src/Pure/drule.ML
author wenzelm
Sat May 30 20:21:53 2015 +0200 (2015-05-30)
changeset 60313 2a0b42cd58fb
parent 60240 3f61058a2de6
child 60314 6e465f0d46d3
permissions -rw-r--r--
tuned -- more direct Thm.renamed_prop;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
wenzelm@252
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
wenzelm@3766
     4
Derived rules and other operations on theorems.
clasohm@0
     5
*)
clasohm@0
     6
wenzelm@46470
     7
infix 0 RS RSN RL RLN MRS OF COMP INCR_COMP COMP_INCR;
clasohm@0
     8
wenzelm@5903
     9
signature BASIC_DRULE =
wenzelm@3766
    10
sig
wenzelm@18179
    11
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    12
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    13
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    14
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    15
  val cprems_of: thm -> cterm list
wenzelm@18179
    16
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    17
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18179
    18
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    19
  val forall_intr_vars: thm -> thm
wenzelm@18179
    20
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@59647
    21
  val gen_all: int -> thm -> thm
wenzelm@18179
    22
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    23
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    24
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@43333
    25
  val instantiate_normalize: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    26
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    27
  val zero_var_indexes: thm -> thm
wenzelm@18179
    28
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    29
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    30
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    31
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    32
  val RS: thm * thm -> thm
wenzelm@18179
    33
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    34
  val RL: thm list * thm list -> thm list
wenzelm@18179
    35
  val MRS: thm list * thm -> thm
wenzelm@18179
    36
  val OF: thm * thm list -> thm
wenzelm@18179
    37
  val COMP: thm * thm -> thm
wenzelm@21578
    38
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    39
  val COMP_INCR: thm * thm -> thm
wenzelm@46186
    40
  val cterm_instantiate: (cterm * cterm) list -> thm -> thm
wenzelm@18179
    41
  val size_of_thm: thm -> int
wenzelm@18179
    42
  val reflexive_thm: thm
wenzelm@18179
    43
  val symmetric_thm: thm
wenzelm@18179
    44
  val transitive_thm: thm
wenzelm@18179
    45
  val extensional: thm -> thm
wenzelm@18179
    46
  val asm_rl: thm
wenzelm@18179
    47
  val cut_rl: thm
wenzelm@18179
    48
  val revcut_rl: thm
wenzelm@18179
    49
  val thin_rl: thm
wenzelm@18179
    50
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    51
end;
wenzelm@5903
    52
wenzelm@5903
    53
signature DRULE =
wenzelm@5903
    54
sig
wenzelm@5903
    55
  include BASIC_DRULE
wenzelm@19999
    56
  val generalize: string list * string list -> thm -> thm
paulson@15949
    57
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    58
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    59
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    60
  val beta_conv: cterm -> cterm -> cterm
wenzelm@58950
    61
  val flexflex_unique: Proof.context option -> thm -> thm
wenzelm@35021
    62
  val export_without_context: thm -> thm
wenzelm@35021
    63
  val export_without_context_open: thm -> thm
wenzelm@33277
    64
  val store_thm: binding -> thm -> thm
wenzelm@33277
    65
  val store_standard_thm: binding -> thm -> thm
wenzelm@33277
    66
  val store_thm_open: binding -> thm -> thm
wenzelm@33277
    67
  val store_standard_thm_open: binding -> thm -> thm
wenzelm@58950
    68
  val multi_resolve: Proof.context option -> thm list -> thm -> thm Seq.seq
wenzelm@58950
    69
  val multi_resolves: Proof.context option -> thm list -> thm list -> thm Seq.seq
wenzelm@52467
    70
  val compose: thm * int * thm -> thm
wenzelm@46186
    71
  val equals_cong: thm
wenzelm@46186
    72
  val imp_cong: thm
wenzelm@46186
    73
  val swap_prems_eq: thm
wenzelm@18468
    74
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
    75
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@23568
    76
  val binop_cong_rule: cterm -> thm -> thm -> thm
wenzelm@22939
    77
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
    78
  val beta_eta_conversion: cterm -> thm
berghofe@15925
    79
  val eta_long_conversion: cterm -> thm
paulson@20861
    80
  val eta_contraction_rule: thm -> thm
wenzelm@11975
    81
  val norm_hhf_eq: thm
wenzelm@28618
    82
  val norm_hhf_eqs: thm list
wenzelm@12800
    83
  val is_norm_hhf: term -> bool
wenzelm@16425
    84
  val norm_hhf: theory -> term -> term
wenzelm@20298
    85
  val norm_hhf_cterm: cterm -> cterm
wenzelm@18025
    86
  val protect: cterm -> cterm
wenzelm@18025
    87
  val protectI: thm
wenzelm@18025
    88
  val protectD: thm
wenzelm@18179
    89
  val protect_cong: thm
wenzelm@18025
    90
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
    91
  val termI: thm
wenzelm@19775
    92
  val mk_term: cterm -> thm
wenzelm@19775
    93
  val dest_term: thm -> cterm
wenzelm@21519
    94
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@24005
    95
  val dummy_thm: thm
wenzelm@60240
    96
  val is_sort_constraint: term -> bool
wenzelm@28618
    97
  val sort_constraintI: thm
wenzelm@28618
    98
  val sort_constraint_eq: thm
wenzelm@23423
    99
  val with_subgoal: int -> (thm -> thm) -> thm -> thm
wenzelm@29344
   100
  val comp_no_flatten: thm * int -> int -> thm -> thm
berghofe@14081
   101
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   102
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   103
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   104
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@46186
   105
  val triv_forall_equality: thm
wenzelm@46186
   106
  val distinct_prems_rl: thm
wenzelm@46186
   107
  val equal_intr_rule: thm
wenzelm@46186
   108
  val equal_elim_rule1: thm
wenzelm@46186
   109
  val equal_elim_rule2: thm
wenzelm@12297
   110
  val remdups_rl: thm
berghofe@13325
   111
  val abs_def: thm -> thm
wenzelm@3766
   112
end;
clasohm@0
   113
wenzelm@5903
   114
structure Drule: DRULE =
clasohm@0
   115
struct
clasohm@0
   116
wenzelm@3991
   117
wenzelm@16682
   118
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   119
lcp@708
   120
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   121
fun strip_imp_prems ct =
wenzelm@22906
   122
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   123
  in cA :: strip_imp_prems cB end
wenzelm@20579
   124
  handle TERM _ => [];
lcp@708
   125
paulson@2004
   126
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   127
fun strip_imp_concl ct =
wenzelm@20579
   128
  (case Thm.term_of ct of
wenzelm@56245
   129
    Const ("Pure.imp", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   130
  | _ => ct);
paulson@2004
   131
lcp@708
   132
(*The premises of a theorem, as a cterm list*)
wenzelm@59582
   133
val cprems_of = strip_imp_prems o Thm.cprop_of;
lcp@708
   134
wenzelm@59621
   135
fun cterm_fun f ct = Thm.global_cterm_of (Thm.theory_of_cterm ct) (f (Thm.term_of ct));
wenzelm@59621
   136
fun ctyp_fun f cT = Thm.global_ctyp_of (Thm.theory_of_ctyp cT) (f (Thm.typ_of cT));
berghofe@15797
   137
wenzelm@59621
   138
fun certify t = Thm.global_cterm_of (Context.the_theory (Context.the_thread_data ())) t;
paulson@9547
   139
wenzelm@27333
   140
val implies = certify Logic.implies;
wenzelm@46497
   141
fun mk_implies (A, B) = Thm.apply (Thm.apply implies A) B;
paulson@9547
   142
paulson@9547
   143
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   144
fun list_implies([], B) = B
paulson@9547
   145
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   146
paulson@15949
   147
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   148
fun list_comb (f, []) = f
wenzelm@46497
   149
  | list_comb (f, t::ts) = list_comb (Thm.apply f t, ts);
paulson@15949
   150
berghofe@12908
   151
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   152
fun strip_comb ct =
berghofe@12908
   153
  let
berghofe@12908
   154
    fun stripc (p as (ct, cts)) =
berghofe@12908
   155
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   156
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   157
  in stripc (ct, []) end;
berghofe@12908
   158
berghofe@15262
   159
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   160
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   161
    Type ("fun", _) =>
berghofe@15262
   162
      let
berghofe@15262
   163
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   164
        val (cTs, cT') = strip_type cT2
berghofe@15262
   165
      in (cT1 :: cTs, cT') end
berghofe@15262
   166
  | _ => ([], cT));
berghofe@15262
   167
paulson@15949
   168
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   169
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   170
fun beta_conv x y =
wenzelm@59582
   171
  Thm.dest_arg (Thm.cprop_of (Thm.beta_conversion false (Thm.apply x y)));
paulson@15949
   172
wenzelm@15875
   173
lcp@708
   174
clasohm@0
   175
(** Standardization of rules **)
clasohm@0
   176
wenzelm@19730
   177
(*Generalization over a list of variables*)
wenzelm@36944
   178
val forall_intr_list = fold_rev Thm.forall_intr;
clasohm@0
   179
wenzelm@18535
   180
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   181
fun forall_intr_vars th =
wenzelm@36944
   182
  fold Thm.forall_intr
wenzelm@59621
   183
    (map (Thm.global_cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   184
wenzelm@18025
   185
fun outer_params t =
wenzelm@20077
   186
  let val vs = Term.strip_all_vars t
wenzelm@20077
   187
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   188
wenzelm@18025
   189
(*generalize outermost parameters*)
wenzelm@59647
   190
fun gen_all maxidx0 th =
wenzelm@12719
   191
  let
wenzelm@59647
   192
    val thy = Thm.theory_of_thm th;
wenzelm@59647
   193
    val maxidx = Thm.maxidx_thm th maxidx0;
wenzelm@59647
   194
    val prop = Thm.prop_of th;
wenzelm@59647
   195
    fun elim (x, T) =
wenzelm@59647
   196
      Thm.forall_elim (Thm.global_cterm_of thy (Var ((x, maxidx + 1), T)));
wenzelm@18025
   197
  in fold elim (outer_params prop) th end;
wenzelm@18025
   198
wenzelm@18025
   199
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   200
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   201
fun lift_all goal th =
wenzelm@18025
   202
  let
wenzelm@18025
   203
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@19421
   204
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   205
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   206
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   207
    val Ts = map Term.fastype_of ps;
wenzelm@59995
   208
    val inst =
wenzelm@59995
   209
      Thm.fold_terms Term.add_vars th []
wenzelm@59995
   210
      |> map (fn (xi, T) => ((xi, T), Term.list_comb (Var (xi, Ts ---> T), ps)));
wenzelm@18025
   211
  in
wenzelm@59995
   212
    th
wenzelm@59995
   213
    |> Thm.instantiate (Thm.certify_inst thy ([], inst))
wenzelm@59621
   214
    |> fold_rev (Thm.forall_intr o Thm.global_cterm_of thy) ps
wenzelm@18025
   215
  end;
wenzelm@18025
   216
wenzelm@19999
   217
(*direct generalization*)
wenzelm@19999
   218
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   219
wenzelm@16949
   220
(*specialization over a list of cterms*)
wenzelm@36944
   221
val forall_elim_list = fold Thm.forall_elim;
clasohm@0
   222
wenzelm@16949
   223
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@36944
   224
val implies_intr_list = fold_rev Thm.implies_intr;
clasohm@0
   225
wenzelm@16949
   226
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
wenzelm@24978
   227
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
clasohm@0
   228
clasohm@0
   229
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   230
fun zero_var_indexes_list [] = []
wenzelm@21603
   231
  | zero_var_indexes_list ths =
wenzelm@21603
   232
      let
wenzelm@21603
   233
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@59995
   234
        val inst =
wenzelm@59995
   235
          Term_Subst.zero_var_indexes_inst (map Thm.full_prop_of ths)
wenzelm@59995
   236
          |> Thm.certify_inst thy;
wenzelm@59995
   237
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate inst) ths end;
wenzelm@21603
   238
wenzelm@21603
   239
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   240
clasohm@0
   241
paulson@14394
   242
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   243
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   244
wenzelm@16595
   245
(*Discharge all hypotheses.*)
wenzelm@16595
   246
fun implies_intr_hyps th =
wenzelm@16595
   247
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   248
paulson@14394
   249
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   250
  This step can lose information.*)
wenzelm@58950
   251
fun flexflex_unique opt_ctxt th =
wenzelm@59773
   252
  if null (Thm.tpairs_of th) then th
wenzelm@59773
   253
  else
wenzelm@59773
   254
    (case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule opt_ctxt th)) of
paulson@23439
   255
      [th] => th
wenzelm@59773
   256
    | [] => raise THM ("flexflex_unique: impossible constraints", 0, [th])
wenzelm@59773
   257
    | _ => raise THM ("flexflex_unique: multiple unifiers", 0, [th]));
paulson@14387
   258
wenzelm@21603
   259
wenzelm@35021
   260
(* old-style export without context *)
wenzelm@21603
   261
wenzelm@35021
   262
val export_without_context_open =
wenzelm@16949
   263
  implies_intr_hyps
wenzelm@35985
   264
  #> Thm.forall_intr_frees
wenzelm@19421
   265
  #> `Thm.maxidx_of
wenzelm@16949
   266
  #-> (fn maxidx =>
wenzelm@26653
   267
    Thm.forall_elim_vars (maxidx + 1)
wenzelm@20904
   268
    #> Thm.strip_shyps
wenzelm@16949
   269
    #> zero_var_indexes
wenzelm@35845
   270
    #> Thm.varifyT_global);
wenzelm@1218
   271
wenzelm@35021
   272
val export_without_context =
wenzelm@58950
   273
  flexflex_unique NONE
wenzelm@35021
   274
  #> export_without_context_open
wenzelm@26627
   275
  #> Thm.close_derivation;
berghofe@11512
   276
clasohm@0
   277
paulson@7248
   278
(*Rotates a rule's premises to the left by k*)
wenzelm@23537
   279
fun rotate_prems 0 = I
wenzelm@31945
   280
  | rotate_prems k = Thm.permute_prems 0 k;
wenzelm@23537
   281
wenzelm@23423
   282
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
paulson@4610
   283
wenzelm@31945
   284
(*Permute prems, where the i-th position in the argument list (counting from 0)
wenzelm@31945
   285
  gives the position within the original thm to be transferred to position i.
wenzelm@31945
   286
  Any remaining trailing positions are left unchanged.*)
wenzelm@31945
   287
val rearrange_prems =
wenzelm@31945
   288
  let
wenzelm@31945
   289
    fun rearr new [] thm = thm
wenzelm@31945
   290
      | rearr new (p :: ps) thm =
wenzelm@31945
   291
          rearr (new + 1)
wenzelm@31945
   292
            (map (fn q => if new <= q andalso q < p then q + 1 else q) ps)
wenzelm@31945
   293
            (Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm))
oheimb@11163
   294
  in rearr 0 end;
paulson@4610
   295
wenzelm@47427
   296
wenzelm@47427
   297
(*Resolution: multiple arguments, multiple results*)
wenzelm@47427
   298
local
wenzelm@58950
   299
  fun res opt_ctxt th i rule =
wenzelm@58950
   300
    Thm.biresolution opt_ctxt false [(false, th)] i rule handle THM _ => Seq.empty;
clasohm@0
   301
wenzelm@58950
   302
  fun multi_res _ _ [] rule = Seq.single rule
wenzelm@58950
   303
    | multi_res opt_ctxt i (th :: ths) rule =
wenzelm@58950
   304
        Seq.maps (res opt_ctxt th i) (multi_res opt_ctxt (i + 1) ths rule);
wenzelm@47427
   305
in
wenzelm@58950
   306
  fun multi_resolve opt_ctxt = multi_res opt_ctxt 1;
wenzelm@58950
   307
  fun multi_resolves opt_ctxt facts rules =
wenzelm@58950
   308
    Seq.maps (multi_resolve opt_ctxt facts) (Seq.of_list rules);
wenzelm@47427
   309
end;
wenzelm@47427
   310
wenzelm@47427
   311
(*Resolution: exactly one resolvent must be produced*)
wenzelm@47427
   312
fun tha RSN (i, thb) =
wenzelm@58950
   313
  (case Seq.chop 2 (Thm.biresolution NONE false [(false, tha)] i thb) of
wenzelm@47427
   314
    ([th], _) => th
wenzelm@47427
   315
  | ([], _) => raise THM ("RSN: no unifiers", i, [tha, thb])
wenzelm@47427
   316
  | _ => raise THM ("RSN: multiple unifiers", i, [tha, thb]));
wenzelm@47427
   317
wenzelm@47427
   318
(*Resolution: P==>Q, Q==>R gives P==>R*)
clasohm@0
   319
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   320
clasohm@0
   321
(*For joining lists of rules*)
wenzelm@47427
   322
fun thas RLN (i, thbs) =
wenzelm@59773
   323
  let
wenzelm@59773
   324
    val resolve = Thm.biresolution NONE false (map (pair false) thas) i
wenzelm@59773
   325
    fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   326
  in maps resb thbs end;
clasohm@0
   327
wenzelm@47427
   328
fun thas RL thbs = thas RLN (1, thbs);
wenzelm@47427
   329
wenzelm@47427
   330
(*Isar-style multi-resolution*)
wenzelm@47427
   331
fun bottom_rl OF rls =
wenzelm@58950
   332
  (case Seq.chop 2 (multi_resolve NONE rls bottom_rl) of
wenzelm@47427
   333
    ([th], _) => th
wenzelm@47427
   334
  | ([], _) => raise THM ("OF: no unifiers", 0, bottom_rl :: rls)
wenzelm@47427
   335
  | _ => raise THM ("OF: multiple unifiers", 0, bottom_rl :: rls));
clasohm@0
   336
lcp@11
   337
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   338
  makes proof trees*)
wenzelm@47427
   339
fun rls MRS bottom_rl = bottom_rl OF rls;
wenzelm@9288
   340
wenzelm@252
   341
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   342
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   343
  ALWAYS deletes premise i *)
wenzelm@52467
   344
fun compose (tha, i, thb) =
wenzelm@58950
   345
  Thm.bicompose NONE {flatten = true, match = false, incremented = false} (false, tha, 0) i thb
wenzelm@52467
   346
  |> Seq.list_of |> distinct Thm.eq_thm
wenzelm@52467
   347
  |> (fn [th] => th | _ => raise THM ("compose: unique result expected", i, [tha, thb]));
wenzelm@6946
   348
wenzelm@13105
   349
wenzelm@4016
   350
(** theorem equality **)
clasohm@0
   351
clasohm@0
   352
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   353
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   354
lcp@1194
   355
lcp@1194
   356
clasohm@0
   357
(*** Meta-Rewriting Rules ***)
clasohm@0
   358
wenzelm@33384
   359
val read_prop = certify o Simple_Syntax.read_prop;
wenzelm@26487
   360
wenzelm@26487
   361
fun store_thm name th =
wenzelm@39557
   362
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm (name, th)));
paulson@4610
   363
wenzelm@26487
   364
fun store_thm_open name th =
wenzelm@39557
   365
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm_open (name, th)));
wenzelm@26487
   366
wenzelm@35021
   367
fun store_standard_thm name th = store_thm name (export_without_context th);
wenzelm@35021
   368
fun store_standard_thm_open name thm = store_thm_open name (export_without_context_open thm);
wenzelm@4016
   369
clasohm@0
   370
val reflexive_thm =
wenzelm@26487
   371
  let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
wenzelm@56436
   372
  in store_standard_thm_open (Binding.make ("reflexive", @{here})) (Thm.reflexive cx) end;
clasohm@0
   373
clasohm@0
   374
val symmetric_thm =
wenzelm@33277
   375
  let
wenzelm@33277
   376
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   377
    val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
wenzelm@56436
   378
  in store_standard_thm_open (Binding.make ("symmetric", @{here})) thm end;
clasohm@0
   379
clasohm@0
   380
val transitive_thm =
wenzelm@33277
   381
  let
wenzelm@33277
   382
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   383
    val yz = read_prop "y::'a == z::'a";
wenzelm@33277
   384
    val xythm = Thm.assume xy;
wenzelm@33277
   385
    val yzthm = Thm.assume yz;
wenzelm@33277
   386
    val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
wenzelm@56436
   387
  in store_standard_thm_open (Binding.make ("transitive", @{here})) thm end;
clasohm@0
   388
berghofe@11512
   389
fun extensional eq =
berghofe@11512
   390
  let val eq' =
wenzelm@59582
   391
    Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (Thm.cprop_of eq)))) eq
wenzelm@59582
   392
  in Thm.equal_elim (Thm.eta_conversion (Thm.cprop_of eq')) eq' end;
berghofe@11512
   393
wenzelm@18820
   394
val equals_cong =
wenzelm@56436
   395
  store_standard_thm_open (Binding.make ("equals_cong", @{here}))
wenzelm@33277
   396
    (Thm.reflexive (read_prop "x::'a == y::'a"));
wenzelm@18820
   397
berghofe@10414
   398
val imp_cong =
berghofe@10414
   399
  let
wenzelm@24241
   400
    val ABC = read_prop "A ==> B::prop == C::prop"
wenzelm@24241
   401
    val AB = read_prop "A ==> B"
wenzelm@24241
   402
    val AC = read_prop "A ==> C"
wenzelm@24241
   403
    val A = read_prop "A"
berghofe@10414
   404
  in
wenzelm@56436
   405
    store_standard_thm_open (Binding.make ("imp_cong", @{here}))
wenzelm@56436
   406
      (Thm.implies_intr ABC (Thm.equal_intr
wenzelm@56436
   407
        (Thm.implies_intr AB (Thm.implies_intr A
wenzelm@56436
   408
          (Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))
wenzelm@56436
   409
            (Thm.implies_elim (Thm.assume AB) (Thm.assume A)))))
wenzelm@56436
   410
        (Thm.implies_intr AC (Thm.implies_intr A
wenzelm@56436
   411
          (Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)))
wenzelm@56436
   412
            (Thm.implies_elim (Thm.assume AC) (Thm.assume A)))))))
berghofe@10414
   413
  end;
berghofe@10414
   414
berghofe@10414
   415
val swap_prems_eq =
berghofe@10414
   416
  let
wenzelm@24241
   417
    val ABC = read_prop "A ==> B ==> C"
wenzelm@24241
   418
    val BAC = read_prop "B ==> A ==> C"
wenzelm@24241
   419
    val A = read_prop "A"
wenzelm@24241
   420
    val B = read_prop "B"
berghofe@10414
   421
  in
wenzelm@56436
   422
    store_standard_thm_open (Binding.make ("swap_prems_eq", @{here}))
wenzelm@36944
   423
      (Thm.equal_intr
wenzelm@36944
   424
        (Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A
wenzelm@36944
   425
          (Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B)))))
wenzelm@36944
   426
        (Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B
wenzelm@36944
   427
          (Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A))))))
berghofe@10414
   428
  end;
lcp@229
   429
wenzelm@22938
   430
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   431
wenzelm@23537
   432
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM in LCF/HOL*)
wenzelm@23537
   433
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM in LCF/HOL*)
wenzelm@23568
   434
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
clasohm@0
   435
skalberg@15001
   436
local
wenzelm@59582
   437
  val dest_eq = Thm.dest_equals o Thm.cprop_of
skalberg@15001
   438
  val rhs_of = snd o dest_eq
skalberg@15001
   439
in
skalberg@15001
   440
fun beta_eta_conversion t =
wenzelm@36944
   441
  let val thm = Thm.beta_conversion true t
wenzelm@36944
   442
  in Thm.transitive thm (Thm.eta_conversion (rhs_of thm)) end
skalberg@15001
   443
end;
skalberg@15001
   444
wenzelm@36944
   445
fun eta_long_conversion ct =
wenzelm@36944
   446
  Thm.transitive
wenzelm@36944
   447
    (beta_eta_conversion ct)
wenzelm@52131
   448
    (Thm.symmetric (beta_eta_conversion (cterm_fun (Envir.eta_long []) ct)));
berghofe@15925
   449
paulson@20861
   450
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   451
fun eta_contraction_rule th =
wenzelm@59582
   452
  Thm.equal_elim (Thm.eta_conversion (Thm.cprop_of th)) th;
paulson@20861
   453
wenzelm@24947
   454
wenzelm@24947
   455
(* abs_def *)
wenzelm@24947
   456
wenzelm@24947
   457
(*
wenzelm@24947
   458
   f ?x1 ... ?xn == u
wenzelm@24947
   459
  --------------------
wenzelm@24947
   460
   f == %x1 ... xn. u
wenzelm@24947
   461
*)
wenzelm@24947
   462
wenzelm@24947
   463
local
wenzelm@24947
   464
wenzelm@24947
   465
fun contract_lhs th =
wenzelm@24947
   466
  Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@59582
   467
    (fst (Thm.dest_equals (Thm.cprop_of th))))) th;
wenzelm@24947
   468
wenzelm@24947
   469
fun var_args ct =
wenzelm@24947
   470
  (case try Thm.dest_comb ct of
wenzelm@24947
   471
    SOME (f, arg) =>
wenzelm@24947
   472
      (case Thm.term_of arg of
wenzelm@24947
   473
        Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
wenzelm@24947
   474
      | _ => [])
wenzelm@24947
   475
  | NONE => []);
wenzelm@24947
   476
wenzelm@24947
   477
in
wenzelm@24947
   478
wenzelm@24947
   479
fun abs_def th =
wenzelm@18337
   480
  let
wenzelm@24947
   481
    val th' = contract_lhs th;
wenzelm@24947
   482
    val args = var_args (Thm.lhs_of th');
wenzelm@24947
   483
  in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
wenzelm@24947
   484
wenzelm@24947
   485
end;
wenzelm@24947
   486
wenzelm@18337
   487
wenzelm@18468
   488
wenzelm@15669
   489
(*** Some useful meta-theorems ***)
clasohm@0
   490
clasohm@0
   491
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@56436
   492
val asm_rl =
wenzelm@56436
   493
  store_standard_thm_open (Binding.make ("asm_rl", @{here}))
wenzelm@56436
   494
    (Thm.trivial (read_prop "?psi"));
clasohm@0
   495
clasohm@0
   496
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   497
val cut_rl =
wenzelm@56436
   498
  store_standard_thm_open (Binding.make ("cut_rl", @{here}))
wenzelm@24241
   499
    (Thm.trivial (read_prop "?psi ==> ?theta"));
clasohm@0
   500
wenzelm@252
   501
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   502
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   503
val revcut_rl =
wenzelm@33277
   504
  let
wenzelm@33277
   505
    val V = read_prop "V";
wenzelm@33277
   506
    val VW = read_prop "V ==> W";
wenzelm@4016
   507
  in
wenzelm@56436
   508
    store_standard_thm_open (Binding.make ("revcut_rl", @{here}))
wenzelm@56436
   509
      (Thm.implies_intr V
wenzelm@56436
   510
        (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V))))
clasohm@0
   511
  end;
clasohm@0
   512
lcp@668
   513
(*for deleting an unwanted assumption*)
lcp@668
   514
val thin_rl =
wenzelm@33277
   515
  let
wenzelm@33277
   516
    val V = read_prop "V";
wenzelm@33277
   517
    val W = read_prop "W";
wenzelm@36944
   518
    val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W));
wenzelm@56436
   519
  in store_standard_thm_open (Binding.make ("thin_rl", @{here})) thm end;
lcp@668
   520
clasohm@0
   521
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   522
val triv_forall_equality =
wenzelm@33277
   523
  let
wenzelm@33277
   524
    val V = read_prop "V";
wenzelm@33277
   525
    val QV = read_prop "!!x::'a. V";
wenzelm@33277
   526
    val x = certify (Free ("x", Term.aT []));
wenzelm@4016
   527
  in
wenzelm@56436
   528
    store_standard_thm_open (Binding.make ("triv_forall_equality", @{here}))
wenzelm@36944
   529
      (Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV)))
wenzelm@36944
   530
        (Thm.implies_intr V (Thm.forall_intr x (Thm.assume V))))
clasohm@0
   531
  end;
clasohm@0
   532
wenzelm@19051
   533
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   534
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   535
*)
wenzelm@19051
   536
val distinct_prems_rl =
wenzelm@19051
   537
  let
wenzelm@33277
   538
    val AAB = read_prop "Phi ==> Phi ==> Psi";
wenzelm@24241
   539
    val A = read_prop "Phi";
wenzelm@19051
   540
  in
wenzelm@56436
   541
    store_standard_thm_open (Binding.make ("distinct_prems_rl", @{here}))
wenzelm@56436
   542
      (implies_intr_list [AAB, A]
wenzelm@56436
   543
        (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A]))
wenzelm@19051
   544
  end;
wenzelm@19051
   545
nipkow@3653
   546
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   547
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   548
   Introduction rule for == as a meta-theorem.
nipkow@3653
   549
*)
nipkow@3653
   550
val equal_intr_rule =
wenzelm@33277
   551
  let
wenzelm@33277
   552
    val PQ = read_prop "phi ==> psi";
wenzelm@33277
   553
    val QP = read_prop "psi ==> phi";
wenzelm@4016
   554
  in
wenzelm@56436
   555
    store_standard_thm_open (Binding.make ("equal_intr_rule", @{here}))
wenzelm@56436
   556
      (Thm.implies_intr PQ
wenzelm@56436
   557
        (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP))))
nipkow@3653
   558
  end;
nipkow@3653
   559
wenzelm@19421
   560
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   561
val equal_elim_rule1 =
wenzelm@33277
   562
  let
wenzelm@33277
   563
    val eq = read_prop "phi::prop == psi::prop";
wenzelm@33277
   564
    val P = read_prop "phi";
wenzelm@33277
   565
  in
wenzelm@56436
   566
    store_standard_thm_open (Binding.make ("equal_elim_rule1", @{here}))
wenzelm@36944
   567
      (Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   568
  end;
wenzelm@4285
   569
wenzelm@19421
   570
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   571
val equal_elim_rule2 =
wenzelm@56436
   572
  store_standard_thm_open (Binding.make ("equal_elim_rule2", @{here}))
wenzelm@33277
   573
    (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   574
wenzelm@28618
   575
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
wenzelm@12297
   576
val remdups_rl =
wenzelm@33277
   577
  let
wenzelm@33277
   578
    val P = read_prop "phi";
wenzelm@33277
   579
    val Q = read_prop "psi";
wenzelm@33277
   580
    val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
wenzelm@56436
   581
  in store_standard_thm_open (Binding.make ("remdups_rl", @{here})) thm end;
wenzelm@12297
   582
wenzelm@12297
   583
wenzelm@28618
   584
wenzelm@28618
   585
(** embedded terms and types **)
wenzelm@28618
   586
wenzelm@28618
   587
local
wenzelm@28618
   588
  val A = certify (Free ("A", propT));
wenzelm@35845
   589
  val axiom = Thm.unvarify_global o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
wenzelm@28674
   590
  val prop_def = axiom "Pure.prop_def";
wenzelm@28674
   591
  val term_def = axiom "Pure.term_def";
wenzelm@28674
   592
  val sort_constraint_def = axiom "Pure.sort_constraint_def";
wenzelm@28618
   593
  val C = Thm.lhs_of sort_constraint_def;
wenzelm@28618
   594
  val T = Thm.dest_arg C;
wenzelm@28618
   595
  val CA = mk_implies (C, A);
wenzelm@28618
   596
in
wenzelm@28618
   597
wenzelm@28618
   598
(* protect *)
wenzelm@28618
   599
wenzelm@46497
   600
val protect = Thm.apply (certify Logic.protectC);
wenzelm@28618
   601
wenzelm@33277
   602
val protectI =
wenzelm@59859
   603
  store_standard_thm (Binding.concealed (Binding.make ("protectI", @{here})))
wenzelm@35021
   604
    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A));
wenzelm@28618
   605
wenzelm@33277
   606
val protectD =
wenzelm@59859
   607
  store_standard_thm (Binding.concealed (Binding.make ("protectD", @{here})))
wenzelm@35021
   608
    (Thm.equal_elim prop_def (Thm.assume (protect A)));
wenzelm@28618
   609
wenzelm@33277
   610
val protect_cong =
wenzelm@56436
   611
  store_standard_thm_open (Binding.make ("protect_cong", @{here}))
wenzelm@56436
   612
    (Thm.reflexive (protect A));
wenzelm@28618
   613
wenzelm@28618
   614
fun implies_intr_protected asms th =
wenzelm@28618
   615
  let val asms' = map protect asms in
wenzelm@28618
   616
    implies_elim_list
wenzelm@28618
   617
      (implies_intr_list asms th)
wenzelm@28618
   618
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@28618
   619
    |> implies_intr_list asms'
wenzelm@28618
   620
  end;
wenzelm@28618
   621
wenzelm@28618
   622
wenzelm@28618
   623
(* term *)
wenzelm@28618
   624
wenzelm@33277
   625
val termI =
wenzelm@59859
   626
  store_standard_thm (Binding.concealed (Binding.make ("termI", @{here})))
wenzelm@35021
   627
    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)));
wenzelm@9554
   628
wenzelm@28618
   629
fun mk_term ct =
wenzelm@28618
   630
  let
wenzelm@28618
   631
    val thy = Thm.theory_of_cterm ct;
wenzelm@59586
   632
    val T = Thm.typ_of_cterm ct;
wenzelm@59995
   633
    val instT = apply2 (Thm.global_ctyp_of thy) (TVar (("'a", 0), []), T);
wenzelm@59621
   634
    val x = Thm.global_cterm_of thy (Var (("x", 0), T));
wenzelm@59995
   635
  in Thm.instantiate ([instT], [(x, ct)]) termI end;
wenzelm@28618
   636
wenzelm@28618
   637
fun dest_term th =
wenzelm@28618
   638
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@28618
   639
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@28618
   640
      Thm.dest_arg cprop
wenzelm@28618
   641
    else raise THM ("dest_term", 0, [th])
wenzelm@28618
   642
  end;
wenzelm@28618
   643
wenzelm@28618
   644
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@28618
   645
wenzelm@45156
   646
val dummy_thm = mk_term (certify Term.dummy_prop);
wenzelm@28618
   647
wenzelm@28618
   648
wenzelm@28618
   649
(* sort_constraint *)
wenzelm@28618
   650
wenzelm@60240
   651
fun is_sort_constraint (Const ("Pure.sort_constraint", _) $ Const ("Pure.type", _)) = true
wenzelm@60240
   652
  | is_sort_constraint _ = false;
wenzelm@60240
   653
wenzelm@33277
   654
val sort_constraintI =
wenzelm@59859
   655
  store_standard_thm (Binding.concealed (Binding.make ("sort_constraintI", @{here})))
wenzelm@35021
   656
    (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T));
wenzelm@28618
   657
wenzelm@33277
   658
val sort_constraint_eq =
wenzelm@59859
   659
  store_standard_thm (Binding.concealed (Binding.make ("sort_constraint_eq", @{here})))
wenzelm@35021
   660
    (Thm.equal_intr
wenzelm@35845
   661
      (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA)
wenzelm@35845
   662
        (Thm.unvarify_global sort_constraintI)))
wenzelm@35021
   663
      (implies_intr_list [A, C] (Thm.assume A)));
wenzelm@28618
   664
wenzelm@28618
   665
end;
wenzelm@28618
   666
wenzelm@28618
   667
wenzelm@28618
   668
(* HHF normalization *)
wenzelm@28618
   669
wenzelm@46214
   670
(* (PROP ?phi ==> (!!x. PROP ?psi x)) == (!!x. PROP ?phi ==> PROP ?psi x) *)
wenzelm@9554
   671
val norm_hhf_eq =
wenzelm@9554
   672
  let
wenzelm@14854
   673
    val aT = TFree ("'a", []);
wenzelm@9554
   674
    val x = Free ("x", aT);
wenzelm@9554
   675
    val phi = Free ("phi", propT);
wenzelm@9554
   676
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   677
wenzelm@26487
   678
    val cx = certify x;
wenzelm@26487
   679
    val cphi = certify phi;
wenzelm@46214
   680
    val lhs = certify (Logic.mk_implies (phi, Logic.all x (psi $ x)));
wenzelm@46214
   681
    val rhs = certify (Logic.all x (Logic.mk_implies (phi, psi $ x)));
wenzelm@9554
   682
  in
wenzelm@9554
   683
    Thm.equal_intr
wenzelm@9554
   684
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   685
        |> Thm.forall_elim cx
wenzelm@9554
   686
        |> Thm.implies_intr cphi
wenzelm@9554
   687
        |> Thm.forall_intr cx
wenzelm@9554
   688
        |> Thm.implies_intr lhs)
wenzelm@9554
   689
      (Thm.implies_elim
wenzelm@9554
   690
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   691
        |> Thm.forall_intr cx
wenzelm@9554
   692
        |> Thm.implies_intr cphi
wenzelm@9554
   693
        |> Thm.implies_intr rhs)
wenzelm@56436
   694
    |> store_standard_thm_open (Binding.make ("norm_hhf_eq", @{here}))
wenzelm@9554
   695
  end;
wenzelm@9554
   696
wenzelm@18179
   697
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@28618
   698
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
wenzelm@18179
   699
wenzelm@30553
   700
fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false
wenzelm@56245
   701
  | is_norm_hhf (Const ("Pure.imp", _) $ _ $ (Const ("Pure.all", _) $ _)) = false
wenzelm@30553
   702
  | is_norm_hhf (Abs _ $ _) = false
wenzelm@30553
   703
  | is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u
wenzelm@30553
   704
  | is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t
wenzelm@30553
   705
  | is_norm_hhf _ = true;
wenzelm@12800
   706
wenzelm@16425
   707
fun norm_hhf thy t =
wenzelm@12800
   708
  if is_norm_hhf t then t
wenzelm@18179
   709
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   710
wenzelm@20298
   711
fun norm_hhf_cterm ct =
wenzelm@20298
   712
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   713
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   714
wenzelm@12800
   715
wenzelm@21603
   716
(* var indexes *)
wenzelm@21603
   717
wenzelm@21603
   718
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   719
wenzelm@21603
   720
fun incr_indexes2 th1 th2 =
wenzelm@21603
   721
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   722
wenzelm@52224
   723
local
wenzelm@52224
   724
wenzelm@52224
   725
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
wenzelm@52224
   726
fun comp incremented th1 th2 =
wenzelm@59773
   727
  Thm.bicompose NONE {flatten = true, match = false, incremented = incremented}
wenzelm@59773
   728
    (false, th1, 0) 1 th2
wenzelm@52224
   729
  |> Seq.list_of |> distinct Thm.eq_thm
wenzelm@52224
   730
  |> (fn [th] => th | _ => raise THM ("COMP", 1, [th1, th2]));
wenzelm@52224
   731
wenzelm@52224
   732
in
wenzelm@52224
   733
wenzelm@52224
   734
fun th1 COMP th2 = comp false th1 th2;
wenzelm@52224
   735
fun th1 INCR_COMP th2 = comp true (incr_indexes th2 th1) th2;
wenzelm@52224
   736
fun th1 COMP_INCR th2 = comp true th1 (incr_indexes th1 th2);
wenzelm@52224
   737
wenzelm@52224
   738
end;
wenzelm@21603
   739
wenzelm@29344
   740
fun comp_no_flatten (th, n) i rule =
wenzelm@29344
   741
  (case distinct Thm.eq_thm (Seq.list_of
wenzelm@58950
   742
      (Thm.bicompose NONE {flatten = false, match = false, incremented = true}
wenzelm@52223
   743
        (false, th, n) i (incr_indexes th rule))) of
wenzelm@29344
   744
    [th'] => th'
wenzelm@29344
   745
  | [] => raise THM ("comp_no_flatten", i, [th, rule])
wenzelm@29344
   746
  | _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule]));
wenzelm@29344
   747
wenzelm@29344
   748
wenzelm@9554
   749
wenzelm@45348
   750
(** variations on Thm.instantiate **)
paulson@8129
   751
wenzelm@43333
   752
fun instantiate_normalize instpair th =
wenzelm@21603
   753
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   754
wenzelm@45347
   755
(*Left-to-right replacements: tpairs = [..., (vi, ti), ...].
wenzelm@45347
   756
  Instantiates distinct Vars by terms, inferring type instantiations.*)
paulson@8129
   757
local
wenzelm@45347
   758
  fun add_types (ct, cu) (thy, tye, maxidx) =
wenzelm@26627
   759
    let
wenzelm@59591
   760
      val t = Thm.term_of ct and T = Thm.typ_of_cterm ct;
wenzelm@59591
   761
      val u = Thm.term_of cu and U = Thm.typ_of_cterm cu;
wenzelm@59591
   762
      val maxi = Int.max (maxidx, Int.max (apply2 Thm.maxidx_of_cterm (ct, cu)));
wenzelm@59591
   763
      val thy' = Theory.merge (thy, Theory.merge (apply2 Thm.theory_of_cterm (ct, cu)));
wenzelm@45347
   764
      val (tye', maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@45347
   765
        handle Type.TUNIFY => raise TYPE ("Ill-typed instantiation:\nType\n" ^
wenzelm@45347
   766
          Syntax.string_of_typ_global thy' (Envir.norm_type tye T) ^
wenzelm@45347
   767
          "\nof variable " ^
wenzelm@45347
   768
          Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) t) ^
wenzelm@45347
   769
          "\ncannot be unified with type\n" ^
wenzelm@45347
   770
          Syntax.string_of_typ_global thy' (Envir.norm_type tye U) ^ "\nof term " ^
wenzelm@45347
   771
          Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) u),
wenzelm@59773
   772
          [T, U], [t, u]);
wenzelm@45347
   773
    in (thy', tye', maxi') end;
paulson@8129
   774
in
wenzelm@45347
   775
paulson@22561
   776
fun cterm_instantiate [] th = th
wenzelm@45348
   777
  | cterm_instantiate ctpairs th =
wenzelm@45347
   778
      let
wenzelm@45348
   779
        val (thy, tye, _) = fold_rev add_types ctpairs (Thm.theory_of_thm th, Vartab.empty, 0);
wenzelm@45348
   780
        val instT =
wenzelm@45348
   781
          Vartab.fold (fn (xi, (S, T)) =>
wenzelm@59773
   782
            cons (apply2 (Thm.global_ctyp_of thy) (TVar (xi, S), Envir.norm_type tye T))) tye [];
wenzelm@59058
   783
        val inst = map (apply2 (Thm.instantiate_cterm (instT, []))) ctpairs;
wenzelm@45348
   784
      in instantiate_normalize (instT, inst) th end
wenzelm@45348
   785
      handle TERM (msg, _) => raise THM (msg, 0, [th])
wenzelm@45347
   786
        | TYPE (msg, _, _) => raise THM (msg, 0, [th]);
paulson@8129
   787
end;
paulson@8129
   788
paulson@8129
   789
wenzelm@4285
   790
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   791
wenzelm@4285
   792
fun instantiate' cTs cts thm =
wenzelm@4285
   793
  let
wenzelm@4285
   794
    fun err msg =
wenzelm@4285
   795
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   796
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   797
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   798
wenzelm@4285
   799
    fun inst_of (v, ct) =
wenzelm@59621
   800
      (Thm.global_cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   801
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   802
berghofe@15797
   803
    fun tyinst_of (v, cT) =
wenzelm@59621
   804
      (Thm.global_ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   805
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   806
wenzelm@20298
   807
    fun zip_vars xs ys =
wenzelm@40722
   808
      zip_options xs ys handle ListPair.UnequalLengths =>
wenzelm@20298
   809
        err "more instantiations than variables in thm";
wenzelm@4285
   810
wenzelm@4285
   811
    (*instantiate types first!*)
wenzelm@4285
   812
    val thm' =
wenzelm@4285
   813
      if forall is_none cTs then thm
wenzelm@20298
   814
      else Thm.instantiate
wenzelm@22695
   815
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   816
    val thm'' =
wenzelm@4285
   817
      if forall is_none cts then thm'
wenzelm@20298
   818
      else Thm.instantiate
wenzelm@22695
   819
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   820
    in thm'' end;
wenzelm@4285
   821
wenzelm@4285
   822
berghofe@14081
   823
berghofe@14081
   824
(** renaming of bound variables **)
berghofe@14081
   825
berghofe@14081
   826
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   827
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   828
berghofe@14081
   829
fun rename_bvars [] thm = thm
berghofe@14081
   830
  | rename_bvars vs thm =
wenzelm@26627
   831
      let
wenzelm@60313
   832
        fun rename (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, rename t)
wenzelm@60313
   833
          | rename (t $ u) = rename t $ rename u
wenzelm@60313
   834
          | rename a = a;
wenzelm@60313
   835
      in Thm.renamed_prop (rename (Thm.prop_of thm)) thm end;
berghofe@14081
   836
berghofe@14081
   837
berghofe@14081
   838
(* renaming in left-to-right order *)
berghofe@14081
   839
berghofe@14081
   840
fun rename_bvars' xs thm =
berghofe@14081
   841
  let
berghofe@14081
   842
    fun rename [] t = ([], t)
berghofe@14081
   843
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   844
          let val (xs', t') = rename xs t
wenzelm@18929
   845
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   846
      | rename xs (t $ u) =
berghofe@14081
   847
          let
berghofe@14081
   848
            val (xs', t') = rename xs t;
wenzelm@60313
   849
            val (xs'', u') = rename xs' u;
berghofe@14081
   850
          in (xs'', t' $ u') end
berghofe@14081
   851
      | rename xs t = (xs, t);
wenzelm@59616
   852
  in
wenzelm@60313
   853
    (case rename xs (Thm.prop_of thm) of
wenzelm@60313
   854
      ([], prop') => Thm.renamed_prop prop' thm
wenzelm@59616
   855
    | _ => error "More names than abstractions in theorem")
berghofe@14081
   856
  end;
berghofe@14081
   857
wenzelm@11975
   858
end;
wenzelm@5903
   859
wenzelm@35021
   860
structure Basic_Drule: BASIC_DRULE = Drule;
wenzelm@35021
   861
open Basic_Drule;