haftmann@29197
|
1 |
(* Title: HOL/RealVector.thy
|
haftmann@27552
|
2 |
Author: Brian Huffman
|
huffman@20504
|
3 |
*)
|
huffman@20504
|
4 |
|
huffman@20504
|
5 |
header {* Vector Spaces and Algebras over the Reals *}
|
huffman@20504
|
6 |
|
huffman@20504
|
7 |
theory RealVector
|
huffman@36839
|
8 |
imports RComplete
|
huffman@20504
|
9 |
begin
|
huffman@20504
|
10 |
|
huffman@20504
|
11 |
subsection {* Locale for additive functions *}
|
huffman@20504
|
12 |
|
huffman@20504
|
13 |
locale additive =
|
huffman@20504
|
14 |
fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
|
huffman@20504
|
15 |
assumes add: "f (x + y) = f x + f y"
|
huffman@27443
|
16 |
begin
|
huffman@20504
|
17 |
|
huffman@27443
|
18 |
lemma zero: "f 0 = 0"
|
huffman@20504
|
19 |
proof -
|
huffman@20504
|
20 |
have "f 0 = f (0 + 0)" by simp
|
huffman@20504
|
21 |
also have "\<dots> = f 0 + f 0" by (rule add)
|
huffman@20504
|
22 |
finally show "f 0 = 0" by simp
|
huffman@20504
|
23 |
qed
|
huffman@20504
|
24 |
|
huffman@27443
|
25 |
lemma minus: "f (- x) = - f x"
|
huffman@20504
|
26 |
proof -
|
huffman@20504
|
27 |
have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
|
huffman@20504
|
28 |
also have "\<dots> = - f x + f x" by (simp add: zero)
|
huffman@20504
|
29 |
finally show "f (- x) = - f x" by (rule add_right_imp_eq)
|
huffman@20504
|
30 |
qed
|
huffman@20504
|
31 |
|
huffman@27443
|
32 |
lemma diff: "f (x - y) = f x - f y"
|
haftmann@37887
|
33 |
by (simp add: add minus diff_minus)
|
huffman@20504
|
34 |
|
huffman@27443
|
35 |
lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
|
huffman@22942
|
36 |
apply (cases "finite A")
|
huffman@22942
|
37 |
apply (induct set: finite)
|
huffman@22942
|
38 |
apply (simp add: zero)
|
huffman@22942
|
39 |
apply (simp add: add)
|
huffman@22942
|
40 |
apply (simp add: zero)
|
huffman@22942
|
41 |
done
|
huffman@22942
|
42 |
|
huffman@27443
|
43 |
end
|
huffman@20504
|
44 |
|
huffman@28029
|
45 |
subsection {* Vector spaces *}
|
huffman@28029
|
46 |
|
huffman@28029
|
47 |
locale vector_space =
|
huffman@28029
|
48 |
fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
|
huffman@30070
|
49 |
assumes scale_right_distrib [algebra_simps]:
|
huffman@30070
|
50 |
"scale a (x + y) = scale a x + scale a y"
|
huffman@30070
|
51 |
and scale_left_distrib [algebra_simps]:
|
huffman@30070
|
52 |
"scale (a + b) x = scale a x + scale b x"
|
huffman@28029
|
53 |
and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
|
huffman@28029
|
54 |
and scale_one [simp]: "scale 1 x = x"
|
huffman@28029
|
55 |
begin
|
huffman@28029
|
56 |
|
huffman@28029
|
57 |
lemma scale_left_commute:
|
huffman@28029
|
58 |
"scale a (scale b x) = scale b (scale a x)"
|
huffman@28029
|
59 |
by (simp add: mult_commute)
|
huffman@28029
|
60 |
|
huffman@28029
|
61 |
lemma scale_zero_left [simp]: "scale 0 x = 0"
|
huffman@28029
|
62 |
and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
|
huffman@30070
|
63 |
and scale_left_diff_distrib [algebra_simps]:
|
huffman@30070
|
64 |
"scale (a - b) x = scale a x - scale b x"
|
huffman@44282
|
65 |
and scale_setsum_left: "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)"
|
huffman@28029
|
66 |
proof -
|
ballarin@29229
|
67 |
interpret s: additive "\<lambda>a. scale a x"
|
haftmann@28823
|
68 |
proof qed (rule scale_left_distrib)
|
huffman@28029
|
69 |
show "scale 0 x = 0" by (rule s.zero)
|
huffman@28029
|
70 |
show "scale (- a) x = - (scale a x)" by (rule s.minus)
|
huffman@28029
|
71 |
show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
|
huffman@44282
|
72 |
show "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" by (rule s.setsum)
|
huffman@28029
|
73 |
qed
|
huffman@28029
|
74 |
|
huffman@28029
|
75 |
lemma scale_zero_right [simp]: "scale a 0 = 0"
|
huffman@28029
|
76 |
and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
|
huffman@30070
|
77 |
and scale_right_diff_distrib [algebra_simps]:
|
huffman@30070
|
78 |
"scale a (x - y) = scale a x - scale a y"
|
huffman@44282
|
79 |
and scale_setsum_right: "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))"
|
huffman@28029
|
80 |
proof -
|
ballarin@29229
|
81 |
interpret s: additive "\<lambda>x. scale a x"
|
haftmann@28823
|
82 |
proof qed (rule scale_right_distrib)
|
huffman@28029
|
83 |
show "scale a 0 = 0" by (rule s.zero)
|
huffman@28029
|
84 |
show "scale a (- x) = - (scale a x)" by (rule s.minus)
|
huffman@28029
|
85 |
show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
|
huffman@44282
|
86 |
show "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" by (rule s.setsum)
|
huffman@28029
|
87 |
qed
|
huffman@28029
|
88 |
|
huffman@28029
|
89 |
lemma scale_eq_0_iff [simp]:
|
huffman@28029
|
90 |
"scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
|
huffman@28029
|
91 |
proof cases
|
huffman@28029
|
92 |
assume "a = 0" thus ?thesis by simp
|
huffman@28029
|
93 |
next
|
huffman@28029
|
94 |
assume anz [simp]: "a \<noteq> 0"
|
huffman@28029
|
95 |
{ assume "scale a x = 0"
|
huffman@28029
|
96 |
hence "scale (inverse a) (scale a x) = 0" by simp
|
huffman@28029
|
97 |
hence "x = 0" by simp }
|
huffman@28029
|
98 |
thus ?thesis by force
|
huffman@28029
|
99 |
qed
|
huffman@28029
|
100 |
|
huffman@28029
|
101 |
lemma scale_left_imp_eq:
|
huffman@28029
|
102 |
"\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
|
huffman@28029
|
103 |
proof -
|
huffman@28029
|
104 |
assume nonzero: "a \<noteq> 0"
|
huffman@28029
|
105 |
assume "scale a x = scale a y"
|
huffman@28029
|
106 |
hence "scale a (x - y) = 0"
|
huffman@28029
|
107 |
by (simp add: scale_right_diff_distrib)
|
huffman@28029
|
108 |
hence "x - y = 0" by (simp add: nonzero)
|
huffman@28029
|
109 |
thus "x = y" by (simp only: right_minus_eq)
|
huffman@28029
|
110 |
qed
|
huffman@28029
|
111 |
|
huffman@28029
|
112 |
lemma scale_right_imp_eq:
|
huffman@28029
|
113 |
"\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
|
huffman@28029
|
114 |
proof -
|
huffman@28029
|
115 |
assume nonzero: "x \<noteq> 0"
|
huffman@28029
|
116 |
assume "scale a x = scale b x"
|
huffman@28029
|
117 |
hence "scale (a - b) x = 0"
|
huffman@28029
|
118 |
by (simp add: scale_left_diff_distrib)
|
huffman@28029
|
119 |
hence "a - b = 0" by (simp add: nonzero)
|
huffman@28029
|
120 |
thus "a = b" by (simp only: right_minus_eq)
|
huffman@28029
|
121 |
qed
|
huffman@28029
|
122 |
|
huffman@31586
|
123 |
lemma scale_cancel_left [simp]:
|
huffman@28029
|
124 |
"scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
|
huffman@28029
|
125 |
by (auto intro: scale_left_imp_eq)
|
huffman@28029
|
126 |
|
huffman@31586
|
127 |
lemma scale_cancel_right [simp]:
|
huffman@28029
|
128 |
"scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
|
huffman@28029
|
129 |
by (auto intro: scale_right_imp_eq)
|
huffman@28029
|
130 |
|
huffman@28029
|
131 |
end
|
huffman@28029
|
132 |
|
huffman@20504
|
133 |
subsection {* Real vector spaces *}
|
huffman@20504
|
134 |
|
haftmann@29608
|
135 |
class scaleR =
|
haftmann@25062
|
136 |
fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
|
haftmann@24748
|
137 |
begin
|
huffman@20504
|
138 |
|
huffman@20763
|
139 |
abbreviation
|
haftmann@25062
|
140 |
divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
|
haftmann@24748
|
141 |
where
|
haftmann@25062
|
142 |
"x /\<^sub>R r == scaleR (inverse r) x"
|
haftmann@24748
|
143 |
|
haftmann@24748
|
144 |
end
|
haftmann@24748
|
145 |
|
haftmann@24588
|
146 |
class real_vector = scaleR + ab_group_add +
|
huffman@44282
|
147 |
assumes scaleR_add_right: "scaleR a (x + y) = scaleR a x + scaleR a y"
|
huffman@44282
|
148 |
and scaleR_add_left: "scaleR (a + b) x = scaleR a x + scaleR b x"
|
huffman@30070
|
149 |
and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x"
|
huffman@30070
|
150 |
and scaleR_one: "scaleR 1 x = x"
|
huffman@20504
|
151 |
|
wenzelm@30729
|
152 |
interpretation real_vector:
|
ballarin@29229
|
153 |
vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
|
huffman@28009
|
154 |
apply unfold_locales
|
huffman@44282
|
155 |
apply (rule scaleR_add_right)
|
huffman@44282
|
156 |
apply (rule scaleR_add_left)
|
huffman@28009
|
157 |
apply (rule scaleR_scaleR)
|
huffman@28009
|
158 |
apply (rule scaleR_one)
|
huffman@28009
|
159 |
done
|
huffman@28009
|
160 |
|
huffman@28009
|
161 |
text {* Recover original theorem names *}
|
huffman@28009
|
162 |
|
huffman@28009
|
163 |
lemmas scaleR_left_commute = real_vector.scale_left_commute
|
huffman@28009
|
164 |
lemmas scaleR_zero_left = real_vector.scale_zero_left
|
huffman@28009
|
165 |
lemmas scaleR_minus_left = real_vector.scale_minus_left
|
huffman@44282
|
166 |
lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib
|
huffman@44282
|
167 |
lemmas scaleR_setsum_left = real_vector.scale_setsum_left
|
huffman@28009
|
168 |
lemmas scaleR_zero_right = real_vector.scale_zero_right
|
huffman@28009
|
169 |
lemmas scaleR_minus_right = real_vector.scale_minus_right
|
huffman@44282
|
170 |
lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib
|
huffman@44282
|
171 |
lemmas scaleR_setsum_right = real_vector.scale_setsum_right
|
huffman@28009
|
172 |
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
|
huffman@28009
|
173 |
lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
|
huffman@28009
|
174 |
lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
|
huffman@28009
|
175 |
lemmas scaleR_cancel_left = real_vector.scale_cancel_left
|
huffman@28009
|
176 |
lemmas scaleR_cancel_right = real_vector.scale_cancel_right
|
huffman@28009
|
177 |
|
huffman@44282
|
178 |
text {* Legacy names *}
|
huffman@44282
|
179 |
|
huffman@44282
|
180 |
lemmas scaleR_left_distrib = scaleR_add_left
|
huffman@44282
|
181 |
lemmas scaleR_right_distrib = scaleR_add_right
|
huffman@44282
|
182 |
lemmas scaleR_left_diff_distrib = scaleR_diff_left
|
huffman@44282
|
183 |
lemmas scaleR_right_diff_distrib = scaleR_diff_right
|
huffman@44282
|
184 |
|
huffman@31285
|
185 |
lemma scaleR_minus1_left [simp]:
|
huffman@31285
|
186 |
fixes x :: "'a::real_vector"
|
huffman@31285
|
187 |
shows "scaleR (-1) x = - x"
|
huffman@31285
|
188 |
using scaleR_minus_left [of 1 x] by simp
|
huffman@31285
|
189 |
|
haftmann@24588
|
190 |
class real_algebra = real_vector + ring +
|
haftmann@25062
|
191 |
assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
|
haftmann@25062
|
192 |
and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
|
huffman@20504
|
193 |
|
haftmann@24588
|
194 |
class real_algebra_1 = real_algebra + ring_1
|
huffman@20554
|
195 |
|
haftmann@24588
|
196 |
class real_div_algebra = real_algebra_1 + division_ring
|
huffman@20584
|
197 |
|
haftmann@24588
|
198 |
class real_field = real_div_algebra + field
|
huffman@20584
|
199 |
|
huffman@30069
|
200 |
instantiation real :: real_field
|
huffman@30069
|
201 |
begin
|
huffman@30069
|
202 |
|
huffman@30069
|
203 |
definition
|
huffman@30069
|
204 |
real_scaleR_def [simp]: "scaleR a x = a * x"
|
huffman@30069
|
205 |
|
huffman@30070
|
206 |
instance proof
|
huffman@30070
|
207 |
qed (simp_all add: algebra_simps)
|
huffman@20554
|
208 |
|
huffman@30069
|
209 |
end
|
huffman@30069
|
210 |
|
wenzelm@30729
|
211 |
interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
|
haftmann@28823
|
212 |
proof qed (rule scaleR_left_distrib)
|
huffman@20504
|
213 |
|
wenzelm@30729
|
214 |
interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
|
haftmann@28823
|
215 |
proof qed (rule scaleR_right_distrib)
|
huffman@20504
|
216 |
|
huffman@20584
|
217 |
lemma nonzero_inverse_scaleR_distrib:
|
huffman@21809
|
218 |
fixes x :: "'a::real_div_algebra" shows
|
huffman@21809
|
219 |
"\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
|
huffman@20763
|
220 |
by (rule inverse_unique, simp)
|
huffman@20584
|
221 |
|
huffman@20584
|
222 |
lemma inverse_scaleR_distrib:
|
haftmann@36409
|
223 |
fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
|
huffman@21809
|
224 |
shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
|
huffman@20584
|
225 |
apply (case_tac "a = 0", simp)
|
huffman@20584
|
226 |
apply (case_tac "x = 0", simp)
|
huffman@20584
|
227 |
apply (erule (1) nonzero_inverse_scaleR_distrib)
|
huffman@20584
|
228 |
done
|
huffman@20584
|
229 |
|
huffman@20554
|
230 |
|
huffman@20554
|
231 |
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
|
huffman@20554
|
232 |
@{term of_real} *}
|
huffman@20554
|
233 |
|
huffman@20554
|
234 |
definition
|
wenzelm@21404
|
235 |
of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
|
huffman@21809
|
236 |
"of_real r = scaleR r 1"
|
huffman@20554
|
237 |
|
huffman@21809
|
238 |
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
|
huffman@20763
|
239 |
by (simp add: of_real_def)
|
huffman@20763
|
240 |
|
huffman@20554
|
241 |
lemma of_real_0 [simp]: "of_real 0 = 0"
|
huffman@20554
|
242 |
by (simp add: of_real_def)
|
huffman@20554
|
243 |
|
huffman@20554
|
244 |
lemma of_real_1 [simp]: "of_real 1 = 1"
|
huffman@20554
|
245 |
by (simp add: of_real_def)
|
huffman@20554
|
246 |
|
huffman@20554
|
247 |
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
|
huffman@20554
|
248 |
by (simp add: of_real_def scaleR_left_distrib)
|
huffman@20554
|
249 |
|
huffman@20554
|
250 |
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
|
huffman@20554
|
251 |
by (simp add: of_real_def)
|
huffman@20554
|
252 |
|
huffman@20554
|
253 |
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
|
huffman@20554
|
254 |
by (simp add: of_real_def scaleR_left_diff_distrib)
|
huffman@20554
|
255 |
|
huffman@20554
|
256 |
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
|
huffman@20763
|
257 |
by (simp add: of_real_def mult_commute)
|
huffman@20554
|
258 |
|
huffman@20584
|
259 |
lemma nonzero_of_real_inverse:
|
huffman@20584
|
260 |
"x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
|
huffman@20584
|
261 |
inverse (of_real x :: 'a::real_div_algebra)"
|
huffman@20584
|
262 |
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
|
huffman@20584
|
263 |
|
huffman@20584
|
264 |
lemma of_real_inverse [simp]:
|
huffman@20584
|
265 |
"of_real (inverse x) =
|
haftmann@36409
|
266 |
inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
|
huffman@20584
|
267 |
by (simp add: of_real_def inverse_scaleR_distrib)
|
huffman@20584
|
268 |
|
huffman@20584
|
269 |
lemma nonzero_of_real_divide:
|
huffman@20584
|
270 |
"y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
|
huffman@20584
|
271 |
(of_real x / of_real y :: 'a::real_field)"
|
huffman@20584
|
272 |
by (simp add: divide_inverse nonzero_of_real_inverse)
|
huffman@20722
|
273 |
|
huffman@20722
|
274 |
lemma of_real_divide [simp]:
|
huffman@20584
|
275 |
"of_real (x / y) =
|
haftmann@36409
|
276 |
(of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
|
huffman@20584
|
277 |
by (simp add: divide_inverse)
|
huffman@20584
|
278 |
|
huffman@20722
|
279 |
lemma of_real_power [simp]:
|
haftmann@31017
|
280 |
"of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
|
huffman@30273
|
281 |
by (induct n) simp_all
|
huffman@20722
|
282 |
|
huffman@20554
|
283 |
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
|
huffman@35216
|
284 |
by (simp add: of_real_def)
|
huffman@20554
|
285 |
|
haftmann@38621
|
286 |
lemma inj_of_real:
|
haftmann@38621
|
287 |
"inj of_real"
|
haftmann@38621
|
288 |
by (auto intro: injI)
|
haftmann@38621
|
289 |
|
huffman@20584
|
290 |
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
|
huffman@20554
|
291 |
|
huffman@20554
|
292 |
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
|
huffman@20554
|
293 |
proof
|
huffman@20554
|
294 |
fix r
|
huffman@20554
|
295 |
show "of_real r = id r"
|
huffman@22973
|
296 |
by (simp add: of_real_def)
|
huffman@20554
|
297 |
qed
|
huffman@20554
|
298 |
|
huffman@20554
|
299 |
text{*Collapse nested embeddings*}
|
huffman@20554
|
300 |
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
|
wenzelm@20772
|
301 |
by (induct n) auto
|
huffman@20554
|
302 |
|
huffman@20554
|
303 |
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
|
huffman@20554
|
304 |
by (cases z rule: int_diff_cases, simp)
|
huffman@20554
|
305 |
|
huffman@47108
|
306 |
lemma of_real_numeral: "of_real (numeral w) = numeral w"
|
huffman@47108
|
307 |
using of_real_of_int_eq [of "numeral w"] by simp
|
huffman@47108
|
308 |
|
huffman@47108
|
309 |
lemma of_real_neg_numeral: "of_real (neg_numeral w) = neg_numeral w"
|
huffman@47108
|
310 |
using of_real_of_int_eq [of "neg_numeral w"] by simp
|
huffman@20554
|
311 |
|
huffman@22912
|
312 |
text{*Every real algebra has characteristic zero*}
|
haftmann@38621
|
313 |
|
huffman@22912
|
314 |
instance real_algebra_1 < ring_char_0
|
huffman@22912
|
315 |
proof
|
haftmann@38621
|
316 |
from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp)
|
haftmann@38621
|
317 |
then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def)
|
huffman@22912
|
318 |
qed
|
huffman@22912
|
319 |
|
huffman@27553
|
320 |
instance real_field < field_char_0 ..
|
huffman@27553
|
321 |
|
huffman@20554
|
322 |
|
huffman@20554
|
323 |
subsection {* The Set of Real Numbers *}
|
huffman@20554
|
324 |
|
haftmann@37767
|
325 |
definition Reals :: "'a::real_algebra_1 set" where
|
haftmann@37767
|
326 |
"Reals = range of_real"
|
huffman@20554
|
327 |
|
wenzelm@21210
|
328 |
notation (xsymbols)
|
huffman@20554
|
329 |
Reals ("\<real>")
|
huffman@20554
|
330 |
|
huffman@21809
|
331 |
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
|
huffman@20554
|
332 |
by (simp add: Reals_def)
|
huffman@20554
|
333 |
|
huffman@21809
|
334 |
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
|
huffman@21809
|
335 |
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
|
huffman@20718
|
336 |
|
huffman@21809
|
337 |
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
|
huffman@21809
|
338 |
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
|
huffman@21809
|
339 |
|
huffman@47108
|
340 |
lemma Reals_numeral [simp]: "numeral w \<in> Reals"
|
huffman@47108
|
341 |
by (subst of_real_numeral [symmetric], rule Reals_of_real)
|
huffman@47108
|
342 |
|
huffman@47108
|
343 |
lemma Reals_neg_numeral [simp]: "neg_numeral w \<in> Reals"
|
huffman@47108
|
344 |
by (subst of_real_neg_numeral [symmetric], rule Reals_of_real)
|
huffman@20718
|
345 |
|
huffman@20554
|
346 |
lemma Reals_0 [simp]: "0 \<in> Reals"
|
huffman@20554
|
347 |
apply (unfold Reals_def)
|
huffman@20554
|
348 |
apply (rule range_eqI)
|
huffman@20554
|
349 |
apply (rule of_real_0 [symmetric])
|
huffman@20554
|
350 |
done
|
huffman@20554
|
351 |
|
huffman@20554
|
352 |
lemma Reals_1 [simp]: "1 \<in> Reals"
|
huffman@20554
|
353 |
apply (unfold Reals_def)
|
huffman@20554
|
354 |
apply (rule range_eqI)
|
huffman@20554
|
355 |
apply (rule of_real_1 [symmetric])
|
huffman@20554
|
356 |
done
|
huffman@20554
|
357 |
|
huffman@20584
|
358 |
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
|
huffman@20554
|
359 |
apply (auto simp add: Reals_def)
|
huffman@20554
|
360 |
apply (rule range_eqI)
|
huffman@20554
|
361 |
apply (rule of_real_add [symmetric])
|
huffman@20554
|
362 |
done
|
huffman@20554
|
363 |
|
huffman@20584
|
364 |
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
|
huffman@20584
|
365 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
366 |
apply (rule range_eqI)
|
huffman@20584
|
367 |
apply (rule of_real_minus [symmetric])
|
huffman@20584
|
368 |
done
|
huffman@20584
|
369 |
|
huffman@20584
|
370 |
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
|
huffman@20584
|
371 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
372 |
apply (rule range_eqI)
|
huffman@20584
|
373 |
apply (rule of_real_diff [symmetric])
|
huffman@20584
|
374 |
done
|
huffman@20584
|
375 |
|
huffman@20584
|
376 |
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
|
huffman@20554
|
377 |
apply (auto simp add: Reals_def)
|
huffman@20554
|
378 |
apply (rule range_eqI)
|
huffman@20554
|
379 |
apply (rule of_real_mult [symmetric])
|
huffman@20554
|
380 |
done
|
huffman@20554
|
381 |
|
huffman@20584
|
382 |
lemma nonzero_Reals_inverse:
|
huffman@20584
|
383 |
fixes a :: "'a::real_div_algebra"
|
huffman@20584
|
384 |
shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
|
huffman@20584
|
385 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
386 |
apply (rule range_eqI)
|
huffman@20584
|
387 |
apply (erule nonzero_of_real_inverse [symmetric])
|
huffman@20584
|
388 |
done
|
huffman@20584
|
389 |
|
huffman@20584
|
390 |
lemma Reals_inverse [simp]:
|
haftmann@36409
|
391 |
fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
|
huffman@20584
|
392 |
shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
|
huffman@20584
|
393 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
394 |
apply (rule range_eqI)
|
huffman@20584
|
395 |
apply (rule of_real_inverse [symmetric])
|
huffman@20584
|
396 |
done
|
huffman@20584
|
397 |
|
huffman@20584
|
398 |
lemma nonzero_Reals_divide:
|
huffman@20584
|
399 |
fixes a b :: "'a::real_field"
|
huffman@20584
|
400 |
shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
|
huffman@20584
|
401 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
402 |
apply (rule range_eqI)
|
huffman@20584
|
403 |
apply (erule nonzero_of_real_divide [symmetric])
|
huffman@20584
|
404 |
done
|
huffman@20584
|
405 |
|
huffman@20584
|
406 |
lemma Reals_divide [simp]:
|
haftmann@36409
|
407 |
fixes a b :: "'a::{real_field, field_inverse_zero}"
|
huffman@20584
|
408 |
shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
|
huffman@20584
|
409 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
410 |
apply (rule range_eqI)
|
huffman@20584
|
411 |
apply (rule of_real_divide [symmetric])
|
huffman@20584
|
412 |
done
|
huffman@20584
|
413 |
|
huffman@20722
|
414 |
lemma Reals_power [simp]:
|
haftmann@31017
|
415 |
fixes a :: "'a::{real_algebra_1}"
|
huffman@20722
|
416 |
shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
|
huffman@20722
|
417 |
apply (auto simp add: Reals_def)
|
huffman@20722
|
418 |
apply (rule range_eqI)
|
huffman@20722
|
419 |
apply (rule of_real_power [symmetric])
|
huffman@20722
|
420 |
done
|
huffman@20722
|
421 |
|
huffman@20554
|
422 |
lemma Reals_cases [cases set: Reals]:
|
huffman@20554
|
423 |
assumes "q \<in> \<real>"
|
huffman@20554
|
424 |
obtains (of_real) r where "q = of_real r"
|
huffman@20554
|
425 |
unfolding Reals_def
|
huffman@20554
|
426 |
proof -
|
huffman@20554
|
427 |
from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
|
huffman@20554
|
428 |
then obtain r where "q = of_real r" ..
|
huffman@20554
|
429 |
then show thesis ..
|
huffman@20554
|
430 |
qed
|
huffman@20554
|
431 |
|
huffman@20554
|
432 |
lemma Reals_induct [case_names of_real, induct set: Reals]:
|
huffman@20554
|
433 |
"q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
|
huffman@20554
|
434 |
by (rule Reals_cases) auto
|
huffman@20554
|
435 |
|
huffman@20504
|
436 |
|
huffman@31413
|
437 |
subsection {* Topological spaces *}
|
huffman@31413
|
438 |
|
huffman@31492
|
439 |
class "open" =
|
huffman@31494
|
440 |
fixes "open" :: "'a set \<Rightarrow> bool"
|
huffman@31490
|
441 |
|
huffman@31492
|
442 |
class topological_space = "open" +
|
huffman@31492
|
443 |
assumes open_UNIV [simp, intro]: "open UNIV"
|
huffman@31492
|
444 |
assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
|
huffman@31492
|
445 |
assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)"
|
huffman@31490
|
446 |
begin
|
huffman@31490
|
447 |
|
huffman@31490
|
448 |
definition
|
huffman@31490
|
449 |
closed :: "'a set \<Rightarrow> bool" where
|
huffman@31490
|
450 |
"closed S \<longleftrightarrow> open (- S)"
|
huffman@31490
|
451 |
|
huffman@31490
|
452 |
lemma open_empty [intro, simp]: "open {}"
|
huffman@31490
|
453 |
using open_Union [of "{}"] by simp
|
huffman@31490
|
454 |
|
huffman@31490
|
455 |
lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
|
huffman@31490
|
456 |
using open_Union [of "{S, T}"] by simp
|
huffman@31490
|
457 |
|
huffman@31490
|
458 |
lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
|
hoelzl@44937
|
459 |
unfolding SUP_def by (rule open_Union) auto
|
hoelzl@44937
|
460 |
|
hoelzl@44937
|
461 |
lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
|
hoelzl@44937
|
462 |
by (induct set: finite) auto
|
huffman@31490
|
463 |
|
huffman@31490
|
464 |
lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
|
hoelzl@44937
|
465 |
unfolding INF_def by (rule open_Inter) auto
|
huffman@31490
|
466 |
|
huffman@31490
|
467 |
lemma closed_empty [intro, simp]: "closed {}"
|
huffman@31490
|
468 |
unfolding closed_def by simp
|
huffman@31490
|
469 |
|
huffman@31490
|
470 |
lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
|
huffman@31490
|
471 |
unfolding closed_def by auto
|
huffman@31490
|
472 |
|
huffman@31490
|
473 |
lemma closed_UNIV [intro, simp]: "closed UNIV"
|
huffman@31490
|
474 |
unfolding closed_def by simp
|
huffman@31490
|
475 |
|
huffman@31490
|
476 |
lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
|
huffman@31490
|
477 |
unfolding closed_def by auto
|
huffman@31490
|
478 |
|
huffman@31490
|
479 |
lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
|
huffman@31490
|
480 |
unfolding closed_def by auto
|
huffman@31490
|
481 |
|
hoelzl@44937
|
482 |
lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)"
|
hoelzl@44937
|
483 |
unfolding closed_def uminus_Inf by auto
|
hoelzl@44937
|
484 |
|
hoelzl@44937
|
485 |
lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
|
huffman@31490
|
486 |
by (induct set: finite) auto
|
huffman@31490
|
487 |
|
hoelzl@44937
|
488 |
lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
|
hoelzl@44937
|
489 |
unfolding SUP_def by (rule closed_Union) auto
|
huffman@31490
|
490 |
|
huffman@31490
|
491 |
lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
|
huffman@31490
|
492 |
unfolding closed_def by simp
|
huffman@31490
|
493 |
|
huffman@31490
|
494 |
lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
|
huffman@31490
|
495 |
unfolding closed_def by simp
|
huffman@31490
|
496 |
|
huffman@31490
|
497 |
lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
|
huffman@31490
|
498 |
unfolding closed_open Diff_eq by (rule open_Int)
|
huffman@31490
|
499 |
|
huffman@31490
|
500 |
lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
|
huffman@31490
|
501 |
unfolding open_closed Diff_eq by (rule closed_Int)
|
huffman@31490
|
502 |
|
huffman@31490
|
503 |
lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)"
|
huffman@31490
|
504 |
unfolding closed_open .
|
huffman@31490
|
505 |
|
huffman@31490
|
506 |
lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)"
|
huffman@31490
|
507 |
unfolding open_closed .
|
huffman@31490
|
508 |
|
huffman@31490
|
509 |
end
|
huffman@31413
|
510 |
|
huffman@31413
|
511 |
|
huffman@31289
|
512 |
subsection {* Metric spaces *}
|
huffman@31289
|
513 |
|
huffman@31289
|
514 |
class dist =
|
huffman@31289
|
515 |
fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real"
|
huffman@31289
|
516 |
|
huffman@31492
|
517 |
class open_dist = "open" + dist +
|
huffman@31492
|
518 |
assumes open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
|
huffman@31413
|
519 |
|
huffman@31492
|
520 |
class metric_space = open_dist +
|
huffman@31289
|
521 |
assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y"
|
huffman@31289
|
522 |
assumes dist_triangle2: "dist x y \<le> dist x z + dist y z"
|
huffman@31289
|
523 |
begin
|
huffman@31289
|
524 |
|
huffman@31289
|
525 |
lemma dist_self [simp]: "dist x x = 0"
|
huffman@31289
|
526 |
by simp
|
huffman@31289
|
527 |
|
huffman@31289
|
528 |
lemma zero_le_dist [simp]: "0 \<le> dist x y"
|
huffman@31289
|
529 |
using dist_triangle2 [of x x y] by simp
|
huffman@31289
|
530 |
|
huffman@31289
|
531 |
lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y"
|
huffman@31289
|
532 |
by (simp add: less_le)
|
huffman@31289
|
533 |
|
huffman@31289
|
534 |
lemma dist_not_less_zero [simp]: "\<not> dist x y < 0"
|
huffman@31289
|
535 |
by (simp add: not_less)
|
huffman@31289
|
536 |
|
huffman@31289
|
537 |
lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y"
|
huffman@31289
|
538 |
by (simp add: le_less)
|
huffman@31289
|
539 |
|
huffman@31289
|
540 |
lemma dist_commute: "dist x y = dist y x"
|
huffman@31289
|
541 |
proof (rule order_antisym)
|
huffman@31289
|
542 |
show "dist x y \<le> dist y x"
|
huffman@31289
|
543 |
using dist_triangle2 [of x y x] by simp
|
huffman@31289
|
544 |
show "dist y x \<le> dist x y"
|
huffman@31289
|
545 |
using dist_triangle2 [of y x y] by simp
|
huffman@31289
|
546 |
qed
|
huffman@31289
|
547 |
|
huffman@31289
|
548 |
lemma dist_triangle: "dist x z \<le> dist x y + dist y z"
|
huffman@31289
|
549 |
using dist_triangle2 [of x z y] by (simp add: dist_commute)
|
huffman@31289
|
550 |
|
huffman@31565
|
551 |
lemma dist_triangle3: "dist x y \<le> dist a x + dist a y"
|
huffman@31565
|
552 |
using dist_triangle2 [of x y a] by (simp add: dist_commute)
|
huffman@31565
|
553 |
|
hoelzl@41969
|
554 |
lemma dist_triangle_alt:
|
hoelzl@41969
|
555 |
shows "dist y z <= dist x y + dist x z"
|
hoelzl@41969
|
556 |
by (rule dist_triangle3)
|
hoelzl@41969
|
557 |
|
hoelzl@41969
|
558 |
lemma dist_pos_lt:
|
hoelzl@41969
|
559 |
shows "x \<noteq> y ==> 0 < dist x y"
|
hoelzl@41969
|
560 |
by (simp add: zero_less_dist_iff)
|
hoelzl@41969
|
561 |
|
hoelzl@41969
|
562 |
lemma dist_nz:
|
hoelzl@41969
|
563 |
shows "x \<noteq> y \<longleftrightarrow> 0 < dist x y"
|
hoelzl@41969
|
564 |
by (simp add: zero_less_dist_iff)
|
hoelzl@41969
|
565 |
|
hoelzl@41969
|
566 |
lemma dist_triangle_le:
|
hoelzl@41969
|
567 |
shows "dist x z + dist y z <= e \<Longrightarrow> dist x y <= e"
|
hoelzl@41969
|
568 |
by (rule order_trans [OF dist_triangle2])
|
hoelzl@41969
|
569 |
|
hoelzl@41969
|
570 |
lemma dist_triangle_lt:
|
hoelzl@41969
|
571 |
shows "dist x z + dist y z < e ==> dist x y < e"
|
hoelzl@41969
|
572 |
by (rule le_less_trans [OF dist_triangle2])
|
hoelzl@41969
|
573 |
|
hoelzl@41969
|
574 |
lemma dist_triangle_half_l:
|
hoelzl@41969
|
575 |
shows "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e"
|
hoelzl@41969
|
576 |
by (rule dist_triangle_lt [where z=y], simp)
|
hoelzl@41969
|
577 |
|
hoelzl@41969
|
578 |
lemma dist_triangle_half_r:
|
hoelzl@41969
|
579 |
shows "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e"
|
hoelzl@41969
|
580 |
by (rule dist_triangle_half_l, simp_all add: dist_commute)
|
hoelzl@41969
|
581 |
|
huffman@31413
|
582 |
subclass topological_space
|
huffman@31413
|
583 |
proof
|
huffman@31413
|
584 |
have "\<exists>e::real. 0 < e"
|
huffman@31413
|
585 |
by (fast intro: zero_less_one)
|
huffman@31492
|
586 |
then show "open UNIV"
|
huffman@31492
|
587 |
unfolding open_dist by simp
|
huffman@31413
|
588 |
next
|
huffman@31492
|
589 |
fix S T assume "open S" "open T"
|
huffman@31492
|
590 |
then show "open (S \<inter> T)"
|
huffman@31492
|
591 |
unfolding open_dist
|
huffman@31413
|
592 |
apply clarify
|
huffman@31413
|
593 |
apply (drule (1) bspec)+
|
huffman@31413
|
594 |
apply (clarify, rename_tac r s)
|
huffman@31413
|
595 |
apply (rule_tac x="min r s" in exI, simp)
|
huffman@31413
|
596 |
done
|
huffman@31413
|
597 |
next
|
huffman@31492
|
598 |
fix K assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)"
|
huffman@31492
|
599 |
unfolding open_dist by fast
|
huffman@31413
|
600 |
qed
|
huffman@31413
|
601 |
|
hoelzl@41969
|
602 |
lemma (in metric_space) open_ball: "open {y. dist x y < d}"
|
hoelzl@41969
|
603 |
proof (unfold open_dist, intro ballI)
|
hoelzl@41969
|
604 |
fix y assume *: "y \<in> {y. dist x y < d}"
|
hoelzl@41969
|
605 |
then show "\<exists>e>0. \<forall>z. dist z y < e \<longrightarrow> z \<in> {y. dist x y < d}"
|
hoelzl@41969
|
606 |
by (auto intro!: exI[of _ "d - dist x y"] simp: field_simps dist_triangle_lt)
|
hoelzl@41969
|
607 |
qed
|
hoelzl@41969
|
608 |
|
huffman@31289
|
609 |
end
|
huffman@31289
|
610 |
|
huffman@31289
|
611 |
|
huffman@20504
|
612 |
subsection {* Real normed vector spaces *}
|
huffman@20504
|
613 |
|
haftmann@29608
|
614 |
class norm =
|
huffman@22636
|
615 |
fixes norm :: "'a \<Rightarrow> real"
|
huffman@20504
|
616 |
|
huffman@24520
|
617 |
class sgn_div_norm = scaleR + norm + sgn +
|
haftmann@25062
|
618 |
assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
|
nipkow@24506
|
619 |
|
huffman@31289
|
620 |
class dist_norm = dist + norm + minus +
|
huffman@31289
|
621 |
assumes dist_norm: "dist x y = norm (x - y)"
|
huffman@31289
|
622 |
|
huffman@31492
|
623 |
class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist +
|
haftmann@24588
|
624 |
assumes norm_ge_zero [simp]: "0 \<le> norm x"
|
haftmann@25062
|
625 |
and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
|
haftmann@25062
|
626 |
and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
|
huffman@31586
|
627 |
and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
|
huffman@20504
|
628 |
|
haftmann@24588
|
629 |
class real_normed_algebra = real_algebra + real_normed_vector +
|
haftmann@25062
|
630 |
assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
|
huffman@20504
|
631 |
|
haftmann@24588
|
632 |
class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
|
haftmann@25062
|
633 |
assumes norm_one [simp]: "norm 1 = 1"
|
huffman@22852
|
634 |
|
haftmann@24588
|
635 |
class real_normed_div_algebra = real_div_algebra + real_normed_vector +
|
haftmann@25062
|
636 |
assumes norm_mult: "norm (x * y) = norm x * norm y"
|
huffman@20504
|
637 |
|
haftmann@24588
|
638 |
class real_normed_field = real_field + real_normed_div_algebra
|
huffman@20584
|
639 |
|
huffman@22852
|
640 |
instance real_normed_div_algebra < real_normed_algebra_1
|
huffman@20554
|
641 |
proof
|
huffman@20554
|
642 |
fix x y :: 'a
|
huffman@20554
|
643 |
show "norm (x * y) \<le> norm x * norm y"
|
huffman@20554
|
644 |
by (simp add: norm_mult)
|
huffman@22852
|
645 |
next
|
huffman@22852
|
646 |
have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
|
huffman@22852
|
647 |
by (rule norm_mult)
|
huffman@22852
|
648 |
thus "norm (1::'a) = 1" by simp
|
huffman@20554
|
649 |
qed
|
huffman@20554
|
650 |
|
huffman@22852
|
651 |
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
|
huffman@20504
|
652 |
by simp
|
huffman@20504
|
653 |
|
huffman@22852
|
654 |
lemma zero_less_norm_iff [simp]:
|
huffman@22852
|
655 |
fixes x :: "'a::real_normed_vector"
|
huffman@22852
|
656 |
shows "(0 < norm x) = (x \<noteq> 0)"
|
huffman@20504
|
657 |
by (simp add: order_less_le)
|
huffman@20504
|
658 |
|
huffman@22852
|
659 |
lemma norm_not_less_zero [simp]:
|
huffman@22852
|
660 |
fixes x :: "'a::real_normed_vector"
|
huffman@22852
|
661 |
shows "\<not> norm x < 0"
|
huffman@20828
|
662 |
by (simp add: linorder_not_less)
|
huffman@20828
|
663 |
|
huffman@22852
|
664 |
lemma norm_le_zero_iff [simp]:
|
huffman@22852
|
665 |
fixes x :: "'a::real_normed_vector"
|
huffman@22852
|
666 |
shows "(norm x \<le> 0) = (x = 0)"
|
huffman@20828
|
667 |
by (simp add: order_le_less)
|
huffman@20828
|
668 |
|
huffman@20504
|
669 |
lemma norm_minus_cancel [simp]:
|
huffman@20584
|
670 |
fixes x :: "'a::real_normed_vector"
|
huffman@20584
|
671 |
shows "norm (- x) = norm x"
|
huffman@20504
|
672 |
proof -
|
huffman@21809
|
673 |
have "norm (- x) = norm (scaleR (- 1) x)"
|
huffman@20504
|
674 |
by (simp only: scaleR_minus_left scaleR_one)
|
huffman@20533
|
675 |
also have "\<dots> = \<bar>- 1\<bar> * norm x"
|
huffman@20504
|
676 |
by (rule norm_scaleR)
|
huffman@20504
|
677 |
finally show ?thesis by simp
|
huffman@20504
|
678 |
qed
|
huffman@20504
|
679 |
|
huffman@20504
|
680 |
lemma norm_minus_commute:
|
huffman@20584
|
681 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20584
|
682 |
shows "norm (a - b) = norm (b - a)"
|
huffman@20504
|
683 |
proof -
|
huffman@22898
|
684 |
have "norm (- (b - a)) = norm (b - a)"
|
huffman@22898
|
685 |
by (rule norm_minus_cancel)
|
huffman@22898
|
686 |
thus ?thesis by simp
|
huffman@20504
|
687 |
qed
|
huffman@20504
|
688 |
|
huffman@20504
|
689 |
lemma norm_triangle_ineq2:
|
huffman@20584
|
690 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20533
|
691 |
shows "norm a - norm b \<le> norm (a - b)"
|
huffman@20504
|
692 |
proof -
|
huffman@20533
|
693 |
have "norm (a - b + b) \<le> norm (a - b) + norm b"
|
huffman@20504
|
694 |
by (rule norm_triangle_ineq)
|
huffman@22898
|
695 |
thus ?thesis by simp
|
huffman@20504
|
696 |
qed
|
huffman@20504
|
697 |
|
huffman@20584
|
698 |
lemma norm_triangle_ineq3:
|
huffman@20584
|
699 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20584
|
700 |
shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
|
huffman@20584
|
701 |
apply (subst abs_le_iff)
|
huffman@20584
|
702 |
apply auto
|
huffman@20584
|
703 |
apply (rule norm_triangle_ineq2)
|
huffman@20584
|
704 |
apply (subst norm_minus_commute)
|
huffman@20584
|
705 |
apply (rule norm_triangle_ineq2)
|
huffman@20584
|
706 |
done
|
huffman@20584
|
707 |
|
huffman@20504
|
708 |
lemma norm_triangle_ineq4:
|
huffman@20584
|
709 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20533
|
710 |
shows "norm (a - b) \<le> norm a + norm b"
|
huffman@20504
|
711 |
proof -
|
huffman@22898
|
712 |
have "norm (a + - b) \<le> norm a + norm (- b)"
|
huffman@20504
|
713 |
by (rule norm_triangle_ineq)
|
huffman@22898
|
714 |
thus ?thesis
|
huffman@22898
|
715 |
by (simp only: diff_minus norm_minus_cancel)
|
huffman@22898
|
716 |
qed
|
huffman@22898
|
717 |
|
huffman@22898
|
718 |
lemma norm_diff_ineq:
|
huffman@22898
|
719 |
fixes a b :: "'a::real_normed_vector"
|
huffman@22898
|
720 |
shows "norm a - norm b \<le> norm (a + b)"
|
huffman@22898
|
721 |
proof -
|
huffman@22898
|
722 |
have "norm a - norm (- b) \<le> norm (a - - b)"
|
huffman@22898
|
723 |
by (rule norm_triangle_ineq2)
|
huffman@22898
|
724 |
thus ?thesis by simp
|
huffman@20504
|
725 |
qed
|
huffman@20504
|
726 |
|
huffman@20551
|
727 |
lemma norm_diff_triangle_ineq:
|
huffman@20551
|
728 |
fixes a b c d :: "'a::real_normed_vector"
|
huffman@20551
|
729 |
shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
|
huffman@20551
|
730 |
proof -
|
huffman@20551
|
731 |
have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
|
huffman@20551
|
732 |
by (simp add: diff_minus add_ac)
|
huffman@20551
|
733 |
also have "\<dots> \<le> norm (a - c) + norm (b - d)"
|
huffman@20551
|
734 |
by (rule norm_triangle_ineq)
|
huffman@20551
|
735 |
finally show ?thesis .
|
huffman@20551
|
736 |
qed
|
huffman@20551
|
737 |
|
huffman@22857
|
738 |
lemma abs_norm_cancel [simp]:
|
huffman@22857
|
739 |
fixes a :: "'a::real_normed_vector"
|
huffman@22857
|
740 |
shows "\<bar>norm a\<bar> = norm a"
|
huffman@22857
|
741 |
by (rule abs_of_nonneg [OF norm_ge_zero])
|
huffman@22857
|
742 |
|
huffman@22880
|
743 |
lemma norm_add_less:
|
huffman@22880
|
744 |
fixes x y :: "'a::real_normed_vector"
|
huffman@22880
|
745 |
shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
|
huffman@22880
|
746 |
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
|
huffman@22880
|
747 |
|
huffman@22880
|
748 |
lemma norm_mult_less:
|
huffman@22880
|
749 |
fixes x y :: "'a::real_normed_algebra"
|
huffman@22880
|
750 |
shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
|
huffman@22880
|
751 |
apply (rule order_le_less_trans [OF norm_mult_ineq])
|
huffman@22880
|
752 |
apply (simp add: mult_strict_mono')
|
huffman@22880
|
753 |
done
|
huffman@22880
|
754 |
|
huffman@22857
|
755 |
lemma norm_of_real [simp]:
|
huffman@22857
|
756 |
"norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
|
huffman@31586
|
757 |
unfolding of_real_def by simp
|
huffman@20560
|
758 |
|
huffman@47108
|
759 |
lemma norm_numeral [simp]:
|
huffman@47108
|
760 |
"norm (numeral w::'a::real_normed_algebra_1) = numeral w"
|
huffman@47108
|
761 |
by (subst of_real_numeral [symmetric], subst norm_of_real, simp)
|
huffman@47108
|
762 |
|
huffman@47108
|
763 |
lemma norm_neg_numeral [simp]:
|
huffman@47108
|
764 |
"norm (neg_numeral w::'a::real_normed_algebra_1) = numeral w"
|
huffman@47108
|
765 |
by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp)
|
huffman@22876
|
766 |
|
huffman@22876
|
767 |
lemma norm_of_int [simp]:
|
huffman@22876
|
768 |
"norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
|
huffman@22876
|
769 |
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
|
huffman@22876
|
770 |
|
huffman@22876
|
771 |
lemma norm_of_nat [simp]:
|
huffman@22876
|
772 |
"norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
|
huffman@22876
|
773 |
apply (subst of_real_of_nat_eq [symmetric])
|
huffman@22876
|
774 |
apply (subst norm_of_real, simp)
|
huffman@22876
|
775 |
done
|
huffman@22876
|
776 |
|
huffman@20504
|
777 |
lemma nonzero_norm_inverse:
|
huffman@20504
|
778 |
fixes a :: "'a::real_normed_div_algebra"
|
huffman@20533
|
779 |
shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
|
huffman@20504
|
780 |
apply (rule inverse_unique [symmetric])
|
huffman@20504
|
781 |
apply (simp add: norm_mult [symmetric])
|
huffman@20504
|
782 |
done
|
huffman@20504
|
783 |
|
huffman@20504
|
784 |
lemma norm_inverse:
|
haftmann@36409
|
785 |
fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
|
huffman@20533
|
786 |
shows "norm (inverse a) = inverse (norm a)"
|
huffman@20504
|
787 |
apply (case_tac "a = 0", simp)
|
huffman@20504
|
788 |
apply (erule nonzero_norm_inverse)
|
huffman@20504
|
789 |
done
|
huffman@20504
|
790 |
|
huffman@20584
|
791 |
lemma nonzero_norm_divide:
|
huffman@20584
|
792 |
fixes a b :: "'a::real_normed_field"
|
huffman@20584
|
793 |
shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
|
huffman@20584
|
794 |
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
|
huffman@20584
|
795 |
|
huffman@20584
|
796 |
lemma norm_divide:
|
haftmann@36409
|
797 |
fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
|
huffman@20584
|
798 |
shows "norm (a / b) = norm a / norm b"
|
huffman@20584
|
799 |
by (simp add: divide_inverse norm_mult norm_inverse)
|
huffman@20584
|
800 |
|
huffman@22852
|
801 |
lemma norm_power_ineq:
|
haftmann@31017
|
802 |
fixes x :: "'a::{real_normed_algebra_1}"
|
huffman@22852
|
803 |
shows "norm (x ^ n) \<le> norm x ^ n"
|
huffman@22852
|
804 |
proof (induct n)
|
huffman@22852
|
805 |
case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
|
huffman@22852
|
806 |
next
|
huffman@22852
|
807 |
case (Suc n)
|
huffman@22852
|
808 |
have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
|
huffman@22852
|
809 |
by (rule norm_mult_ineq)
|
huffman@22852
|
810 |
also from Suc have "\<dots> \<le> norm x * norm x ^ n"
|
huffman@22852
|
811 |
using norm_ge_zero by (rule mult_left_mono)
|
huffman@22852
|
812 |
finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
|
huffman@30273
|
813 |
by simp
|
huffman@22852
|
814 |
qed
|
huffman@22852
|
815 |
|
huffman@20684
|
816 |
lemma norm_power:
|
haftmann@31017
|
817 |
fixes x :: "'a::{real_normed_div_algebra}"
|
huffman@20684
|
818 |
shows "norm (x ^ n) = norm x ^ n"
|
huffman@30273
|
819 |
by (induct n) (simp_all add: norm_mult)
|
huffman@20684
|
820 |
|
huffman@31289
|
821 |
text {* Every normed vector space is a metric space. *}
|
huffman@31285
|
822 |
|
huffman@31289
|
823 |
instance real_normed_vector < metric_space
|
huffman@31289
|
824 |
proof
|
huffman@31289
|
825 |
fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y"
|
huffman@31289
|
826 |
unfolding dist_norm by simp
|
huffman@31289
|
827 |
next
|
huffman@31289
|
828 |
fix x y z :: 'a show "dist x y \<le> dist x z + dist y z"
|
huffman@31289
|
829 |
unfolding dist_norm
|
huffman@31289
|
830 |
using norm_triangle_ineq4 [of "x - z" "y - z"] by simp
|
huffman@31289
|
831 |
qed
|
huffman@31285
|
832 |
|
huffman@31564
|
833 |
|
huffman@31564
|
834 |
subsection {* Class instances for real numbers *}
|
huffman@31564
|
835 |
|
huffman@31564
|
836 |
instantiation real :: real_normed_field
|
huffman@31564
|
837 |
begin
|
huffman@31564
|
838 |
|
huffman@31564
|
839 |
definition real_norm_def [simp]:
|
huffman@31564
|
840 |
"norm r = \<bar>r\<bar>"
|
huffman@31564
|
841 |
|
huffman@31564
|
842 |
definition dist_real_def:
|
huffman@31564
|
843 |
"dist x y = \<bar>x - y\<bar>"
|
huffman@31564
|
844 |
|
haftmann@37767
|
845 |
definition open_real_def:
|
huffman@31564
|
846 |
"open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
|
huffman@31564
|
847 |
|
huffman@31564
|
848 |
instance
|
huffman@31564
|
849 |
apply (intro_classes, unfold real_norm_def real_scaleR_def)
|
huffman@31564
|
850 |
apply (rule dist_real_def)
|
huffman@31564
|
851 |
apply (rule open_real_def)
|
huffman@36795
|
852 |
apply (simp add: sgn_real_def)
|
huffman@31564
|
853 |
apply (rule abs_ge_zero)
|
huffman@31564
|
854 |
apply (rule abs_eq_0)
|
huffman@31564
|
855 |
apply (rule abs_triangle_ineq)
|
huffman@31564
|
856 |
apply (rule abs_mult)
|
huffman@31564
|
857 |
apply (rule abs_mult)
|
huffman@31564
|
858 |
done
|
huffman@31564
|
859 |
|
huffman@31564
|
860 |
end
|
huffman@31564
|
861 |
|
huffman@31564
|
862 |
lemma open_real_lessThan [simp]:
|
huffman@31564
|
863 |
fixes a :: real shows "open {..<a}"
|
huffman@31564
|
864 |
unfolding open_real_def dist_real_def
|
huffman@31564
|
865 |
proof (clarify)
|
huffman@31564
|
866 |
fix x assume "x < a"
|
huffman@31564
|
867 |
hence "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
|
huffman@31564
|
868 |
thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
|
huffman@31564
|
869 |
qed
|
huffman@31564
|
870 |
|
huffman@31564
|
871 |
lemma open_real_greaterThan [simp]:
|
huffman@31564
|
872 |
fixes a :: real shows "open {a<..}"
|
huffman@31564
|
873 |
unfolding open_real_def dist_real_def
|
huffman@31564
|
874 |
proof (clarify)
|
huffman@31564
|
875 |
fix x assume "a < x"
|
huffman@31564
|
876 |
hence "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
|
huffman@31564
|
877 |
thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
|
huffman@31564
|
878 |
qed
|
huffman@31564
|
879 |
|
huffman@31564
|
880 |
lemma open_real_greaterThanLessThan [simp]:
|
huffman@31564
|
881 |
fixes a b :: real shows "open {a<..<b}"
|
huffman@31564
|
882 |
proof -
|
huffman@31564
|
883 |
have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
|
huffman@31564
|
884 |
thus "open {a<..<b}" by (simp add: open_Int)
|
huffman@31564
|
885 |
qed
|
huffman@31564
|
886 |
|
huffman@31567
|
887 |
lemma closed_real_atMost [simp]:
|
huffman@31567
|
888 |
fixes a :: real shows "closed {..a}"
|
huffman@31567
|
889 |
unfolding closed_open by simp
|
huffman@31567
|
890 |
|
huffman@31567
|
891 |
lemma closed_real_atLeast [simp]:
|
huffman@31567
|
892 |
fixes a :: real shows "closed {a..}"
|
huffman@31567
|
893 |
unfolding closed_open by simp
|
huffman@31567
|
894 |
|
huffman@31567
|
895 |
lemma closed_real_atLeastAtMost [simp]:
|
huffman@31567
|
896 |
fixes a b :: real shows "closed {a..b}"
|
huffman@31567
|
897 |
proof -
|
huffman@31567
|
898 |
have "{a..b} = {a..} \<inter> {..b}" by auto
|
huffman@31567
|
899 |
thus "closed {a..b}" by (simp add: closed_Int)
|
huffman@31567
|
900 |
qed
|
huffman@31567
|
901 |
|
huffman@31564
|
902 |
|
huffman@31446
|
903 |
subsection {* Extra type constraints *}
|
huffman@31446
|
904 |
|
huffman@31492
|
905 |
text {* Only allow @{term "open"} in class @{text topological_space}. *}
|
huffman@31492
|
906 |
|
huffman@31492
|
907 |
setup {* Sign.add_const_constraint
|
huffman@31492
|
908 |
(@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
|
huffman@31492
|
909 |
|
huffman@31446
|
910 |
text {* Only allow @{term dist} in class @{text metric_space}. *}
|
huffman@31446
|
911 |
|
huffman@31446
|
912 |
setup {* Sign.add_const_constraint
|
huffman@31446
|
913 |
(@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
|
huffman@31446
|
914 |
|
huffman@31446
|
915 |
text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
|
huffman@31446
|
916 |
|
huffman@31446
|
917 |
setup {* Sign.add_const_constraint
|
huffman@31446
|
918 |
(@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
|
huffman@31446
|
919 |
|
huffman@31285
|
920 |
|
huffman@22972
|
921 |
subsection {* Sign function *}
|
huffman@22972
|
922 |
|
nipkow@24506
|
923 |
lemma norm_sgn:
|
nipkow@24506
|
924 |
"norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
|
huffman@31586
|
925 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
926 |
|
nipkow@24506
|
927 |
lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
|
nipkow@24506
|
928 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
929 |
|
nipkow@24506
|
930 |
lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
|
nipkow@24506
|
931 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
932 |
|
nipkow@24506
|
933 |
lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
|
nipkow@24506
|
934 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
935 |
|
nipkow@24506
|
936 |
lemma sgn_scaleR:
|
nipkow@24506
|
937 |
"sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
|
huffman@31586
|
938 |
by (simp add: sgn_div_norm mult_ac)
|
huffman@22973
|
939 |
|
huffman@22972
|
940 |
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
|
nipkow@24506
|
941 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
942 |
|
huffman@22972
|
943 |
lemma sgn_of_real:
|
huffman@22972
|
944 |
"sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
|
huffman@22972
|
945 |
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
|
huffman@22972
|
946 |
|
huffman@22973
|
947 |
lemma sgn_mult:
|
huffman@22973
|
948 |
fixes x y :: "'a::real_normed_div_algebra"
|
huffman@22973
|
949 |
shows "sgn (x * y) = sgn x * sgn y"
|
nipkow@24506
|
950 |
by (simp add: sgn_div_norm norm_mult mult_commute)
|
huffman@22973
|
951 |
|
huffman@22972
|
952 |
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
|
nipkow@24506
|
953 |
by (simp add: sgn_div_norm divide_inverse)
|
huffman@22972
|
954 |
|
huffman@22972
|
955 |
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
|
huffman@22972
|
956 |
unfolding real_sgn_eq by simp
|
huffman@22972
|
957 |
|
huffman@22972
|
958 |
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
|
huffman@22972
|
959 |
unfolding real_sgn_eq by simp
|
huffman@22972
|
960 |
|
huffman@22972
|
961 |
|
huffman@22442
|
962 |
subsection {* Bounded Linear and Bilinear Operators *}
|
huffman@22442
|
963 |
|
wenzelm@46868
|
964 |
locale bounded_linear = additive f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" +
|
huffman@22442
|
965 |
assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
|
huffman@22442
|
966 |
assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
|
huffman@27443
|
967 |
begin
|
huffman@22442
|
968 |
|
huffman@27443
|
969 |
lemma pos_bounded:
|
huffman@22442
|
970 |
"\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
|
huffman@22442
|
971 |
proof -
|
huffman@22442
|
972 |
obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
|
huffman@22442
|
973 |
using bounded by fast
|
huffman@22442
|
974 |
show ?thesis
|
huffman@22442
|
975 |
proof (intro exI impI conjI allI)
|
huffman@22442
|
976 |
show "0 < max 1 K"
|
huffman@22442
|
977 |
by (rule order_less_le_trans [OF zero_less_one le_maxI1])
|
huffman@22442
|
978 |
next
|
huffman@22442
|
979 |
fix x
|
huffman@22442
|
980 |
have "norm (f x) \<le> norm x * K" using K .
|
huffman@22442
|
981 |
also have "\<dots> \<le> norm x * max 1 K"
|
huffman@22442
|
982 |
by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
|
huffman@22442
|
983 |
finally show "norm (f x) \<le> norm x * max 1 K" .
|
huffman@22442
|
984 |
qed
|
huffman@22442
|
985 |
qed
|
huffman@22442
|
986 |
|
huffman@27443
|
987 |
lemma nonneg_bounded:
|
huffman@22442
|
988 |
"\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
|
huffman@22442
|
989 |
proof -
|
huffman@22442
|
990 |
from pos_bounded
|
huffman@22442
|
991 |
show ?thesis by (auto intro: order_less_imp_le)
|
huffman@22442
|
992 |
qed
|
huffman@22442
|
993 |
|
huffman@27443
|
994 |
end
|
huffman@27443
|
995 |
|
huffman@44127
|
996 |
lemma bounded_linear_intro:
|
huffman@44127
|
997 |
assumes "\<And>x y. f (x + y) = f x + f y"
|
huffman@44127
|
998 |
assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)"
|
huffman@44127
|
999 |
assumes "\<And>x. norm (f x) \<le> norm x * K"
|
huffman@44127
|
1000 |
shows "bounded_linear f"
|
huffman@44127
|
1001 |
by default (fast intro: assms)+
|
huffman@44127
|
1002 |
|
huffman@22442
|
1003 |
locale bounded_bilinear =
|
huffman@22442
|
1004 |
fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
|
huffman@22442
|
1005 |
\<Rightarrow> 'c::real_normed_vector"
|
huffman@22442
|
1006 |
(infixl "**" 70)
|
huffman@22442
|
1007 |
assumes add_left: "prod (a + a') b = prod a b + prod a' b"
|
huffman@22442
|
1008 |
assumes add_right: "prod a (b + b') = prod a b + prod a b'"
|
huffman@22442
|
1009 |
assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
|
huffman@22442
|
1010 |
assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
|
huffman@22442
|
1011 |
assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
|
huffman@27443
|
1012 |
begin
|
huffman@22442
|
1013 |
|
huffman@27443
|
1014 |
lemma pos_bounded:
|
huffman@22442
|
1015 |
"\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
|
huffman@22442
|
1016 |
apply (cut_tac bounded, erule exE)
|
huffman@22442
|
1017 |
apply (rule_tac x="max 1 K" in exI, safe)
|
huffman@22442
|
1018 |
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
|
huffman@22442
|
1019 |
apply (drule spec, drule spec, erule order_trans)
|
huffman@22442
|
1020 |
apply (rule mult_left_mono [OF le_maxI2])
|
huffman@22442
|
1021 |
apply (intro mult_nonneg_nonneg norm_ge_zero)
|
huffman@22442
|
1022 |
done
|
huffman@22442
|
1023 |
|
huffman@27443
|
1024 |
lemma nonneg_bounded:
|
huffman@22442
|
1025 |
"\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
|
huffman@22442
|
1026 |
proof -
|
huffman@22442
|
1027 |
from pos_bounded
|
huffman@22442
|
1028 |
show ?thesis by (auto intro: order_less_imp_le)
|
huffman@22442
|
1029 |
qed
|
huffman@22442
|
1030 |
|
huffman@27443
|
1031 |
lemma additive_right: "additive (\<lambda>b. prod a b)"
|
huffman@22442
|
1032 |
by (rule additive.intro, rule add_right)
|
huffman@22442
|
1033 |
|
huffman@27443
|
1034 |
lemma additive_left: "additive (\<lambda>a. prod a b)"
|
huffman@22442
|
1035 |
by (rule additive.intro, rule add_left)
|
huffman@22442
|
1036 |
|
huffman@27443
|
1037 |
lemma zero_left: "prod 0 b = 0"
|
huffman@22442
|
1038 |
by (rule additive.zero [OF additive_left])
|
huffman@22442
|
1039 |
|
huffman@27443
|
1040 |
lemma zero_right: "prod a 0 = 0"
|
huffman@22442
|
1041 |
by (rule additive.zero [OF additive_right])
|
huffman@22442
|
1042 |
|
huffman@27443
|
1043 |
lemma minus_left: "prod (- a) b = - prod a b"
|
huffman@22442
|
1044 |
by (rule additive.minus [OF additive_left])
|
huffman@22442
|
1045 |
|
huffman@27443
|
1046 |
lemma minus_right: "prod a (- b) = - prod a b"
|
huffman@22442
|
1047 |
by (rule additive.minus [OF additive_right])
|
huffman@22442
|
1048 |
|
huffman@27443
|
1049 |
lemma diff_left:
|
huffman@22442
|
1050 |
"prod (a - a') b = prod a b - prod a' b"
|
huffman@22442
|
1051 |
by (rule additive.diff [OF additive_left])
|
huffman@22442
|
1052 |
|
huffman@27443
|
1053 |
lemma diff_right:
|
huffman@22442
|
1054 |
"prod a (b - b') = prod a b - prod a b'"
|
huffman@22442
|
1055 |
by (rule additive.diff [OF additive_right])
|
huffman@22442
|
1056 |
|
huffman@27443
|
1057 |
lemma bounded_linear_left:
|
huffman@22442
|
1058 |
"bounded_linear (\<lambda>a. a ** b)"
|
huffman@44127
|
1059 |
apply (cut_tac bounded, safe)
|
huffman@44127
|
1060 |
apply (rule_tac K="norm b * K" in bounded_linear_intro)
|
huffman@22442
|
1061 |
apply (rule add_left)
|
huffman@22442
|
1062 |
apply (rule scaleR_left)
|
huffman@22442
|
1063 |
apply (simp add: mult_ac)
|
huffman@22442
|
1064 |
done
|
huffman@22442
|
1065 |
|
huffman@27443
|
1066 |
lemma bounded_linear_right:
|
huffman@22442
|
1067 |
"bounded_linear (\<lambda>b. a ** b)"
|
huffman@44127
|
1068 |
apply (cut_tac bounded, safe)
|
huffman@44127
|
1069 |
apply (rule_tac K="norm a * K" in bounded_linear_intro)
|
huffman@22442
|
1070 |
apply (rule add_right)
|
huffman@22442
|
1071 |
apply (rule scaleR_right)
|
huffman@22442
|
1072 |
apply (simp add: mult_ac)
|
huffman@22442
|
1073 |
done
|
huffman@22442
|
1074 |
|
huffman@27443
|
1075 |
lemma prod_diff_prod:
|
huffman@22442
|
1076 |
"(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
|
huffman@22442
|
1077 |
by (simp add: diff_left diff_right)
|
huffman@22442
|
1078 |
|
huffman@27443
|
1079 |
end
|
huffman@27443
|
1080 |
|
huffman@44282
|
1081 |
lemma bounded_bilinear_mult:
|
huffman@44282
|
1082 |
"bounded_bilinear (op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)"
|
huffman@22442
|
1083 |
apply (rule bounded_bilinear.intro)
|
huffman@22442
|
1084 |
apply (rule left_distrib)
|
huffman@22442
|
1085 |
apply (rule right_distrib)
|
huffman@22442
|
1086 |
apply (rule mult_scaleR_left)
|
huffman@22442
|
1087 |
apply (rule mult_scaleR_right)
|
huffman@22442
|
1088 |
apply (rule_tac x="1" in exI)
|
huffman@22442
|
1089 |
apply (simp add: norm_mult_ineq)
|
huffman@22442
|
1090 |
done
|
huffman@22442
|
1091 |
|
huffman@44282
|
1092 |
lemma bounded_linear_mult_left:
|
huffman@44282
|
1093 |
"bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)"
|
huffman@44282
|
1094 |
using bounded_bilinear_mult
|
huffman@44282
|
1095 |
by (rule bounded_bilinear.bounded_linear_left)
|
huffman@22442
|
1096 |
|
huffman@44282
|
1097 |
lemma bounded_linear_mult_right:
|
huffman@44282
|
1098 |
"bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)"
|
huffman@44282
|
1099 |
using bounded_bilinear_mult
|
huffman@44282
|
1100 |
by (rule bounded_bilinear.bounded_linear_right)
|
huffman@23127
|
1101 |
|
huffman@44282
|
1102 |
lemma bounded_linear_divide:
|
huffman@44282
|
1103 |
"bounded_linear (\<lambda>x::'a::real_normed_field. x / y)"
|
huffman@44282
|
1104 |
unfolding divide_inverse by (rule bounded_linear_mult_left)
|
huffman@23120
|
1105 |
|
huffman@44282
|
1106 |
lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR"
|
huffman@22442
|
1107 |
apply (rule bounded_bilinear.intro)
|
huffman@22442
|
1108 |
apply (rule scaleR_left_distrib)
|
huffman@22442
|
1109 |
apply (rule scaleR_right_distrib)
|
huffman@22973
|
1110 |
apply simp
|
huffman@22442
|
1111 |
apply (rule scaleR_left_commute)
|
huffman@31586
|
1112 |
apply (rule_tac x="1" in exI, simp)
|
huffman@22442
|
1113 |
done
|
huffman@22442
|
1114 |
|
huffman@44282
|
1115 |
lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)"
|
huffman@44282
|
1116 |
using bounded_bilinear_scaleR
|
huffman@44282
|
1117 |
by (rule bounded_bilinear.bounded_linear_left)
|
huffman@23127
|
1118 |
|
huffman@44282
|
1119 |
lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)"
|
huffman@44282
|
1120 |
using bounded_bilinear_scaleR
|
huffman@44282
|
1121 |
by (rule bounded_bilinear.bounded_linear_right)
|
huffman@23127
|
1122 |
|
huffman@44282
|
1123 |
lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)"
|
huffman@44282
|
1124 |
unfolding of_real_def by (rule bounded_linear_scaleR_left)
|
huffman@22625
|
1125 |
|
hoelzl@41969
|
1126 |
subsection{* Hausdorff and other separation properties *}
|
hoelzl@41969
|
1127 |
|
hoelzl@41969
|
1128 |
class t0_space = topological_space +
|
hoelzl@41969
|
1129 |
assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
|
hoelzl@41969
|
1130 |
|
hoelzl@41969
|
1131 |
class t1_space = topological_space +
|
hoelzl@41969
|
1132 |
assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U"
|
hoelzl@41969
|
1133 |
|
hoelzl@41969
|
1134 |
instance t1_space \<subseteq> t0_space
|
hoelzl@41969
|
1135 |
proof qed (fast dest: t1_space)
|
hoelzl@41969
|
1136 |
|
hoelzl@41969
|
1137 |
lemma separation_t1:
|
hoelzl@41969
|
1138 |
fixes x y :: "'a::t1_space"
|
hoelzl@41969
|
1139 |
shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)"
|
hoelzl@41969
|
1140 |
using t1_space[of x y] by blast
|
hoelzl@41969
|
1141 |
|
hoelzl@41969
|
1142 |
lemma closed_singleton:
|
hoelzl@41969
|
1143 |
fixes a :: "'a::t1_space"
|
hoelzl@41969
|
1144 |
shows "closed {a}"
|
hoelzl@41969
|
1145 |
proof -
|
hoelzl@41969
|
1146 |
let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
|
hoelzl@41969
|
1147 |
have "open ?T" by (simp add: open_Union)
|
hoelzl@41969
|
1148 |
also have "?T = - {a}"
|
hoelzl@41969
|
1149 |
by (simp add: set_eq_iff separation_t1, auto)
|
hoelzl@41969
|
1150 |
finally show "closed {a}" unfolding closed_def .
|
hoelzl@41969
|
1151 |
qed
|
hoelzl@41969
|
1152 |
|
hoelzl@41969
|
1153 |
lemma closed_insert [simp]:
|
hoelzl@41969
|
1154 |
fixes a :: "'a::t1_space"
|
hoelzl@41969
|
1155 |
assumes "closed S" shows "closed (insert a S)"
|
hoelzl@41969
|
1156 |
proof -
|
hoelzl@41969
|
1157 |
from closed_singleton assms
|
hoelzl@41969
|
1158 |
have "closed ({a} \<union> S)" by (rule closed_Un)
|
hoelzl@41969
|
1159 |
thus "closed (insert a S)" by simp
|
hoelzl@41969
|
1160 |
qed
|
hoelzl@41969
|
1161 |
|
hoelzl@41969
|
1162 |
lemma finite_imp_closed:
|
hoelzl@41969
|
1163 |
fixes S :: "'a::t1_space set"
|
hoelzl@41969
|
1164 |
shows "finite S \<Longrightarrow> closed S"
|
hoelzl@41969
|
1165 |
by (induct set: finite, simp_all)
|
hoelzl@41969
|
1166 |
|
hoelzl@41969
|
1167 |
text {* T2 spaces are also known as Hausdorff spaces. *}
|
hoelzl@41969
|
1168 |
|
hoelzl@41969
|
1169 |
class t2_space = topological_space +
|
hoelzl@41969
|
1170 |
assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
|
hoelzl@41969
|
1171 |
|
hoelzl@41969
|
1172 |
instance t2_space \<subseteq> t1_space
|
hoelzl@41969
|
1173 |
proof qed (fast dest: hausdorff)
|
hoelzl@41969
|
1174 |
|
hoelzl@41969
|
1175 |
instance metric_space \<subseteq> t2_space
|
hoelzl@41969
|
1176 |
proof
|
hoelzl@41969
|
1177 |
fix x y :: "'a::metric_space"
|
hoelzl@41969
|
1178 |
assume xy: "x \<noteq> y"
|
hoelzl@41969
|
1179 |
let ?U = "{y'. dist x y' < dist x y / 2}"
|
hoelzl@41969
|
1180 |
let ?V = "{x'. dist y x' < dist x y / 2}"
|
hoelzl@41969
|
1181 |
have th0: "\<And>d x y z. (d x z :: real) \<le> d x y + d y z \<Longrightarrow> d y z = d z y
|
hoelzl@41969
|
1182 |
\<Longrightarrow> \<not>(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith
|
hoelzl@41969
|
1183 |
have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
|
hoelzl@41969
|
1184 |
using dist_pos_lt[OF xy] th0[of dist, OF dist_triangle dist_commute]
|
hoelzl@41969
|
1185 |
using open_ball[of _ "dist x y / 2"] by auto
|
hoelzl@41969
|
1186 |
then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
|
hoelzl@41969
|
1187 |
by blast
|
hoelzl@41969
|
1188 |
qed
|
hoelzl@41969
|
1189 |
|
hoelzl@41969
|
1190 |
lemma separation_t2:
|
hoelzl@41969
|
1191 |
fixes x y :: "'a::t2_space"
|
hoelzl@41969
|
1192 |
shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
|
hoelzl@41969
|
1193 |
using hausdorff[of x y] by blast
|
hoelzl@41969
|
1194 |
|
hoelzl@41969
|
1195 |
lemma separation_t0:
|
hoelzl@41969
|
1196 |
fixes x y :: "'a::t0_space"
|
hoelzl@41969
|
1197 |
shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
|
hoelzl@41969
|
1198 |
using t0_space[of x y] by blast
|
hoelzl@41969
|
1199 |
|
huffman@44571
|
1200 |
text {* A perfect space is a topological space with no isolated points. *}
|
huffman@44571
|
1201 |
|
huffman@44571
|
1202 |
class perfect_space = topological_space +
|
huffman@44571
|
1203 |
assumes not_open_singleton: "\<not> open {x}"
|
huffman@44571
|
1204 |
|
huffman@44571
|
1205 |
instance real_normed_algebra_1 \<subseteq> perfect_space
|
huffman@44571
|
1206 |
proof
|
huffman@44571
|
1207 |
fix x::'a
|
huffman@44571
|
1208 |
show "\<not> open {x}"
|
huffman@44571
|
1209 |
unfolding open_dist dist_norm
|
huffman@44571
|
1210 |
by (clarsimp, rule_tac x="x + of_real (e/2)" in exI, simp)
|
huffman@44571
|
1211 |
qed
|
huffman@44571
|
1212 |
|
huffman@20504
|
1213 |
end
|