src/HOL/Num.thy
author huffman
Sun Mar 25 20:15:39 2012 +0200 (2012-03-25)
changeset 47108 2a1953f0d20d
child 47126 e980b14c347d
permissions -rw-r--r--
merged fork with new numeral representation (see NEWS)
huffman@47108
     1
(*  Title:      HOL/Num.thy
huffman@47108
     2
    Author:     Florian Haftmann
huffman@47108
     3
    Author:     Brian Huffman
huffman@47108
     4
*)
huffman@47108
     5
huffman@47108
     6
header {* Binary Numerals *}
huffman@47108
     7
huffman@47108
     8
theory Num
huffman@47108
     9
imports Datatype Power
huffman@47108
    10
begin
huffman@47108
    11
huffman@47108
    12
subsection {* The @{text num} type *}
huffman@47108
    13
huffman@47108
    14
datatype num = One | Bit0 num | Bit1 num
huffman@47108
    15
huffman@47108
    16
text {* Increment function for type @{typ num} *}
huffman@47108
    17
huffman@47108
    18
primrec inc :: "num \<Rightarrow> num" where
huffman@47108
    19
  "inc One = Bit0 One" |
huffman@47108
    20
  "inc (Bit0 x) = Bit1 x" |
huffman@47108
    21
  "inc (Bit1 x) = Bit0 (inc x)"
huffman@47108
    22
huffman@47108
    23
text {* Converting between type @{typ num} and type @{typ nat} *}
huffman@47108
    24
huffman@47108
    25
primrec nat_of_num :: "num \<Rightarrow> nat" where
huffman@47108
    26
  "nat_of_num One = Suc 0" |
huffman@47108
    27
  "nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x" |
huffman@47108
    28
  "nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)"
huffman@47108
    29
huffman@47108
    30
primrec num_of_nat :: "nat \<Rightarrow> num" where
huffman@47108
    31
  "num_of_nat 0 = One" |
huffman@47108
    32
  "num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)"
huffman@47108
    33
huffman@47108
    34
lemma nat_of_num_pos: "0 < nat_of_num x"
huffman@47108
    35
  by (induct x) simp_all
huffman@47108
    36
huffman@47108
    37
lemma nat_of_num_neq_0: " nat_of_num x \<noteq> 0"
huffman@47108
    38
  by (induct x) simp_all
huffman@47108
    39
huffman@47108
    40
lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)"
huffman@47108
    41
  by (induct x) simp_all
huffman@47108
    42
huffman@47108
    43
lemma num_of_nat_double:
huffman@47108
    44
  "0 < n \<Longrightarrow> num_of_nat (n + n) = Bit0 (num_of_nat n)"
huffman@47108
    45
  by (induct n) simp_all
huffman@47108
    46
huffman@47108
    47
text {*
huffman@47108
    48
  Type @{typ num} is isomorphic to the strictly positive
huffman@47108
    49
  natural numbers.
huffman@47108
    50
*}
huffman@47108
    51
huffman@47108
    52
lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x"
huffman@47108
    53
  by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos)
huffman@47108
    54
huffman@47108
    55
lemma num_of_nat_inverse: "0 < n \<Longrightarrow> nat_of_num (num_of_nat n) = n"
huffman@47108
    56
  by (induct n) (simp_all add: nat_of_num_inc)
huffman@47108
    57
huffman@47108
    58
lemma num_eq_iff: "x = y \<longleftrightarrow> nat_of_num x = nat_of_num y"
huffman@47108
    59
  apply safe
huffman@47108
    60
  apply (drule arg_cong [where f=num_of_nat])
huffman@47108
    61
  apply (simp add: nat_of_num_inverse)
huffman@47108
    62
  done
huffman@47108
    63
huffman@47108
    64
lemma num_induct [case_names One inc]:
huffman@47108
    65
  fixes P :: "num \<Rightarrow> bool"
huffman@47108
    66
  assumes One: "P One"
huffman@47108
    67
    and inc: "\<And>x. P x \<Longrightarrow> P (inc x)"
huffman@47108
    68
  shows "P x"
huffman@47108
    69
proof -
huffman@47108
    70
  obtain n where n: "Suc n = nat_of_num x"
huffman@47108
    71
    by (cases "nat_of_num x", simp_all add: nat_of_num_neq_0)
huffman@47108
    72
  have "P (num_of_nat (Suc n))"
huffman@47108
    73
  proof (induct n)
huffman@47108
    74
    case 0 show ?case using One by simp
huffman@47108
    75
  next
huffman@47108
    76
    case (Suc n)
huffman@47108
    77
    then have "P (inc (num_of_nat (Suc n)))" by (rule inc)
huffman@47108
    78
    then show "P (num_of_nat (Suc (Suc n)))" by simp
huffman@47108
    79
  qed
huffman@47108
    80
  with n show "P x"
huffman@47108
    81
    by (simp add: nat_of_num_inverse)
huffman@47108
    82
qed
huffman@47108
    83
huffman@47108
    84
text {*
huffman@47108
    85
  From now on, there are two possible models for @{typ num}:
huffman@47108
    86
  as positive naturals (rule @{text "num_induct"})
huffman@47108
    87
  and as digit representation (rules @{text "num.induct"}, @{text "num.cases"}).
huffman@47108
    88
*}
huffman@47108
    89
huffman@47108
    90
huffman@47108
    91
subsection {* Numeral operations *}
huffman@47108
    92
huffman@47108
    93
instantiation num :: "{plus,times,linorder}"
huffman@47108
    94
begin
huffman@47108
    95
huffman@47108
    96
definition [code del]:
huffman@47108
    97
  "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
huffman@47108
    98
huffman@47108
    99
definition [code del]:
huffman@47108
   100
  "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
huffman@47108
   101
huffman@47108
   102
definition [code del]:
huffman@47108
   103
  "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
huffman@47108
   104
huffman@47108
   105
definition [code del]:
huffman@47108
   106
  "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
huffman@47108
   107
huffman@47108
   108
instance
huffman@47108
   109
  by (default, auto simp add: less_num_def less_eq_num_def num_eq_iff)
huffman@47108
   110
huffman@47108
   111
end
huffman@47108
   112
huffman@47108
   113
lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y"
huffman@47108
   114
  unfolding plus_num_def
huffman@47108
   115
  by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos)
huffman@47108
   116
huffman@47108
   117
lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y"
huffman@47108
   118
  unfolding times_num_def
huffman@47108
   119
  by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos)
huffman@47108
   120
huffman@47108
   121
lemma add_num_simps [simp, code]:
huffman@47108
   122
  "One + One = Bit0 One"
huffman@47108
   123
  "One + Bit0 n = Bit1 n"
huffman@47108
   124
  "One + Bit1 n = Bit0 (n + One)"
huffman@47108
   125
  "Bit0 m + One = Bit1 m"
huffman@47108
   126
  "Bit0 m + Bit0 n = Bit0 (m + n)"
huffman@47108
   127
  "Bit0 m + Bit1 n = Bit1 (m + n)"
huffman@47108
   128
  "Bit1 m + One = Bit0 (m + One)"
huffman@47108
   129
  "Bit1 m + Bit0 n = Bit1 (m + n)"
huffman@47108
   130
  "Bit1 m + Bit1 n = Bit0 (m + n + One)"
huffman@47108
   131
  by (simp_all add: num_eq_iff nat_of_num_add)
huffman@47108
   132
huffman@47108
   133
lemma mult_num_simps [simp, code]:
huffman@47108
   134
  "m * One = m"
huffman@47108
   135
  "One * n = n"
huffman@47108
   136
  "Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))"
huffman@47108
   137
  "Bit0 m * Bit1 n = Bit0 (m * Bit1 n)"
huffman@47108
   138
  "Bit1 m * Bit0 n = Bit0 (Bit1 m * n)"
huffman@47108
   139
  "Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))"
huffman@47108
   140
  by (simp_all add: num_eq_iff nat_of_num_add
huffman@47108
   141
    nat_of_num_mult left_distrib right_distrib)
huffman@47108
   142
huffman@47108
   143
lemma eq_num_simps:
huffman@47108
   144
  "One = One \<longleftrightarrow> True"
huffman@47108
   145
  "One = Bit0 n \<longleftrightarrow> False"
huffman@47108
   146
  "One = Bit1 n \<longleftrightarrow> False"
huffman@47108
   147
  "Bit0 m = One \<longleftrightarrow> False"
huffman@47108
   148
  "Bit1 m = One \<longleftrightarrow> False"
huffman@47108
   149
  "Bit0 m = Bit0 n \<longleftrightarrow> m = n"
huffman@47108
   150
  "Bit0 m = Bit1 n \<longleftrightarrow> False"
huffman@47108
   151
  "Bit1 m = Bit0 n \<longleftrightarrow> False"
huffman@47108
   152
  "Bit1 m = Bit1 n \<longleftrightarrow> m = n"
huffman@47108
   153
  by simp_all
huffman@47108
   154
huffman@47108
   155
lemma le_num_simps [simp, code]:
huffman@47108
   156
  "One \<le> n \<longleftrightarrow> True"
huffman@47108
   157
  "Bit0 m \<le> One \<longleftrightarrow> False"
huffman@47108
   158
  "Bit1 m \<le> One \<longleftrightarrow> False"
huffman@47108
   159
  "Bit0 m \<le> Bit0 n \<longleftrightarrow> m \<le> n"
huffman@47108
   160
  "Bit0 m \<le> Bit1 n \<longleftrightarrow> m \<le> n"
huffman@47108
   161
  "Bit1 m \<le> Bit1 n \<longleftrightarrow> m \<le> n"
huffman@47108
   162
  "Bit1 m \<le> Bit0 n \<longleftrightarrow> m < n"
huffman@47108
   163
  using nat_of_num_pos [of n] nat_of_num_pos [of m]
huffman@47108
   164
  by (auto simp add: less_eq_num_def less_num_def)
huffman@47108
   165
huffman@47108
   166
lemma less_num_simps [simp, code]:
huffman@47108
   167
  "m < One \<longleftrightarrow> False"
huffman@47108
   168
  "One < Bit0 n \<longleftrightarrow> True"
huffman@47108
   169
  "One < Bit1 n \<longleftrightarrow> True"
huffman@47108
   170
  "Bit0 m < Bit0 n \<longleftrightarrow> m < n"
huffman@47108
   171
  "Bit0 m < Bit1 n \<longleftrightarrow> m \<le> n"
huffman@47108
   172
  "Bit1 m < Bit1 n \<longleftrightarrow> m < n"
huffman@47108
   173
  "Bit1 m < Bit0 n \<longleftrightarrow> m < n"
huffman@47108
   174
  using nat_of_num_pos [of n] nat_of_num_pos [of m]
huffman@47108
   175
  by (auto simp add: less_eq_num_def less_num_def)
huffman@47108
   176
huffman@47108
   177
text {* Rules using @{text One} and @{text inc} as constructors *}
huffman@47108
   178
huffman@47108
   179
lemma add_One: "x + One = inc x"
huffman@47108
   180
  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
huffman@47108
   181
huffman@47108
   182
lemma add_One_commute: "One + n = n + One"
huffman@47108
   183
  by (induct n) simp_all
huffman@47108
   184
huffman@47108
   185
lemma add_inc: "x + inc y = inc (x + y)"
huffman@47108
   186
  by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
huffman@47108
   187
huffman@47108
   188
lemma mult_inc: "x * inc y = x * y + x"
huffman@47108
   189
  by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc)
huffman@47108
   190
huffman@47108
   191
text {* The @{const num_of_nat} conversion *}
huffman@47108
   192
huffman@47108
   193
lemma num_of_nat_One:
huffman@47108
   194
  "n \<le> 1 \<Longrightarrow> num_of_nat n = Num.One"
huffman@47108
   195
  by (cases n) simp_all
huffman@47108
   196
huffman@47108
   197
lemma num_of_nat_plus_distrib:
huffman@47108
   198
  "0 < m \<Longrightarrow> 0 < n \<Longrightarrow> num_of_nat (m + n) = num_of_nat m + num_of_nat n"
huffman@47108
   199
  by (induct n) (auto simp add: add_One add_One_commute add_inc)
huffman@47108
   200
huffman@47108
   201
text {* A double-and-decrement function *}
huffman@47108
   202
huffman@47108
   203
primrec BitM :: "num \<Rightarrow> num" where
huffman@47108
   204
  "BitM One = One" |
huffman@47108
   205
  "BitM (Bit0 n) = Bit1 (BitM n)" |
huffman@47108
   206
  "BitM (Bit1 n) = Bit1 (Bit0 n)"
huffman@47108
   207
huffman@47108
   208
lemma BitM_plus_one: "BitM n + One = Bit0 n"
huffman@47108
   209
  by (induct n) simp_all
huffman@47108
   210
huffman@47108
   211
lemma one_plus_BitM: "One + BitM n = Bit0 n"
huffman@47108
   212
  unfolding add_One_commute BitM_plus_one ..
huffman@47108
   213
huffman@47108
   214
text {* Squaring and exponentiation *}
huffman@47108
   215
huffman@47108
   216
primrec sqr :: "num \<Rightarrow> num" where
huffman@47108
   217
  "sqr One = One" |
huffman@47108
   218
  "sqr (Bit0 n) = Bit0 (Bit0 (sqr n))" |
huffman@47108
   219
  "sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))"
huffman@47108
   220
huffman@47108
   221
primrec pow :: "num \<Rightarrow> num \<Rightarrow> num" where
huffman@47108
   222
  "pow x One = x" |
huffman@47108
   223
  "pow x (Bit0 y) = sqr (pow x y)" |
huffman@47108
   224
  "pow x (Bit1 y) = x * sqr (pow x y)"
huffman@47108
   225
huffman@47108
   226
lemma nat_of_num_sqr: "nat_of_num (sqr x) = nat_of_num x * nat_of_num x"
huffman@47108
   227
  by (induct x, simp_all add: algebra_simps nat_of_num_add)
huffman@47108
   228
huffman@47108
   229
lemma sqr_conv_mult: "sqr x = x * x"
huffman@47108
   230
  by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult)
huffman@47108
   231
huffman@47108
   232
huffman@47108
   233
subsection {* Numary numerals *}
huffman@47108
   234
huffman@47108
   235
text {*
huffman@47108
   236
  We embed numary representations into a generic algebraic
huffman@47108
   237
  structure using @{text numeral}.
huffman@47108
   238
*}
huffman@47108
   239
huffman@47108
   240
class numeral = one + semigroup_add
huffman@47108
   241
begin
huffman@47108
   242
huffman@47108
   243
primrec numeral :: "num \<Rightarrow> 'a" where
huffman@47108
   244
  numeral_One: "numeral One = 1" |
huffman@47108
   245
  numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" |
huffman@47108
   246
  numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1"
huffman@47108
   247
huffman@47108
   248
lemma one_plus_numeral_commute: "1 + numeral x = numeral x + 1"
huffman@47108
   249
  apply (induct x)
huffman@47108
   250
  apply simp
huffman@47108
   251
  apply (simp add: add_assoc [symmetric], simp add: add_assoc)
huffman@47108
   252
  apply (simp add: add_assoc [symmetric], simp add: add_assoc)
huffman@47108
   253
  done
huffman@47108
   254
huffman@47108
   255
lemma numeral_inc: "numeral (inc x) = numeral x + 1"
huffman@47108
   256
proof (induct x)
huffman@47108
   257
  case (Bit1 x)
huffman@47108
   258
  have "numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1"
huffman@47108
   259
    by (simp only: one_plus_numeral_commute)
huffman@47108
   260
  with Bit1 show ?case
huffman@47108
   261
    by (simp add: add_assoc)
huffman@47108
   262
qed simp_all
huffman@47108
   263
huffman@47108
   264
declare numeral.simps [simp del]
huffman@47108
   265
huffman@47108
   266
abbreviation "Numeral1 \<equiv> numeral One"
huffman@47108
   267
huffman@47108
   268
declare numeral_One [code_post]
huffman@47108
   269
huffman@47108
   270
end
huffman@47108
   271
huffman@47108
   272
text {* Negative numerals. *}
huffman@47108
   273
huffman@47108
   274
class neg_numeral = numeral + group_add
huffman@47108
   275
begin
huffman@47108
   276
huffman@47108
   277
definition neg_numeral :: "num \<Rightarrow> 'a" where
huffman@47108
   278
  "neg_numeral k = - numeral k"
huffman@47108
   279
huffman@47108
   280
end
huffman@47108
   281
huffman@47108
   282
text {* Numeral syntax. *}
huffman@47108
   283
huffman@47108
   284
syntax
huffman@47108
   285
  "_Numeral" :: "num_const \<Rightarrow> 'a"    ("_")
huffman@47108
   286
huffman@47108
   287
parse_translation {*
huffman@47108
   288
let
huffman@47108
   289
  fun num_of_int n = if n > 0 then case IntInf.quotRem (n, 2)
huffman@47108
   290
     of (0, 1) => Syntax.const @{const_name One}
huffman@47108
   291
      | (n, 0) => Syntax.const @{const_name Bit0} $ num_of_int n
huffman@47108
   292
      | (n, 1) => Syntax.const @{const_name Bit1} $ num_of_int n
huffman@47108
   293
    else raise Match;
huffman@47108
   294
  val pos = Syntax.const @{const_name numeral}
huffman@47108
   295
  val neg = Syntax.const @{const_name neg_numeral}
huffman@47108
   296
  val one = Syntax.const @{const_name Groups.one}
huffman@47108
   297
  val zero = Syntax.const @{const_name Groups.zero}
huffman@47108
   298
  fun numeral_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] =
huffman@47108
   299
        c $ numeral_tr [t] $ u
huffman@47108
   300
    | numeral_tr [Const (num, _)] =
huffman@47108
   301
        let
huffman@47108
   302
          val {value, ...} = Lexicon.read_xnum num;
huffman@47108
   303
        in
huffman@47108
   304
          if value = 0 then zero else
huffman@47108
   305
          if value > 0
huffman@47108
   306
          then pos $ num_of_int value
huffman@47108
   307
          else neg $ num_of_int (~value)
huffman@47108
   308
        end
huffman@47108
   309
    | numeral_tr ts = raise TERM ("numeral_tr", ts);
huffman@47108
   310
in [("_Numeral", numeral_tr)] end
huffman@47108
   311
*}
huffman@47108
   312
huffman@47108
   313
typed_print_translation (advanced) {*
huffman@47108
   314
let
huffman@47108
   315
  fun dest_num (Const (@{const_syntax Bit0}, _) $ n) = 2 * dest_num n
huffman@47108
   316
    | dest_num (Const (@{const_syntax Bit1}, _) $ n) = 2 * dest_num n + 1
huffman@47108
   317
    | dest_num (Const (@{const_syntax One}, _)) = 1;
huffman@47108
   318
  fun num_tr' sign ctxt T [n] =
huffman@47108
   319
    let
huffman@47108
   320
      val k = dest_num n;
huffman@47108
   321
      val t' = Syntax.const @{syntax_const "_Numeral"} $
huffman@47108
   322
        Syntax.free (sign ^ string_of_int k);
huffman@47108
   323
    in
huffman@47108
   324
      case T of
huffman@47108
   325
        Type (@{type_name fun}, [_, T']) =>
huffman@47108
   326
          if not (Config.get ctxt show_types) andalso can Term.dest_Type T' then t'
huffman@47108
   327
          else Syntax.const @{syntax_const "_constrain"} $ t' $ Syntax_Phases.term_of_typ ctxt T'
huffman@47108
   328
      | T' => if T' = dummyT then t' else raise Match
huffman@47108
   329
    end;
huffman@47108
   330
in [(@{const_syntax numeral}, num_tr' ""),
huffman@47108
   331
    (@{const_syntax neg_numeral}, num_tr' "-")] end
huffman@47108
   332
*}
huffman@47108
   333
huffman@47108
   334
subsection {* Class-specific numeral rules *}
huffman@47108
   335
huffman@47108
   336
text {*
huffman@47108
   337
  @{const numeral} is a morphism.
huffman@47108
   338
*}
huffman@47108
   339
huffman@47108
   340
subsubsection {* Structures with addition: class @{text numeral} *}
huffman@47108
   341
huffman@47108
   342
context numeral
huffman@47108
   343
begin
huffman@47108
   344
huffman@47108
   345
lemma numeral_add: "numeral (m + n) = numeral m + numeral n"
huffman@47108
   346
  by (induct n rule: num_induct)
huffman@47108
   347
     (simp_all only: numeral_One add_One add_inc numeral_inc add_assoc)
huffman@47108
   348
huffman@47108
   349
lemma numeral_plus_numeral: "numeral m + numeral n = numeral (m + n)"
huffman@47108
   350
  by (rule numeral_add [symmetric])
huffman@47108
   351
huffman@47108
   352
lemma numeral_plus_one: "numeral n + 1 = numeral (n + One)"
huffman@47108
   353
  using numeral_add [of n One] by (simp add: numeral_One)
huffman@47108
   354
huffman@47108
   355
lemma one_plus_numeral: "1 + numeral n = numeral (One + n)"
huffman@47108
   356
  using numeral_add [of One n] by (simp add: numeral_One)
huffman@47108
   357
huffman@47108
   358
lemma one_add_one: "1 + 1 = 2"
huffman@47108
   359
  using numeral_add [of One One] by (simp add: numeral_One)
huffman@47108
   360
huffman@47108
   361
lemmas add_numeral_special =
huffman@47108
   362
  numeral_plus_one one_plus_numeral one_add_one
huffman@47108
   363
huffman@47108
   364
end
huffman@47108
   365
huffman@47108
   366
subsubsection {*
huffman@47108
   367
  Structures with negation: class @{text neg_numeral}
huffman@47108
   368
*}
huffman@47108
   369
huffman@47108
   370
context neg_numeral
huffman@47108
   371
begin
huffman@47108
   372
huffman@47108
   373
text {* Numerals form an abelian subgroup. *}
huffman@47108
   374
huffman@47108
   375
inductive is_num :: "'a \<Rightarrow> bool" where
huffman@47108
   376
  "is_num 1" |
huffman@47108
   377
  "is_num x \<Longrightarrow> is_num (- x)" |
huffman@47108
   378
  "\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> is_num (x + y)"
huffman@47108
   379
huffman@47108
   380
lemma is_num_numeral: "is_num (numeral k)"
huffman@47108
   381
  by (induct k, simp_all add: numeral.simps is_num.intros)
huffman@47108
   382
huffman@47108
   383
lemma is_num_add_commute:
huffman@47108
   384
  "\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> x + y = y + x"
huffman@47108
   385
  apply (induct x rule: is_num.induct)
huffman@47108
   386
  apply (induct y rule: is_num.induct)
huffman@47108
   387
  apply simp
huffman@47108
   388
  apply (rule_tac a=x in add_left_imp_eq)
huffman@47108
   389
  apply (rule_tac a=x in add_right_imp_eq)
huffman@47108
   390
  apply (simp add: add_assoc minus_add_cancel)
huffman@47108
   391
  apply (simp add: add_assoc [symmetric], simp add: add_assoc)
huffman@47108
   392
  apply (rule_tac a=x in add_left_imp_eq)
huffman@47108
   393
  apply (rule_tac a=x in add_right_imp_eq)
huffman@47108
   394
  apply (simp add: add_assoc minus_add_cancel add_minus_cancel)
huffman@47108
   395
  apply (simp add: add_assoc, simp add: add_assoc [symmetric])
huffman@47108
   396
  done
huffman@47108
   397
huffman@47108
   398
lemma is_num_add_left_commute:
huffman@47108
   399
  "\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> x + (y + z) = y + (x + z)"
huffman@47108
   400
  by (simp only: add_assoc [symmetric] is_num_add_commute)
huffman@47108
   401
huffman@47108
   402
lemmas is_num_normalize =
huffman@47108
   403
  add_assoc is_num_add_commute is_num_add_left_commute
huffman@47108
   404
  is_num.intros is_num_numeral
huffman@47108
   405
  diff_minus minus_add add_minus_cancel minus_add_cancel
huffman@47108
   406
huffman@47108
   407
definition dbl :: "'a \<Rightarrow> 'a" where "dbl x = x + x"
huffman@47108
   408
definition dbl_inc :: "'a \<Rightarrow> 'a" where "dbl_inc x = x + x + 1"
huffman@47108
   409
definition dbl_dec :: "'a \<Rightarrow> 'a" where "dbl_dec x = x + x - 1"
huffman@47108
   410
huffman@47108
   411
definition sub :: "num \<Rightarrow> num \<Rightarrow> 'a" where
huffman@47108
   412
  "sub k l = numeral k - numeral l"
huffman@47108
   413
huffman@47108
   414
lemma numeral_BitM: "numeral (BitM n) = numeral (Bit0 n) - 1"
huffman@47108
   415
  by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq)
huffman@47108
   416
huffman@47108
   417
lemma dbl_simps [simp]:
huffman@47108
   418
  "dbl (neg_numeral k) = neg_numeral (Bit0 k)"
huffman@47108
   419
  "dbl 0 = 0"
huffman@47108
   420
  "dbl 1 = 2"
huffman@47108
   421
  "dbl (numeral k) = numeral (Bit0 k)"
huffman@47108
   422
  unfolding dbl_def neg_numeral_def numeral.simps
huffman@47108
   423
  by (simp_all add: minus_add)
huffman@47108
   424
huffman@47108
   425
lemma dbl_inc_simps [simp]:
huffman@47108
   426
  "dbl_inc (neg_numeral k) = neg_numeral (BitM k)"
huffman@47108
   427
  "dbl_inc 0 = 1"
huffman@47108
   428
  "dbl_inc 1 = 3"
huffman@47108
   429
  "dbl_inc (numeral k) = numeral (Bit1 k)"
huffman@47108
   430
  unfolding dbl_inc_def neg_numeral_def numeral.simps numeral_BitM
huffman@47108
   431
  by (simp_all add: is_num_normalize)
huffman@47108
   432
huffman@47108
   433
lemma dbl_dec_simps [simp]:
huffman@47108
   434
  "dbl_dec (neg_numeral k) = neg_numeral (Bit1 k)"
huffman@47108
   435
  "dbl_dec 0 = -1"
huffman@47108
   436
  "dbl_dec 1 = 1"
huffman@47108
   437
  "dbl_dec (numeral k) = numeral (BitM k)"
huffman@47108
   438
  unfolding dbl_dec_def neg_numeral_def numeral.simps numeral_BitM
huffman@47108
   439
  by (simp_all add: is_num_normalize)
huffman@47108
   440
huffman@47108
   441
lemma sub_num_simps [simp]:
huffman@47108
   442
  "sub One One = 0"
huffman@47108
   443
  "sub One (Bit0 l) = neg_numeral (BitM l)"
huffman@47108
   444
  "sub One (Bit1 l) = neg_numeral (Bit0 l)"
huffman@47108
   445
  "sub (Bit0 k) One = numeral (BitM k)"
huffman@47108
   446
  "sub (Bit1 k) One = numeral (Bit0 k)"
huffman@47108
   447
  "sub (Bit0 k) (Bit0 l) = dbl (sub k l)"
huffman@47108
   448
  "sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)"
huffman@47108
   449
  "sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)"
huffman@47108
   450
  "sub (Bit1 k) (Bit1 l) = dbl (sub k l)"
huffman@47108
   451
  unfolding dbl_def dbl_dec_def dbl_inc_def sub_def
huffman@47108
   452
  unfolding neg_numeral_def numeral.simps numeral_BitM
huffman@47108
   453
  by (simp_all add: is_num_normalize)
huffman@47108
   454
huffman@47108
   455
lemma add_neg_numeral_simps:
huffman@47108
   456
  "numeral m + neg_numeral n = sub m n"
huffman@47108
   457
  "neg_numeral m + numeral n = sub n m"
huffman@47108
   458
  "neg_numeral m + neg_numeral n = neg_numeral (m + n)"
huffman@47108
   459
  unfolding sub_def diff_minus neg_numeral_def numeral_add numeral.simps
huffman@47108
   460
  by (simp_all add: is_num_normalize)
huffman@47108
   461
huffman@47108
   462
lemma add_neg_numeral_special:
huffman@47108
   463
  "1 + neg_numeral m = sub One m"
huffman@47108
   464
  "neg_numeral m + 1 = sub One m"
huffman@47108
   465
  unfolding sub_def diff_minus neg_numeral_def numeral_add numeral.simps
huffman@47108
   466
  by (simp_all add: is_num_normalize)
huffman@47108
   467
huffman@47108
   468
lemma diff_numeral_simps:
huffman@47108
   469
  "numeral m - numeral n = sub m n"
huffman@47108
   470
  "numeral m - neg_numeral n = numeral (m + n)"
huffman@47108
   471
  "neg_numeral m - numeral n = neg_numeral (m + n)"
huffman@47108
   472
  "neg_numeral m - neg_numeral n = sub n m"
huffman@47108
   473
  unfolding neg_numeral_def sub_def diff_minus numeral_add numeral.simps
huffman@47108
   474
  by (simp_all add: is_num_normalize)
huffman@47108
   475
huffman@47108
   476
lemma diff_numeral_special:
huffman@47108
   477
  "1 - numeral n = sub One n"
huffman@47108
   478
  "1 - neg_numeral n = numeral (One + n)"
huffman@47108
   479
  "numeral m - 1 = sub m One"
huffman@47108
   480
  "neg_numeral m - 1 = neg_numeral (m + One)"
huffman@47108
   481
  unfolding neg_numeral_def sub_def diff_minus numeral_add numeral.simps
huffman@47108
   482
  by (simp_all add: is_num_normalize)
huffman@47108
   483
huffman@47108
   484
lemma minus_one: "- 1 = -1"
huffman@47108
   485
  unfolding neg_numeral_def numeral.simps ..
huffman@47108
   486
huffman@47108
   487
lemma minus_numeral: "- numeral n = neg_numeral n"
huffman@47108
   488
  unfolding neg_numeral_def ..
huffman@47108
   489
huffman@47108
   490
lemma minus_neg_numeral: "- neg_numeral n = numeral n"
huffman@47108
   491
  unfolding neg_numeral_def by simp
huffman@47108
   492
huffman@47108
   493
lemmas minus_numeral_simps [simp] =
huffman@47108
   494
  minus_one minus_numeral minus_neg_numeral
huffman@47108
   495
huffman@47108
   496
end
huffman@47108
   497
huffman@47108
   498
subsubsection {*
huffman@47108
   499
  Structures with multiplication: class @{text semiring_numeral}
huffman@47108
   500
*}
huffman@47108
   501
huffman@47108
   502
class semiring_numeral = semiring + monoid_mult
huffman@47108
   503
begin
huffman@47108
   504
huffman@47108
   505
subclass numeral ..
huffman@47108
   506
huffman@47108
   507
lemma numeral_mult: "numeral (m * n) = numeral m * numeral n"
huffman@47108
   508
  apply (induct n rule: num_induct)
huffman@47108
   509
  apply (simp add: numeral_One)
huffman@47108
   510
  apply (simp add: mult_inc numeral_inc numeral_add numeral_inc right_distrib)
huffman@47108
   511
  done
huffman@47108
   512
huffman@47108
   513
lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)"
huffman@47108
   514
  by (rule numeral_mult [symmetric])
huffman@47108
   515
huffman@47108
   516
end
huffman@47108
   517
huffman@47108
   518
subsubsection {*
huffman@47108
   519
  Structures with a zero: class @{text semiring_1}
huffman@47108
   520
*}
huffman@47108
   521
huffman@47108
   522
context semiring_1
huffman@47108
   523
begin
huffman@47108
   524
huffman@47108
   525
subclass semiring_numeral ..
huffman@47108
   526
huffman@47108
   527
lemma of_nat_numeral [simp]: "of_nat (numeral n) = numeral n"
huffman@47108
   528
  by (induct n,
huffman@47108
   529
    simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1)
huffman@47108
   530
huffman@47108
   531
end
huffman@47108
   532
huffman@47108
   533
lemma nat_of_num_numeral: "nat_of_num = numeral"
huffman@47108
   534
proof
huffman@47108
   535
  fix n
huffman@47108
   536
  have "numeral n = nat_of_num n"
huffman@47108
   537
    by (induct n) (simp_all add: numeral.simps)
huffman@47108
   538
  then show "nat_of_num n = numeral n" by simp
huffman@47108
   539
qed
huffman@47108
   540
huffman@47108
   541
subsubsection {*
huffman@47108
   542
  Equality: class @{text semiring_char_0}
huffman@47108
   543
*}
huffman@47108
   544
huffman@47108
   545
context semiring_char_0
huffman@47108
   546
begin
huffman@47108
   547
huffman@47108
   548
lemma numeral_eq_iff: "numeral m = numeral n \<longleftrightarrow> m = n"
huffman@47108
   549
  unfolding of_nat_numeral [symmetric] nat_of_num_numeral [symmetric]
huffman@47108
   550
    of_nat_eq_iff num_eq_iff ..
huffman@47108
   551
huffman@47108
   552
lemma numeral_eq_one_iff: "numeral n = 1 \<longleftrightarrow> n = One"
huffman@47108
   553
  by (rule numeral_eq_iff [of n One, unfolded numeral_One])
huffman@47108
   554
huffman@47108
   555
lemma one_eq_numeral_iff: "1 = numeral n \<longleftrightarrow> One = n"
huffman@47108
   556
  by (rule numeral_eq_iff [of One n, unfolded numeral_One])
huffman@47108
   557
huffman@47108
   558
lemma numeral_neq_zero: "numeral n \<noteq> 0"
huffman@47108
   559
  unfolding of_nat_numeral [symmetric] nat_of_num_numeral [symmetric]
huffman@47108
   560
  by (simp add: nat_of_num_pos)
huffman@47108
   561
huffman@47108
   562
lemma zero_neq_numeral: "0 \<noteq> numeral n"
huffman@47108
   563
  unfolding eq_commute [of 0] by (rule numeral_neq_zero)
huffman@47108
   564
huffman@47108
   565
lemmas eq_numeral_simps [simp] =
huffman@47108
   566
  numeral_eq_iff
huffman@47108
   567
  numeral_eq_one_iff
huffman@47108
   568
  one_eq_numeral_iff
huffman@47108
   569
  numeral_neq_zero
huffman@47108
   570
  zero_neq_numeral
huffman@47108
   571
huffman@47108
   572
end
huffman@47108
   573
huffman@47108
   574
subsubsection {*
huffman@47108
   575
  Comparisons: class @{text linordered_semidom}
huffman@47108
   576
*}
huffman@47108
   577
huffman@47108
   578
text {*  Could be perhaps more general than here. *}
huffman@47108
   579
huffman@47108
   580
context linordered_semidom
huffman@47108
   581
begin
huffman@47108
   582
huffman@47108
   583
lemma numeral_le_iff: "numeral m \<le> numeral n \<longleftrightarrow> m \<le> n"
huffman@47108
   584
proof -
huffman@47108
   585
  have "of_nat (numeral m) \<le> of_nat (numeral n) \<longleftrightarrow> m \<le> n"
huffman@47108
   586
    unfolding less_eq_num_def nat_of_num_numeral of_nat_le_iff ..
huffman@47108
   587
  then show ?thesis by simp
huffman@47108
   588
qed
huffman@47108
   589
huffman@47108
   590
lemma one_le_numeral: "1 \<le> numeral n"
huffman@47108
   591
using numeral_le_iff [of One n] by (simp add: numeral_One)
huffman@47108
   592
huffman@47108
   593
lemma numeral_le_one_iff: "numeral n \<le> 1 \<longleftrightarrow> n \<le> One"
huffman@47108
   594
using numeral_le_iff [of n One] by (simp add: numeral_One)
huffman@47108
   595
huffman@47108
   596
lemma numeral_less_iff: "numeral m < numeral n \<longleftrightarrow> m < n"
huffman@47108
   597
proof -
huffman@47108
   598
  have "of_nat (numeral m) < of_nat (numeral n) \<longleftrightarrow> m < n"
huffman@47108
   599
    unfolding less_num_def nat_of_num_numeral of_nat_less_iff ..
huffman@47108
   600
  then show ?thesis by simp
huffman@47108
   601
qed
huffman@47108
   602
huffman@47108
   603
lemma not_numeral_less_one: "\<not> numeral n < 1"
huffman@47108
   604
  using numeral_less_iff [of n One] by (simp add: numeral_One)
huffman@47108
   605
huffman@47108
   606
lemma one_less_numeral_iff: "1 < numeral n \<longleftrightarrow> One < n"
huffman@47108
   607
  using numeral_less_iff [of One n] by (simp add: numeral_One)
huffman@47108
   608
huffman@47108
   609
lemma zero_le_numeral: "0 \<le> numeral n"
huffman@47108
   610
  by (induct n) (simp_all add: numeral.simps)
huffman@47108
   611
huffman@47108
   612
lemma zero_less_numeral: "0 < numeral n"
huffman@47108
   613
  by (induct n) (simp_all add: numeral.simps add_pos_pos)
huffman@47108
   614
huffman@47108
   615
lemma not_numeral_le_zero: "\<not> numeral n \<le> 0"
huffman@47108
   616
  by (simp add: not_le zero_less_numeral)
huffman@47108
   617
huffman@47108
   618
lemma not_numeral_less_zero: "\<not> numeral n < 0"
huffman@47108
   619
  by (simp add: not_less zero_le_numeral)
huffman@47108
   620
huffman@47108
   621
lemmas le_numeral_extra =
huffman@47108
   622
  zero_le_one not_one_le_zero
huffman@47108
   623
  order_refl [of 0] order_refl [of 1]
huffman@47108
   624
huffman@47108
   625
lemmas less_numeral_extra =
huffman@47108
   626
  zero_less_one not_one_less_zero
huffman@47108
   627
  less_irrefl [of 0] less_irrefl [of 1]
huffman@47108
   628
huffman@47108
   629
lemmas le_numeral_simps [simp] =
huffman@47108
   630
  numeral_le_iff
huffman@47108
   631
  one_le_numeral
huffman@47108
   632
  numeral_le_one_iff
huffman@47108
   633
  zero_le_numeral
huffman@47108
   634
  not_numeral_le_zero
huffman@47108
   635
huffman@47108
   636
lemmas less_numeral_simps [simp] =
huffman@47108
   637
  numeral_less_iff
huffman@47108
   638
  one_less_numeral_iff
huffman@47108
   639
  not_numeral_less_one
huffman@47108
   640
  zero_less_numeral
huffman@47108
   641
  not_numeral_less_zero
huffman@47108
   642
huffman@47108
   643
end
huffman@47108
   644
huffman@47108
   645
subsubsection {*
huffman@47108
   646
  Multiplication and negation: class @{text ring_1}
huffman@47108
   647
*}
huffman@47108
   648
huffman@47108
   649
context ring_1
huffman@47108
   650
begin
huffman@47108
   651
huffman@47108
   652
subclass neg_numeral ..
huffman@47108
   653
huffman@47108
   654
lemma mult_neg_numeral_simps:
huffman@47108
   655
  "neg_numeral m * neg_numeral n = numeral (m * n)"
huffman@47108
   656
  "neg_numeral m * numeral n = neg_numeral (m * n)"
huffman@47108
   657
  "numeral m * neg_numeral n = neg_numeral (m * n)"
huffman@47108
   658
  unfolding neg_numeral_def mult_minus_left mult_minus_right
huffman@47108
   659
  by (simp_all only: minus_minus numeral_mult)
huffman@47108
   660
huffman@47108
   661
lemma mult_minus1 [simp]: "-1 * z = - z"
huffman@47108
   662
  unfolding neg_numeral_def numeral.simps mult_minus_left by simp
huffman@47108
   663
huffman@47108
   664
lemma mult_minus1_right [simp]: "z * -1 = - z"
huffman@47108
   665
  unfolding neg_numeral_def numeral.simps mult_minus_right by simp
huffman@47108
   666
huffman@47108
   667
end
huffman@47108
   668
huffman@47108
   669
subsubsection {*
huffman@47108
   670
  Equality using @{text iszero} for rings with non-zero characteristic
huffman@47108
   671
*}
huffman@47108
   672
huffman@47108
   673
context ring_1
huffman@47108
   674
begin
huffman@47108
   675
huffman@47108
   676
definition iszero :: "'a \<Rightarrow> bool"
huffman@47108
   677
  where "iszero z \<longleftrightarrow> z = 0"
huffman@47108
   678
huffman@47108
   679
lemma iszero_0 [simp]: "iszero 0"
huffman@47108
   680
  by (simp add: iszero_def)
huffman@47108
   681
huffman@47108
   682
lemma not_iszero_1 [simp]: "\<not> iszero 1"
huffman@47108
   683
  by (simp add: iszero_def)
huffman@47108
   684
huffman@47108
   685
lemma not_iszero_Numeral1: "\<not> iszero Numeral1"
huffman@47108
   686
  by (simp add: numeral_One)
huffman@47108
   687
huffman@47108
   688
lemma iszero_neg_numeral [simp]:
huffman@47108
   689
  "iszero (neg_numeral w) \<longleftrightarrow> iszero (numeral w)"
huffman@47108
   690
  unfolding iszero_def neg_numeral_def
huffman@47108
   691
  by (rule neg_equal_0_iff_equal)
huffman@47108
   692
huffman@47108
   693
lemma eq_iff_iszero_diff: "x = y \<longleftrightarrow> iszero (x - y)"
huffman@47108
   694
  unfolding iszero_def by (rule eq_iff_diff_eq_0)
huffman@47108
   695
huffman@47108
   696
text {* The @{text "eq_numeral_iff_iszero"} lemmas are not declared
huffman@47108
   697
@{text "[simp]"} by default, because for rings of characteristic zero,
huffman@47108
   698
better simp rules are possible. For a type like integers mod @{text
huffman@47108
   699
"n"}, type-instantiated versions of these rules should be added to the
huffman@47108
   700
simplifier, along with a type-specific rule for deciding propositions
huffman@47108
   701
of the form @{text "iszero (numeral w)"}.
huffman@47108
   702
huffman@47108
   703
bh: Maybe it would not be so bad to just declare these as simp
huffman@47108
   704
rules anyway? I should test whether these rules take precedence over
huffman@47108
   705
the @{text "ring_char_0"} rules in the simplifier.
huffman@47108
   706
*}
huffman@47108
   707
huffman@47108
   708
lemma eq_numeral_iff_iszero:
huffman@47108
   709
  "numeral x = numeral y \<longleftrightarrow> iszero (sub x y)"
huffman@47108
   710
  "numeral x = neg_numeral y \<longleftrightarrow> iszero (numeral (x + y))"
huffman@47108
   711
  "neg_numeral x = numeral y \<longleftrightarrow> iszero (numeral (x + y))"
huffman@47108
   712
  "neg_numeral x = neg_numeral y \<longleftrightarrow> iszero (sub y x)"
huffman@47108
   713
  "numeral x = 1 \<longleftrightarrow> iszero (sub x One)"
huffman@47108
   714
  "1 = numeral y \<longleftrightarrow> iszero (sub One y)"
huffman@47108
   715
  "neg_numeral x = 1 \<longleftrightarrow> iszero (numeral (x + One))"
huffman@47108
   716
  "1 = neg_numeral y \<longleftrightarrow> iszero (numeral (One + y))"
huffman@47108
   717
  "numeral x = 0 \<longleftrightarrow> iszero (numeral x)"
huffman@47108
   718
  "0 = numeral y \<longleftrightarrow> iszero (numeral y)"
huffman@47108
   719
  "neg_numeral x = 0 \<longleftrightarrow> iszero (numeral x)"
huffman@47108
   720
  "0 = neg_numeral y \<longleftrightarrow> iszero (numeral y)"
huffman@47108
   721
  unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special
huffman@47108
   722
  by simp_all
huffman@47108
   723
huffman@47108
   724
end
huffman@47108
   725
huffman@47108
   726
subsubsection {*
huffman@47108
   727
  Equality and negation: class @{text ring_char_0}
huffman@47108
   728
*}
huffman@47108
   729
huffman@47108
   730
class ring_char_0 = ring_1 + semiring_char_0
huffman@47108
   731
begin
huffman@47108
   732
huffman@47108
   733
lemma not_iszero_numeral [simp]: "\<not> iszero (numeral w)"
huffman@47108
   734
  by (simp add: iszero_def)
huffman@47108
   735
huffman@47108
   736
lemma neg_numeral_eq_iff: "neg_numeral m = neg_numeral n \<longleftrightarrow> m = n"
huffman@47108
   737
  by (simp only: neg_numeral_def neg_equal_iff_equal numeral_eq_iff)
huffman@47108
   738
huffman@47108
   739
lemma numeral_neq_neg_numeral: "numeral m \<noteq> neg_numeral n"
huffman@47108
   740
  unfolding neg_numeral_def eq_neg_iff_add_eq_0
huffman@47108
   741
  by (simp add: numeral_plus_numeral)
huffman@47108
   742
huffman@47108
   743
lemma neg_numeral_neq_numeral: "neg_numeral m \<noteq> numeral n"
huffman@47108
   744
  by (rule numeral_neq_neg_numeral [symmetric])
huffman@47108
   745
huffman@47108
   746
lemma zero_neq_neg_numeral: "0 \<noteq> neg_numeral n"
huffman@47108
   747
  unfolding neg_numeral_def neg_0_equal_iff_equal by simp
huffman@47108
   748
huffman@47108
   749
lemma neg_numeral_neq_zero: "neg_numeral n \<noteq> 0"
huffman@47108
   750
  unfolding neg_numeral_def neg_equal_0_iff_equal by simp
huffman@47108
   751
huffman@47108
   752
lemma one_neq_neg_numeral: "1 \<noteq> neg_numeral n"
huffman@47108
   753
  using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One)
huffman@47108
   754
huffman@47108
   755
lemma neg_numeral_neq_one: "neg_numeral n \<noteq> 1"
huffman@47108
   756
  using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One)
huffman@47108
   757
huffman@47108
   758
lemmas eq_neg_numeral_simps [simp] =
huffman@47108
   759
  neg_numeral_eq_iff
huffman@47108
   760
  numeral_neq_neg_numeral neg_numeral_neq_numeral
huffman@47108
   761
  one_neq_neg_numeral neg_numeral_neq_one
huffman@47108
   762
  zero_neq_neg_numeral neg_numeral_neq_zero
huffman@47108
   763
huffman@47108
   764
end
huffman@47108
   765
huffman@47108
   766
subsubsection {*
huffman@47108
   767
  Structures with negation and order: class @{text linordered_idom}
huffman@47108
   768
*}
huffman@47108
   769
huffman@47108
   770
context linordered_idom
huffman@47108
   771
begin
huffman@47108
   772
huffman@47108
   773
subclass ring_char_0 ..
huffman@47108
   774
huffman@47108
   775
lemma neg_numeral_le_iff: "neg_numeral m \<le> neg_numeral n \<longleftrightarrow> n \<le> m"
huffman@47108
   776
  by (simp only: neg_numeral_def neg_le_iff_le numeral_le_iff)
huffman@47108
   777
huffman@47108
   778
lemma neg_numeral_less_iff: "neg_numeral m < neg_numeral n \<longleftrightarrow> n < m"
huffman@47108
   779
  by (simp only: neg_numeral_def neg_less_iff_less numeral_less_iff)
huffman@47108
   780
huffman@47108
   781
lemma neg_numeral_less_zero: "neg_numeral n < 0"
huffman@47108
   782
  by (simp only: neg_numeral_def neg_less_0_iff_less zero_less_numeral)
huffman@47108
   783
huffman@47108
   784
lemma neg_numeral_le_zero: "neg_numeral n \<le> 0"
huffman@47108
   785
  by (simp only: neg_numeral_def neg_le_0_iff_le zero_le_numeral)
huffman@47108
   786
huffman@47108
   787
lemma not_zero_less_neg_numeral: "\<not> 0 < neg_numeral n"
huffman@47108
   788
  by (simp only: not_less neg_numeral_le_zero)
huffman@47108
   789
huffman@47108
   790
lemma not_zero_le_neg_numeral: "\<not> 0 \<le> neg_numeral n"
huffman@47108
   791
  by (simp only: not_le neg_numeral_less_zero)
huffman@47108
   792
huffman@47108
   793
lemma neg_numeral_less_numeral: "neg_numeral m < numeral n"
huffman@47108
   794
  using neg_numeral_less_zero zero_less_numeral by (rule less_trans)
huffman@47108
   795
huffman@47108
   796
lemma neg_numeral_le_numeral: "neg_numeral m \<le> numeral n"
huffman@47108
   797
  by (simp only: less_imp_le neg_numeral_less_numeral)
huffman@47108
   798
huffman@47108
   799
lemma not_numeral_less_neg_numeral: "\<not> numeral m < neg_numeral n"
huffman@47108
   800
  by (simp only: not_less neg_numeral_le_numeral)
huffman@47108
   801
huffman@47108
   802
lemma not_numeral_le_neg_numeral: "\<not> numeral m \<le> neg_numeral n"
huffman@47108
   803
  by (simp only: not_le neg_numeral_less_numeral)
huffman@47108
   804
  
huffman@47108
   805
lemma neg_numeral_less_one: "neg_numeral m < 1"
huffman@47108
   806
  by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One])
huffman@47108
   807
huffman@47108
   808
lemma neg_numeral_le_one: "neg_numeral m \<le> 1"
huffman@47108
   809
  by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One])
huffman@47108
   810
huffman@47108
   811
lemma not_one_less_neg_numeral: "\<not> 1 < neg_numeral m"
huffman@47108
   812
  by (simp only: not_less neg_numeral_le_one)
huffman@47108
   813
huffman@47108
   814
lemma not_one_le_neg_numeral: "\<not> 1 \<le> neg_numeral m"
huffman@47108
   815
  by (simp only: not_le neg_numeral_less_one)
huffman@47108
   816
huffman@47108
   817
lemma sub_non_negative:
huffman@47108
   818
  "sub n m \<ge> 0 \<longleftrightarrow> n \<ge> m"
huffman@47108
   819
  by (simp only: sub_def le_diff_eq) simp
huffman@47108
   820
huffman@47108
   821
lemma sub_positive:
huffman@47108
   822
  "sub n m > 0 \<longleftrightarrow> n > m"
huffman@47108
   823
  by (simp only: sub_def less_diff_eq) simp
huffman@47108
   824
huffman@47108
   825
lemma sub_non_positive:
huffman@47108
   826
  "sub n m \<le> 0 \<longleftrightarrow> n \<le> m"
huffman@47108
   827
  by (simp only: sub_def diff_le_eq) simp
huffman@47108
   828
huffman@47108
   829
lemma sub_negative:
huffman@47108
   830
  "sub n m < 0 \<longleftrightarrow> n < m"
huffman@47108
   831
  by (simp only: sub_def diff_less_eq) simp
huffman@47108
   832
huffman@47108
   833
lemmas le_neg_numeral_simps [simp] =
huffman@47108
   834
  neg_numeral_le_iff
huffman@47108
   835
  neg_numeral_le_numeral not_numeral_le_neg_numeral
huffman@47108
   836
  neg_numeral_le_zero not_zero_le_neg_numeral
huffman@47108
   837
  neg_numeral_le_one not_one_le_neg_numeral
huffman@47108
   838
huffman@47108
   839
lemmas less_neg_numeral_simps [simp] =
huffman@47108
   840
  neg_numeral_less_iff
huffman@47108
   841
  neg_numeral_less_numeral not_numeral_less_neg_numeral
huffman@47108
   842
  neg_numeral_less_zero not_zero_less_neg_numeral
huffman@47108
   843
  neg_numeral_less_one not_one_less_neg_numeral
huffman@47108
   844
huffman@47108
   845
lemma abs_numeral [simp]: "abs (numeral n) = numeral n"
huffman@47108
   846
  by simp
huffman@47108
   847
huffman@47108
   848
lemma abs_neg_numeral [simp]: "abs (neg_numeral n) = numeral n"
huffman@47108
   849
  by (simp only: neg_numeral_def abs_minus_cancel abs_numeral)
huffman@47108
   850
huffman@47108
   851
end
huffman@47108
   852
huffman@47108
   853
subsubsection {*
huffman@47108
   854
  Natural numbers
huffman@47108
   855
*}
huffman@47108
   856
huffman@47108
   857
lemma Suc_numeral [simp]: "Suc (numeral n) = numeral (n + One)"
huffman@47108
   858
  unfolding numeral_plus_one [symmetric] by simp
huffman@47108
   859
huffman@47108
   860
lemma nat_number:
huffman@47108
   861
  "1 = Suc 0"
huffman@47108
   862
  "numeral One = Suc 0"
huffman@47108
   863
  "numeral (Bit0 n) = Suc (numeral (BitM n))"
huffman@47108
   864
  "numeral (Bit1 n) = Suc (numeral (Bit0 n))"
huffman@47108
   865
  by (simp_all add: numeral.simps BitM_plus_one)
huffman@47108
   866
huffman@47108
   867
subsubsection {*
huffman@47108
   868
  Structures with exponentiation
huffman@47108
   869
*}
huffman@47108
   870
huffman@47108
   871
context semiring_numeral
huffman@47108
   872
begin
huffman@47108
   873
huffman@47108
   874
lemma numeral_sqr: "numeral (sqr n) = numeral n * numeral n"
huffman@47108
   875
  by (simp add: sqr_conv_mult numeral_mult)
huffman@47108
   876
huffman@47108
   877
lemma numeral_pow: "numeral (pow m n) = numeral m ^ numeral n"
huffman@47108
   878
  by (induct n, simp_all add: numeral_class.numeral.simps
huffman@47108
   879
    power_add numeral_sqr numeral_mult)
huffman@47108
   880
huffman@47108
   881
lemma power_numeral [simp]: "numeral m ^ numeral n = numeral (pow m n)"
huffman@47108
   882
  by (rule numeral_pow [symmetric])
huffman@47108
   883
huffman@47108
   884
end
huffman@47108
   885
huffman@47108
   886
context semiring_1
huffman@47108
   887
begin
huffman@47108
   888
huffman@47108
   889
lemma power_zero_numeral [simp]: "(0::'a) ^ numeral n = 0"
huffman@47108
   890
  by (induct n, simp_all add: numeral_class.numeral.simps power_add)
huffman@47108
   891
huffman@47108
   892
end
huffman@47108
   893
huffman@47108
   894
context ring_1
huffman@47108
   895
begin
huffman@47108
   896
huffman@47108
   897
lemma power_minus_Bit0: "(- x) ^ numeral (Bit0 n) = x ^ numeral (Bit0 n)"
huffman@47108
   898
  by (induct n, simp_all add: numeral_class.numeral.simps power_add)
huffman@47108
   899
huffman@47108
   900
lemma power_minus_Bit1: "(- x) ^ numeral (Bit1 n) = - (x ^ numeral (Bit1 n))"
huffman@47108
   901
  by (simp only: nat_number(4) power_Suc power_minus_Bit0 mult_minus_left)
huffman@47108
   902
huffman@47108
   903
lemma power_neg_numeral_Bit0 [simp]:
huffman@47108
   904
  "neg_numeral m ^ numeral (Bit0 n) = numeral (pow m (Bit0 n))"
huffman@47108
   905
  by (simp only: neg_numeral_def power_minus_Bit0 power_numeral)
huffman@47108
   906
huffman@47108
   907
lemma power_neg_numeral_Bit1 [simp]:
huffman@47108
   908
  "neg_numeral m ^ numeral (Bit1 n) = neg_numeral (pow m (Bit1 n))"
huffman@47108
   909
  by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps)
huffman@47108
   910
huffman@47108
   911
end
huffman@47108
   912
huffman@47108
   913
subsection {* Numeral equations as default simplification rules *}
huffman@47108
   914
huffman@47108
   915
declare (in numeral) numeral_One [simp]
huffman@47108
   916
declare (in numeral) numeral_plus_numeral [simp]
huffman@47108
   917
declare (in numeral) add_numeral_special [simp]
huffman@47108
   918
declare (in neg_numeral) add_neg_numeral_simps [simp]
huffman@47108
   919
declare (in neg_numeral) add_neg_numeral_special [simp]
huffman@47108
   920
declare (in neg_numeral) diff_numeral_simps [simp]
huffman@47108
   921
declare (in neg_numeral) diff_numeral_special [simp]
huffman@47108
   922
declare (in semiring_numeral) numeral_times_numeral [simp]
huffman@47108
   923
declare (in ring_1) mult_neg_numeral_simps [simp]
huffman@47108
   924
huffman@47108
   925
subsection {* Setting up simprocs *}
huffman@47108
   926
huffman@47108
   927
lemma numeral_reorient:
huffman@47108
   928
  "(numeral w = x) = (x = numeral w)"
huffman@47108
   929
  by auto
huffman@47108
   930
huffman@47108
   931
lemma mult_numeral_1: "Numeral1 * a = (a::'a::semiring_numeral)"
huffman@47108
   932
  by simp
huffman@47108
   933
huffman@47108
   934
lemma mult_numeral_1_right: "a * Numeral1 = (a::'a::semiring_numeral)"
huffman@47108
   935
  by simp
huffman@47108
   936
huffman@47108
   937
lemma divide_numeral_1: "a / Numeral1 = (a::'a::field)"
huffman@47108
   938
  by simp
huffman@47108
   939
huffman@47108
   940
lemma inverse_numeral_1:
huffman@47108
   941
  "inverse Numeral1 = (Numeral1::'a::division_ring)"
huffman@47108
   942
  by simp
huffman@47108
   943
huffman@47108
   944
text{*Theorem lists for the cancellation simprocs. The use of a numary
huffman@47108
   945
numeral for 1 reduces the number of special cases.*}
huffman@47108
   946
huffman@47108
   947
lemmas mult_1s =
huffman@47108
   948
  mult_numeral_1 mult_numeral_1_right 
huffman@47108
   949
  mult_minus1 mult_minus1_right
huffman@47108
   950
huffman@47108
   951
huffman@47108
   952
subsubsection {* Simplification of arithmetic operations on integer constants. *}
huffman@47108
   953
huffman@47108
   954
lemmas arith_special = (* already declared simp above *)
huffman@47108
   955
  add_numeral_special add_neg_numeral_special
huffman@47108
   956
  diff_numeral_special minus_one
huffman@47108
   957
huffman@47108
   958
(* rules already in simpset *)
huffman@47108
   959
lemmas arith_extra_simps =
huffman@47108
   960
  numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right
huffman@47108
   961
  minus_numeral minus_neg_numeral minus_zero minus_one
huffman@47108
   962
  diff_numeral_simps diff_0 diff_0_right
huffman@47108
   963
  numeral_times_numeral mult_neg_numeral_simps
huffman@47108
   964
  mult_zero_left mult_zero_right
huffman@47108
   965
  abs_numeral abs_neg_numeral
huffman@47108
   966
huffman@47108
   967
text {*
huffman@47108
   968
  For making a minimal simpset, one must include these default simprules.
huffman@47108
   969
  Also include @{text simp_thms}.
huffman@47108
   970
*}
huffman@47108
   971
huffman@47108
   972
lemmas arith_simps =
huffman@47108
   973
  add_num_simps mult_num_simps sub_num_simps
huffman@47108
   974
  BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps
huffman@47108
   975
  abs_zero abs_one arith_extra_simps
huffman@47108
   976
huffman@47108
   977
text {* Simplification of relational operations *}
huffman@47108
   978
huffman@47108
   979
lemmas eq_numeral_extra =
huffman@47108
   980
  zero_neq_one one_neq_zero
huffman@47108
   981
huffman@47108
   982
lemmas rel_simps =
huffman@47108
   983
  le_num_simps less_num_simps eq_num_simps
huffman@47108
   984
  le_numeral_simps le_neg_numeral_simps le_numeral_extra
huffman@47108
   985
  less_numeral_simps less_neg_numeral_simps less_numeral_extra
huffman@47108
   986
  eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra
huffman@47108
   987
huffman@47108
   988
huffman@47108
   989
subsubsection {* Simplification of arithmetic when nested to the right. *}
huffman@47108
   990
huffman@47108
   991
lemma add_numeral_left [simp]:
huffman@47108
   992
  "numeral v + (numeral w + z) = (numeral(v + w) + z)"
huffman@47108
   993
  by (simp_all add: add_assoc [symmetric])
huffman@47108
   994
huffman@47108
   995
lemma add_neg_numeral_left [simp]:
huffman@47108
   996
  "numeral v + (neg_numeral w + y) = (sub v w + y)"
huffman@47108
   997
  "neg_numeral v + (numeral w + y) = (sub w v + y)"
huffman@47108
   998
  "neg_numeral v + (neg_numeral w + y) = (neg_numeral(v + w) + y)"
huffman@47108
   999
  by (simp_all add: add_assoc [symmetric])
huffman@47108
  1000
huffman@47108
  1001
lemma mult_numeral_left [simp]:
huffman@47108
  1002
  "numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)"
huffman@47108
  1003
  "neg_numeral v * (numeral w * y) = (neg_numeral(v * w) * y :: 'b::ring_1)"
huffman@47108
  1004
  "numeral v * (neg_numeral w * y) = (neg_numeral(v * w) * y :: 'b::ring_1)"
huffman@47108
  1005
  "neg_numeral v * (neg_numeral w * y) = (numeral(v * w) * y :: 'b::ring_1)"
huffman@47108
  1006
  by (simp_all add: mult_assoc [symmetric])
huffman@47108
  1007
huffman@47108
  1008
hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec
huffman@47108
  1009
huffman@47108
  1010
subsection {* code module namespace *}
huffman@47108
  1011
huffman@47108
  1012
code_modulename SML
huffman@47108
  1013
  Numeral Arith
huffman@47108
  1014
huffman@47108
  1015
code_modulename OCaml
huffman@47108
  1016
  Numeral Arith
huffman@47108
  1017
huffman@47108
  1018
code_modulename Haskell
huffman@47108
  1019
  Numeral Arith
huffman@47108
  1020
huffman@47108
  1021
end