src/HOL/Quickcheck_Narrowing.thy
author huffman
Sun Mar 25 20:15:39 2012 +0200 (2012-03-25)
changeset 47108 2a1953f0d20d
parent 46950 d0181abdbdac
child 48253 4410a709913c
permissions -rw-r--r--
merged fork with new numeral representation (see NEWS)
bulwahn@41905
     1
(* Author: Lukas Bulwahn, TU Muenchen *)
bulwahn@41905
     2
bulwahn@43356
     3
header {* Counterexample generator performing narrowing-based testing *}
bulwahn@41905
     4
bulwahn@41930
     5
theory Quickcheck_Narrowing
bulwahn@43312
     6
imports Quickcheck_Exhaustive
wenzelm@46950
     7
keywords "find_unused_assms" :: diag
bulwahn@41962
     8
uses
wenzelm@43702
     9
  ("Tools/Quickcheck/PNF_Narrowing_Engine.hs")
wenzelm@43702
    10
  ("Tools/Quickcheck/Narrowing_Engine.hs")
wenzelm@43702
    11
  ("Tools/Quickcheck/narrowing_generators.ML")
bulwahn@46589
    12
  ("Tools/Quickcheck/find_unused_assms.ML")
bulwahn@41905
    13
begin
bulwahn@41905
    14
bulwahn@41905
    15
subsection {* Counterexample generator *}
bulwahn@41905
    16
bulwahn@43308
    17
text {* We create a new target for the necessary code generation setup. *}
bulwahn@43308
    18
bulwahn@43308
    19
setup {* Code_Target.extend_target ("Haskell_Quickcheck", (Code_Haskell.target, K I)) *}
bulwahn@43308
    20
bulwahn@41909
    21
subsubsection {* Code generation setup *}
bulwahn@41909
    22
bulwahn@41909
    23
code_type typerep
bulwahn@43308
    24
  (Haskell_Quickcheck "Typerep")
bulwahn@41909
    25
bulwahn@41909
    26
code_const Typerep.Typerep
bulwahn@43308
    27
  (Haskell_Quickcheck "Typerep")
bulwahn@41909
    28
bulwahn@43308
    29
code_reserved Haskell_Quickcheck Typerep
bulwahn@41909
    30
hoelzl@43341
    31
subsubsection {* Type @{text "code_int"} for Haskell Quickcheck's Int type *}
bulwahn@41908
    32
bulwahn@41908
    33
typedef (open) code_int = "UNIV \<Colon> int set"
bulwahn@41908
    34
  morphisms int_of of_int by rule
bulwahn@41908
    35
bulwahn@42021
    36
lemma of_int_int_of [simp]:
bulwahn@42021
    37
  "of_int (int_of k) = k"
bulwahn@42021
    38
  by (rule int_of_inverse)
bulwahn@42021
    39
bulwahn@42021
    40
lemma int_of_of_int [simp]:
bulwahn@42021
    41
  "int_of (of_int n) = n"
bulwahn@42021
    42
  by (rule of_int_inverse) (rule UNIV_I)
bulwahn@42021
    43
bulwahn@42021
    44
lemma code_int:
bulwahn@42021
    45
  "(\<And>n\<Colon>code_int. PROP P n) \<equiv> (\<And>n\<Colon>int. PROP P (of_int n))"
bulwahn@42021
    46
proof
bulwahn@42021
    47
  fix n :: int
bulwahn@42021
    48
  assume "\<And>n\<Colon>code_int. PROP P n"
bulwahn@42021
    49
  then show "PROP P (of_int n)" .
bulwahn@42021
    50
next
bulwahn@42021
    51
  fix n :: code_int
bulwahn@42021
    52
  assume "\<And>n\<Colon>int. PROP P (of_int n)"
bulwahn@42021
    53
  then have "PROP P (of_int (int_of n))" .
bulwahn@42021
    54
  then show "PROP P n" by simp
bulwahn@42021
    55
qed
bulwahn@42021
    56
bulwahn@42021
    57
bulwahn@41908
    58
lemma int_of_inject [simp]:
bulwahn@41908
    59
  "int_of k = int_of l \<longleftrightarrow> k = l"
bulwahn@41908
    60
  by (rule int_of_inject)
bulwahn@41908
    61
bulwahn@42021
    62
lemma of_int_inject [simp]:
bulwahn@42021
    63
  "of_int n = of_int m \<longleftrightarrow> n = m"
bulwahn@42021
    64
  by (rule of_int_inject) (rule UNIV_I)+
bulwahn@42021
    65
bulwahn@42021
    66
instantiation code_int :: equal
bulwahn@42021
    67
begin
bulwahn@42021
    68
bulwahn@42021
    69
definition
bulwahn@42021
    70
  "HOL.equal k l \<longleftrightarrow> HOL.equal (int_of k) (int_of l)"
bulwahn@42021
    71
bulwahn@42021
    72
instance proof
huffman@47108
    73
qed (auto simp add: equal_code_int_def equal_int_def equal_int_refl)
bulwahn@42021
    74
bulwahn@42021
    75
end
bulwahn@42021
    76
bulwahn@41912
    77
definition nat_of :: "code_int => nat"
bulwahn@41912
    78
where
bulwahn@41912
    79
  "nat_of i = nat (int_of i)"
bulwahn@42980
    80
  
huffman@47108
    81
instantiation code_int :: "{minus, linordered_semidom, semiring_div, neg_numeral, linorder}"
bulwahn@41908
    82
begin
bulwahn@41908
    83
bulwahn@41908
    84
definition [simp, code del]:
bulwahn@41908
    85
  "0 = of_int 0"
bulwahn@41908
    86
bulwahn@41908
    87
definition [simp, code del]:
bulwahn@41908
    88
  "1 = of_int 1"
bulwahn@41908
    89
bulwahn@41908
    90
definition [simp, code del]:
bulwahn@42021
    91
  "n + m = of_int (int_of n + int_of m)"
bulwahn@42021
    92
bulwahn@42021
    93
definition [simp, code del]:
huffman@47108
    94
  "- n = of_int (- int_of n)"
huffman@47108
    95
huffman@47108
    96
definition [simp, code del]:
bulwahn@41908
    97
  "n - m = of_int (int_of n - int_of m)"
bulwahn@41908
    98
bulwahn@41908
    99
definition [simp, code del]:
bulwahn@42021
   100
  "n * m = of_int (int_of n * int_of m)"
bulwahn@42021
   101
bulwahn@42021
   102
definition [simp, code del]:
bulwahn@42021
   103
  "n div m = of_int (int_of n div int_of m)"
bulwahn@42021
   104
bulwahn@42021
   105
definition [simp, code del]:
bulwahn@42021
   106
  "n mod m = of_int (int_of n mod int_of m)"
bulwahn@42021
   107
bulwahn@42021
   108
definition [simp, code del]:
bulwahn@41908
   109
  "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m"
bulwahn@41908
   110
bulwahn@41908
   111
definition [simp, code del]:
bulwahn@41908
   112
  "n < m \<longleftrightarrow> int_of n < int_of m"
bulwahn@41908
   113
bulwahn@42021
   114
instance proof
bulwahn@42021
   115
qed (auto simp add: code_int left_distrib zmult_zless_mono2)
bulwahn@41908
   116
bulwahn@41908
   117
end
bulwahn@42980
   118
huffman@47108
   119
lemma int_of_numeral [simp]:
huffman@47108
   120
  "int_of (numeral k) = numeral k"
huffman@47108
   121
  by (induct k) (simp_all only: numeral.simps plus_code_int_def
huffman@47108
   122
    one_code_int_def of_int_inverse UNIV_I)
huffman@47108
   123
huffman@47108
   124
definition Num :: "num \<Rightarrow> code_int"
huffman@47108
   125
  where [code_abbrev]: "Num = numeral"
huffman@47108
   126
huffman@47108
   127
lemma [code_abbrev]:
huffman@47108
   128
  "- numeral k = (neg_numeral k :: code_int)"
huffman@47108
   129
  by (unfold neg_numeral_def) simp
huffman@47108
   130
huffman@47108
   131
code_datatype "0::code_int" Num
bulwahn@41908
   132
bulwahn@42980
   133
lemma one_code_int_code [code, code_unfold]:
bulwahn@41908
   134
  "(1\<Colon>code_int) = Numeral1"
huffman@47108
   135
  by (simp only: numeral.simps)
bulwahn@41908
   136
huffman@47108
   137
definition div_mod :: "code_int \<Rightarrow> code_int \<Rightarrow> code_int \<times> code_int" where
huffman@47108
   138
  [code del]: "div_mod n m = (n div m, n mod m)"
bulwahn@42021
   139
bulwahn@42021
   140
lemma [code]:
huffman@47108
   141
  "div_mod n m = (if m = 0 then (0, n) else (n div m, n mod m))"
huffman@47108
   142
  unfolding div_mod_def by auto
bulwahn@42021
   143
bulwahn@42021
   144
lemma [code]:
huffman@47108
   145
  "n div m = fst (div_mod n m)"
huffman@47108
   146
  unfolding div_mod_def by simp
bulwahn@42021
   147
bulwahn@42021
   148
lemma [code]:
huffman@47108
   149
  "n mod m = snd (div_mod n m)"
huffman@47108
   150
  unfolding div_mod_def by simp
bulwahn@42021
   151
bulwahn@42021
   152
lemma int_of_code [code]:
bulwahn@42021
   153
  "int_of k = (if k = 0 then 0
bulwahn@42021
   154
    else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"
bulwahn@42021
   155
proof -
bulwahn@42021
   156
  have 1: "(int_of k div 2) * 2 + int_of k mod 2 = int_of k" 
bulwahn@42021
   157
    by (rule mod_div_equality)
bulwahn@42021
   158
  have "int_of k mod 2 = 0 \<or> int_of k mod 2 = 1" by auto
bulwahn@42021
   159
  from this show ?thesis
bulwahn@42021
   160
    apply auto
bulwahn@42021
   161
    apply (insert 1) by (auto simp add: mult_ac)
bulwahn@42021
   162
qed
bulwahn@42021
   163
bulwahn@42021
   164
bulwahn@42021
   165
code_instance code_numeral :: equal
bulwahn@43308
   166
  (Haskell_Quickcheck -)
bulwahn@42021
   167
huffman@47108
   168
setup {* fold (Numeral.add_code @{const_name Num}
bulwahn@43308
   169
  false Code_Printer.literal_numeral) ["Haskell_Quickcheck"]  *}
bulwahn@42021
   170
huffman@47108
   171
code_type code_int
huffman@47108
   172
  (Haskell_Quickcheck "Int")
huffman@47108
   173
bulwahn@41908
   174
code_const "0 \<Colon> code_int"
bulwahn@43308
   175
  (Haskell_Quickcheck "0")
bulwahn@41908
   176
bulwahn@41908
   177
code_const "1 \<Colon> code_int"
bulwahn@43308
   178
  (Haskell_Quickcheck "1")
bulwahn@41908
   179
bulwahn@41908
   180
code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int"
huffman@47108
   181
  (Haskell_Quickcheck infixl 6 "-")
bulwahn@41908
   182
huffman@47108
   183
code_const div_mod
bulwahn@43308
   184
  (Haskell_Quickcheck "divMod")
bulwahn@42021
   185
bulwahn@42021
   186
code_const "HOL.equal \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   187
  (Haskell_Quickcheck infix 4 "==")
bulwahn@42021
   188
huffman@47108
   189
code_const "less_eq \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   190
  (Haskell_Quickcheck infix 4 "<=")
bulwahn@41908
   191
huffman@47108
   192
code_const "less \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   193
  (Haskell_Quickcheck infix 4 "<")
bulwahn@41908
   194
huffman@47108
   195
code_abort of_int
bulwahn@41908
   196
huffman@47108
   197
hide_const (open) Num div_mod
bulwahn@42021
   198
bulwahn@41961
   199
subsubsection {* Narrowing's deep representation of types and terms *}
bulwahn@41905
   200
bulwahn@46758
   201
datatype narrowing_type = Narrowing_sum_of_products "narrowing_type list list"
bulwahn@46758
   202
datatype narrowing_term = Narrowing_variable "code_int list" narrowing_type | Narrowing_constructor code_int "narrowing_term list"
bulwahn@46758
   203
datatype 'a narrowing_cons = Narrowing_cons narrowing_type "(narrowing_term list => 'a) list"
bulwahn@41905
   204
bulwahn@46758
   205
primrec map_cons :: "('a => 'b) => 'a narrowing_cons => 'b narrowing_cons"
bulwahn@43356
   206
where
bulwahn@46758
   207
  "map_cons f (Narrowing_cons ty cs) = Narrowing_cons ty (map (%c. f o c) cs)"
bulwahn@43356
   208
hoelzl@43341
   209
subsubsection {* From narrowing's deep representation of terms to @{theory Code_Evaluation}'s terms *}
bulwahn@42980
   210
bulwahn@42980
   211
class partial_term_of = typerep +
bulwahn@43047
   212
  fixes partial_term_of :: "'a itself => narrowing_term => Code_Evaluation.term"
bulwahn@43047
   213
bulwahn@43047
   214
lemma partial_term_of_anything: "partial_term_of x nt \<equiv> t"
bulwahn@43047
   215
  by (rule eq_reflection) (cases "partial_term_of x nt", cases t, simp)
bulwahn@43356
   216
 
bulwahn@41964
   217
subsubsection {* Auxilary functions for Narrowing *}
bulwahn@41905
   218
bulwahn@41908
   219
consts nth :: "'a list => code_int => 'a"
bulwahn@41905
   220
bulwahn@43308
   221
code_const nth (Haskell_Quickcheck infixl 9  "!!")
bulwahn@41905
   222
bulwahn@41908
   223
consts error :: "char list => 'a"
bulwahn@41905
   224
bulwahn@43308
   225
code_const error (Haskell_Quickcheck "error")
bulwahn@41905
   226
bulwahn@41908
   227
consts toEnum :: "code_int => char"
bulwahn@41908
   228
bulwahn@43308
   229
code_const toEnum (Haskell_Quickcheck "toEnum")
bulwahn@41905
   230
bulwahn@43316
   231
consts marker :: "char"
bulwahn@41905
   232
bulwahn@43316
   233
code_const marker (Haskell_Quickcheck "''\\0'")
bulwahn@43316
   234
bulwahn@41961
   235
subsubsection {* Narrowing's basic operations *}
bulwahn@41905
   236
bulwahn@46758
   237
type_synonym 'a narrowing = "code_int => 'a narrowing_cons"
bulwahn@41905
   238
bulwahn@41961
   239
definition empty :: "'a narrowing"
bulwahn@41905
   240
where
bulwahn@46758
   241
  "empty d = Narrowing_cons (Narrowing_sum_of_products []) []"
bulwahn@41905
   242
  
bulwahn@41961
   243
definition cons :: "'a => 'a narrowing"
bulwahn@41905
   244
where
bulwahn@46758
   245
  "cons a d = (Narrowing_cons (Narrowing_sum_of_products [[]]) [(%_. a)])"
bulwahn@41905
   246
bulwahn@43047
   247
fun conv :: "(narrowing_term list => 'a) list => narrowing_term => 'a"
bulwahn@41905
   248
where
bulwahn@46758
   249
  "conv cs (Narrowing_variable p _) = error (marker # map toEnum p)"
bulwahn@46758
   250
| "conv cs (Narrowing_constructor i xs) = (nth cs i) xs"
bulwahn@41905
   251
bulwahn@46758
   252
fun non_empty :: "narrowing_type => bool"
bulwahn@41905
   253
where
bulwahn@46758
   254
  "non_empty (Narrowing_sum_of_products ps) = (\<not> (List.null ps))"
bulwahn@41905
   255
bulwahn@41961
   256
definition "apply" :: "('a => 'b) narrowing => 'a narrowing => 'b narrowing"
bulwahn@41905
   257
where
bulwahn@41905
   258
  "apply f a d =
bulwahn@46758
   259
     (case f d of Narrowing_cons (Narrowing_sum_of_products ps) cfs =>
bulwahn@46758
   260
       case a (d - 1) of Narrowing_cons ta cas =>
bulwahn@41905
   261
       let
bulwahn@46758
   262
         shallow = (d > 0 \<and> non_empty ta);
bulwahn@41905
   263
         cs = [(%xs'. (case xs' of [] => undefined | x # xs => cf xs (conv cas x))). shallow, cf <- cfs]
bulwahn@46758
   264
       in Narrowing_cons (Narrowing_sum_of_products [ta # p. shallow, p <- ps]) cs)"
bulwahn@41905
   265
bulwahn@41961
   266
definition sum :: "'a narrowing => 'a narrowing => 'a narrowing"
bulwahn@41905
   267
where
bulwahn@41905
   268
  "sum a b d =
bulwahn@46758
   269
    (case a d of Narrowing_cons (Narrowing_sum_of_products ssa) ca => 
bulwahn@46758
   270
      case b d of Narrowing_cons (Narrowing_sum_of_products ssb) cb =>
bulwahn@46758
   271
      Narrowing_cons (Narrowing_sum_of_products (ssa @ ssb)) (ca @ cb))"
bulwahn@41905
   272
bulwahn@41912
   273
lemma [fundef_cong]:
bulwahn@41912
   274
  assumes "a d = a' d" "b d = b' d" "d = d'"
bulwahn@41912
   275
  shows "sum a b d = sum a' b' d'"
bulwahn@46758
   276
using assms unfolding sum_def by (auto split: narrowing_cons.split narrowing_type.split)
bulwahn@41912
   277
bulwahn@41912
   278
lemma [fundef_cong]:
bulwahn@41912
   279
  assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')"
bulwahn@41912
   280
  assumes "d = d'"
bulwahn@41912
   281
  shows "apply f a d = apply f' a' d'"
bulwahn@41912
   282
proof -
bulwahn@41912
   283
  note assms moreover
bulwahn@41930
   284
  have "int_of (of_int 0) < int_of d' ==> int_of (of_int 0) <= int_of (of_int (int_of d' - int_of (of_int 1)))"
bulwahn@41912
   285
    by (simp add: of_int_inverse)
bulwahn@41912
   286
  moreover
bulwahn@41930
   287
  have "int_of (of_int (int_of d' - int_of (of_int 1))) < int_of d'"
bulwahn@41912
   288
    by (simp add: of_int_inverse)
bulwahn@41912
   289
  ultimately show ?thesis
bulwahn@46758
   290
    unfolding apply_def by (auto split: narrowing_cons.split narrowing_type.split simp add: Let_def)
bulwahn@41912
   291
qed
bulwahn@41912
   292
bulwahn@41961
   293
subsubsection {* Narrowing generator type class *}
bulwahn@41905
   294
bulwahn@41961
   295
class narrowing =
bulwahn@46758
   296
  fixes narrowing :: "code_int => 'a narrowing_cons"
bulwahn@41905
   297
bulwahn@43237
   298
datatype property = Universal narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Existential narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Property bool
bulwahn@43237
   299
bulwahn@43237
   300
(* FIXME: hard-wired maximal depth of 100 here *)
bulwahn@43315
   301
definition exists :: "('a :: {narrowing, partial_term_of} => property) => property"
bulwahn@43237
   302
where
bulwahn@46758
   303
  "exists f = (case narrowing (100 :: code_int) of Narrowing_cons ty cs => Existential ty (\<lambda> t. f (conv cs t)) (partial_term_of (TYPE('a))))"
bulwahn@43237
   304
bulwahn@43315
   305
definition "all" :: "('a :: {narrowing, partial_term_of} => property) => property"
bulwahn@43237
   306
where
bulwahn@46758
   307
  "all f = (case narrowing (100 :: code_int) of Narrowing_cons ty cs => Universal ty (\<lambda>t. f (conv cs t)) (partial_term_of (TYPE('a))))"
bulwahn@43237
   308
wenzelm@41943
   309
subsubsection {* class @{text is_testable} *}
bulwahn@41905
   310
wenzelm@41943
   311
text {* The class @{text is_testable} ensures that all necessary type instances are generated. *}
bulwahn@41905
   312
bulwahn@41905
   313
class is_testable
bulwahn@41905
   314
bulwahn@41905
   315
instance bool :: is_testable ..
bulwahn@41905
   316
bulwahn@43047
   317
instance "fun" :: ("{term_of, narrowing, partial_term_of}", is_testable) is_testable ..
bulwahn@41905
   318
bulwahn@41905
   319
definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
bulwahn@41905
   320
where
bulwahn@41905
   321
  "ensure_testable f = f"
bulwahn@41905
   322
bulwahn@41910
   323
bulwahn@42022
   324
subsubsection {* Defining a simple datatype to represent functions in an incomplete and redundant way *}
bulwahn@42022
   325
bulwahn@42022
   326
datatype ('a, 'b) ffun = Constant 'b | Update 'a 'b "('a, 'b) ffun"
bulwahn@42022
   327
bulwahn@42022
   328
primrec eval_ffun :: "('a, 'b) ffun => 'a => 'b"
bulwahn@42022
   329
where
bulwahn@42022
   330
  "eval_ffun (Constant c) x = c"
bulwahn@42022
   331
| "eval_ffun (Update x' y f) x = (if x = x' then y else eval_ffun f x)"
bulwahn@42022
   332
bulwahn@42022
   333
hide_type (open) ffun
bulwahn@42022
   334
hide_const (open) Constant Update eval_ffun
bulwahn@42022
   335
bulwahn@42024
   336
datatype 'b cfun = Constant 'b
bulwahn@42024
   337
bulwahn@42024
   338
primrec eval_cfun :: "'b cfun => 'a => 'b"
bulwahn@42024
   339
where
bulwahn@42024
   340
  "eval_cfun (Constant c) y = c"
bulwahn@42024
   341
bulwahn@42024
   342
hide_type (open) cfun
huffman@45734
   343
hide_const (open) Constant eval_cfun Abs_cfun Rep_cfun
bulwahn@42024
   344
bulwahn@42024
   345
subsubsection {* Setting up the counterexample generator *}
bulwahn@43237
   346
wenzelm@43702
   347
use "Tools/Quickcheck/narrowing_generators.ML"
bulwahn@42024
   348
bulwahn@42024
   349
setup {* Narrowing_Generators.setup *}
bulwahn@42024
   350
bulwahn@45001
   351
definition narrowing_dummy_partial_term_of :: "('a :: partial_term_of) itself => narrowing_term => term"
bulwahn@45001
   352
where
bulwahn@45001
   353
  "narrowing_dummy_partial_term_of = partial_term_of"
bulwahn@45001
   354
bulwahn@46758
   355
definition narrowing_dummy_narrowing :: "code_int => ('a :: narrowing) narrowing_cons"
bulwahn@45001
   356
where
bulwahn@45001
   357
  "narrowing_dummy_narrowing = narrowing"
bulwahn@45001
   358
bulwahn@45001
   359
lemma [code]:
bulwahn@45001
   360
  "ensure_testable f =
bulwahn@45001
   361
    (let
bulwahn@46758
   362
      x = narrowing_dummy_narrowing :: code_int => bool narrowing_cons;
bulwahn@45001
   363
      y = narrowing_dummy_partial_term_of :: bool itself => narrowing_term => term;
bulwahn@45001
   364
      z = (conv :: _ => _ => unit)  in f)"
bulwahn@45001
   365
unfolding Let_def ensure_testable_def ..
bulwahn@45001
   366
bulwahn@46308
   367
subsection {* Narrowing for sets *}
bulwahn@46308
   368
bulwahn@46308
   369
instantiation set :: (narrowing) narrowing
bulwahn@46308
   370
begin
bulwahn@46308
   371
bulwahn@46308
   372
definition "narrowing_set = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons set) narrowing"
bulwahn@46308
   373
bulwahn@46308
   374
instance ..
bulwahn@46308
   375
bulwahn@46308
   376
end
bulwahn@45001
   377
  
bulwahn@43356
   378
subsection {* Narrowing for integers *}
bulwahn@43356
   379
bulwahn@43356
   380
bulwahn@46758
   381
definition drawn_from :: "'a list => 'a narrowing_cons"
bulwahn@46758
   382
where "drawn_from xs = Narrowing_cons (Narrowing_sum_of_products (map (%_. []) xs)) (map (%x y. x) xs)"
bulwahn@43356
   383
bulwahn@43356
   384
function around_zero :: "int => int list"
bulwahn@43356
   385
where
bulwahn@43356
   386
  "around_zero i = (if i < 0 then [] else (if i = 0 then [0] else around_zero (i - 1) @ [i, -i]))"
bulwahn@43356
   387
by pat_completeness auto
bulwahn@43356
   388
termination by (relation "measure nat") auto
bulwahn@43356
   389
bulwahn@43356
   390
declare around_zero.simps[simp del]
bulwahn@43356
   391
bulwahn@43356
   392
lemma length_around_zero:
bulwahn@43356
   393
  assumes "i >= 0" 
bulwahn@43356
   394
  shows "length (around_zero i) = 2 * nat i + 1"
bulwahn@43356
   395
proof (induct rule: int_ge_induct[OF assms])
bulwahn@43356
   396
  case 1
bulwahn@43356
   397
  from 1 show ?case by (simp add: around_zero.simps)
bulwahn@43356
   398
next
bulwahn@43356
   399
  case (2 i)
bulwahn@43356
   400
  from 2 show ?case
bulwahn@43356
   401
    by (simp add: around_zero.simps[of "i + 1"])
bulwahn@43356
   402
qed
bulwahn@43356
   403
bulwahn@43356
   404
instantiation int :: narrowing
bulwahn@43356
   405
begin
bulwahn@43356
   406
bulwahn@43356
   407
definition
bulwahn@43356
   408
  "narrowing_int d = (let (u :: _ => _ => unit) = conv; i = Quickcheck_Narrowing.int_of d in drawn_from (around_zero i))"
bulwahn@43356
   409
bulwahn@43356
   410
instance ..
bulwahn@43356
   411
bulwahn@43356
   412
end
bulwahn@43356
   413
bulwahn@43356
   414
lemma [code, code del]: "partial_term_of (ty :: int itself) t == undefined"
bulwahn@43356
   415
by (rule partial_term_of_anything)+
bulwahn@43356
   416
bulwahn@43356
   417
lemma [code]:
bulwahn@46758
   418
  "partial_term_of (ty :: int itself) (Narrowing_variable p t) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Int.int'') [])"
bulwahn@46758
   419
  "partial_term_of (ty :: int itself) (Narrowing_constructor i []) == (if i mod 2 = 0 then
bulwahn@43356
   420
     Code_Evaluation.term_of (- (int_of i) div 2) else Code_Evaluation.term_of ((int_of i + 1) div 2))"
bulwahn@43356
   421
by (rule partial_term_of_anything)+
bulwahn@43356
   422
bulwahn@43356
   423
text {* Defining integers by positive and negative copy of naturals *}
bulwahn@43356
   424
(*
bulwahn@43356
   425
datatype simple_int = Positive nat | Negative nat
bulwahn@43356
   426
bulwahn@43356
   427
primrec int_of_simple_int :: "simple_int => int"
bulwahn@43356
   428
where
bulwahn@43356
   429
  "int_of_simple_int (Positive n) = int n"
bulwahn@43356
   430
| "int_of_simple_int (Negative n) = (-1 - int n)"
bulwahn@43356
   431
bulwahn@43356
   432
instantiation int :: narrowing
bulwahn@43356
   433
begin
bulwahn@43356
   434
bulwahn@43356
   435
definition narrowing_int :: "code_int => int cons"
bulwahn@43356
   436
where
bulwahn@43356
   437
  "narrowing_int d = map_cons int_of_simple_int ((narrowing :: simple_int narrowing) d)"
bulwahn@43356
   438
bulwahn@43356
   439
instance ..
bulwahn@43356
   440
bulwahn@43356
   441
end
bulwahn@43356
   442
bulwahn@43356
   443
text {* printing the partial terms *}
bulwahn@43356
   444
bulwahn@43356
   445
lemma [code]:
bulwahn@43356
   446
  "partial_term_of (ty :: int itself) t == Code_Evaluation.App (Code_Evaluation.Const (STR ''Quickcheck_Narrowing.int_of_simple_int'')
bulwahn@43356
   447
     (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Quickcheck_Narrowing.simple_int'') [], Typerep.Typerep (STR ''Int.int'') []])) (partial_term_of (TYPE(simple_int)) t)"
bulwahn@43356
   448
by (rule partial_term_of_anything)
bulwahn@43356
   449
bulwahn@43356
   450
*)
bulwahn@43356
   451
bulwahn@46589
   452
subsection {* The @{text find_unused_assms} command *}
bulwahn@46589
   453
bulwahn@46589
   454
use "Tools/Quickcheck/find_unused_assms.ML"
bulwahn@46589
   455
bulwahn@46589
   456
subsection {* Closing up *}
bulwahn@46589
   457
bulwahn@46758
   458
hide_type code_int narrowing_type narrowing_term narrowing_cons property
bulwahn@46758
   459
hide_const int_of of_int nat_of map_cons nth error toEnum marker empty Narrowing_cons conv non_empty ensure_testable all exists drawn_from around_zero
bulwahn@46758
   460
hide_const (open) Narrowing_variable Narrowing_constructor "apply" sum cons
bulwahn@46758
   461
hide_fact empty_def cons_def conv.simps non_empty.simps apply_def sum_def ensure_testable_def all_def exists_def
bulwahn@42022
   462
bulwahn@45001
   463
end