys)
nipkow@14300
   452
apply simp_all
nipkow@14300
   453
done
nipkow@14300
   454
nipkow@14300
   455
nipkow@14186
   456
lemma restrict_map_upds[simp]: "!!m ys.
nipkow@14186
   457
 \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
nipkow@15693
   458
 \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
paulson@14208
   459
apply (induct xs, simp)
paulson@14208
   460
apply (case_tac ys, simp)
nipkow@14186
   461
apply(simp add:Diff_insert[symmetric] insert_absorb)
nipkow@14186
   462
apply(simp add: map_upd_upds_conv_if)
nipkow@14186
   463
done
nipkow@14186
   464
nipkow@14186
   465
wenzelm@17399
   466
subsection {* @{term [source] dom} *}
webertj@13908
   467
webertj@13908
   468
lemma domI: "m a = Some b ==> a : dom m"
paulson@14208
   469
by (unfold dom_def, auto)
oheimb@14100
   470
(* declare domI [intro]? *)
webertj@13908
   471
paulson@15369
   472
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
paulson@18447
   473
apply (case_tac "m a") 
paulson@18447
   474
apply (auto simp add: dom_def) 
paulson@18447
   475
done
webertj@13908
   476
nipkow@13910
   477
lemma domIff[iff]: "(a : dom m) = (m a ~= None)"
paulson@14208
   478
by (unfold dom_def, auto)
webertj@13908
   479
declare domIff [simp del]
webertj@13908
   480
nipkow@13910
   481
lemma dom_empty[simp]: "dom empty = {}"
webertj@13908
   482
apply (unfold dom_def)
webertj@13908
   483
apply (simp (no_asm))
webertj@13908
   484
done
webertj@13908
   485
nipkow@13910
   486
lemma dom_fun_upd[simp]:
nipkow@13910
   487
 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@13910
   488
by (simp add:dom_def) blast
webertj@13908
   489
nipkow@13937
   490
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@13937
   491
apply(induct xys)
nipkow@13937
   492
apply(auto simp del:fun_upd_apply)
nipkow@13937
   493
done
nipkow@13937
   494
nipkow@15304
   495
lemma dom_map_of_conv_image_fst:
nipkow@15304
   496
  "dom(map_of xys) = fst ` (set xys)"
nipkow@15304
   497
by(force simp: dom_map_of)
nipkow@15304
   498
nipkow@15110
   499
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==>
nipkow@15110
   500
  dom(map_of(zip xs ys)) = set xs"
nipkow@15110
   501
by(induct rule: list_induct2, simp_all)
nipkow@15110
   502
webertj@13908
   503
lemma finite_dom_map_of: "finite (dom (map_of l))"
webertj@13908
   504
apply (unfold dom_def)
paulson@15251
   505
apply (induct "l")
webertj@13908
   506
apply (auto simp add: insert_Collect [symmetric])
webertj@13908
   507
done
webertj@13908
   508
nipkow@14025
   509
lemma dom_map_upds[simp]:
nipkow@14025
   510
 "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
paulson@14208
   511
apply (induct xs, simp)
paulson@14208
   512
apply (case_tac ys, auto)
nipkow@14025
   513
done
nipkow@13910
   514
nipkow@14025
   515
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m"
paulson@14208
   516
by (unfold dom_def, auto)
nipkow@13910
   517
nipkow@15691
   518
lemma dom_override_on[simp]:
nipkow@15691
   519
 "dom(override_on f g A) =
nipkow@15691
   520
 (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@15691
   521
by(auto simp add: dom_def override_on_def)
webertj@13908
   522
nipkow@14027
   523
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@14027
   524
apply(rule ext)
nipkow@18576
   525
apply(force simp: map_add_def dom_def split:option.split) 
nipkow@14027
   526
done
nipkow@14027
   527
wenzelm@17399
   528
subsection {* @{term [source] ran} *}
oheimb@14100
   529
oheimb@14100
   530
lemma ranI: "m a = Some b ==> b : ran m" 
oheimb@14100
   531
by (auto simp add: ran_def)
oheimb@14100
   532
(* declare ranI [intro]? *)
webertj@13908
   533
nipkow@13910
   534
lemma ran_empty[simp]: "ran empty = {}"
webertj@13908
   535
apply (unfold ran_def)
webertj@13908
   536
apply (simp (no_asm))
webertj@13908
   537
done
webertj@13908
   538
nipkow@13910
   539
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
paulson@14208
   540
apply (unfold ran_def, auto)
webertj@13908
   541
apply (subgoal_tac "~ (aa = a) ")
webertj@13908
   542
apply auto
webertj@13908
   543
done
nipkow@13910
   544
oheimb@14100
   545
subsection {* @{text "map_le"} *}
nipkow@13910
   546
kleing@13912
   547
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@13910
   548
by(simp add:map_le_def)
nipkow@13910
   549
paulson@17724
   550
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@14187
   551
by(force simp add:map_le_def)
nipkow@14187
   552
nipkow@13910
   553
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@13910
   554
by(fastsimp simp add:map_le_def)
nipkow@13910
   555
paulson@17724
   556
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@14187
   557
by(force simp add:map_le_def)
nipkow@14187
   558
nipkow@13910
   559
lemma map_le_upds[simp]:
nipkow@13910
   560
 "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
paulson@14208
   561
apply (induct as, simp)
paulson@14208
   562
apply (case_tac bs, auto)
nipkow@14025
   563
done
webertj@13908
   564
webertj@14033
   565
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
webertj@14033
   566
  by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   567
webertj@14033
   568
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
webertj@14033
   569
  by (simp add: map_le_def)
webertj@14033
   570
nipkow@14187
   571
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
paulson@18447
   572
  by (auto simp add: map_le_def dom_def)
webertj@14033
   573
webertj@14033
   574
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
webertj@14033
   575
  apply (unfold map_le_def)
webertj@14033
   576
  apply (rule ext)
paulson@14208
   577
  apply (case_tac "x \<in> dom f", simp)
paulson@14208
   578
  apply (case_tac "x \<in> dom g", simp, fastsimp)
webertj@14033
   579
done
webertj@14033
   580
webertj@14033
   581
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
nipkow@18576
   582
  by (fastsimp simp add: map_le_def)
webertj@14033
   583
nipkow@15304
   584
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
nipkow@15304
   585
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits)
nipkow@15304
   586
nipkow@15303
   587
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
nipkow@18576
   588
by (fastsimp simp add: map_le_def map_add_def dom_def)
nipkow@15303
   589
nipkow@15303
   590
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
nipkow@15303
   591
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits)
nipkow@15303
   592
nipkow@3981
   593
end