src/HOL/Extraction.thy
author haftmann
Sun Aug 24 14:42:24 2008 +0200 (2008-08-24)
changeset 27982 2aaa4a5569a6
parent 25424 170f4cc34697
child 28797 9dcd32ee5dbe
permissions -rw-r--r--
default replaces arbitrary
berghofe@13403
     1
(*  Title:      HOL/Extraction.thy
berghofe@13403
     2
    ID:         $Id$
berghofe@13403
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13403
     4
*)
berghofe@13403
     5
berghofe@13403
     6
header {* Program extraction for HOL *}
berghofe@13403
     7
nipkow@15131
     8
theory Extraction
haftmann@24194
     9
imports Datatype
haftmann@16417
    10
uses "Tools/rewrite_hol_proof.ML"
nipkow@15131
    11
begin
berghofe@13403
    12
berghofe@13403
    13
subsection {* Setup *}
berghofe@13403
    14
wenzelm@16121
    15
setup {*
wenzelm@16121
    16
let
berghofe@13725
    17
fun realizes_set_proc (Const ("realizes", Type ("fun", [Type ("Null", []), _])) $ r $
berghofe@13725
    18
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
skalberg@15531
    19
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, binder_types U @
berghofe@13725
    20
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
skalberg@15531
    21
      | (Free (s, U), ts) => SOME (list_comb (Free (s, binder_types U @
berghofe@13725
    22
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
skalberg@15531
    23
      | _ => NONE)
berghofe@13725
    24
  | realizes_set_proc (Const ("realizes", Type ("fun", [T, _])) $ r $
berghofe@13725
    25
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
skalberg@15531
    26
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, T :: binder_types U @
berghofe@13725
    27
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
skalberg@15531
    28
      | (Free (s, U), ts) => SOME (list_comb (Free (s, T :: binder_types U @
berghofe@13725
    29
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
skalberg@15531
    30
      | _ => NONE)
skalberg@15531
    31
  | realizes_set_proc _ = NONE;
berghofe@13725
    32
berghofe@13725
    33
fun mk_realizes_set r rT s (setT as Type ("set", [elT])) =
berghofe@13725
    34
  Abs ("x", elT, Const ("realizes", rT --> HOLogic.boolT --> HOLogic.boolT) $
berghofe@13725
    35
    incr_boundvars 1 r $ (Const ("op :", elT --> setT --> HOLogic.boolT) $
berghofe@13725
    36
      Bound 0 $ incr_boundvars 1 s));
wenzelm@16121
    37
in
wenzelm@18708
    38
  Extraction.add_types
skalberg@15531
    39
      [("bool", ([], NONE)),
wenzelm@18708
    40
       ("set", ([realizes_set_proc], SOME mk_realizes_set))] #>
wenzelm@18708
    41
  Extraction.set_preprocessor (fn thy =>
berghofe@13403
    42
      Proofterm.rewrite_proof_notypes
berghofe@13403
    43
        ([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
berghofe@13403
    44
          ProofRewriteRules.rprocs true) o
wenzelm@17203
    45
      Proofterm.rewrite_proof thy
berghofe@13599
    46
        (RewriteHOLProof.rews, ProofRewriteRules.rprocs true) o
haftmann@27982
    47
      ProofRewriteRules.elim_vars (curry Const @{const_name default}))
wenzelm@16121
    48
end
berghofe@13403
    49
*}
berghofe@13403
    50
berghofe@13403
    51
lemmas [extraction_expand] =
berghofe@22281
    52
  meta_spec atomize_eq atomize_all atomize_imp atomize_conj
berghofe@13403
    53
  allE rev_mp conjE Eq_TrueI Eq_FalseI eqTrueI eqTrueE eq_cong2
haftmann@20941
    54
  notE' impE' impE iffE imp_cong simp_thms eq_True eq_False
wenzelm@18456
    55
  induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
wenzelm@18456
    56
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@18511
    57
  induct_atomize induct_rulify induct_rulify_fallback
berghofe@25424
    58
  True_implies_equals TrueE
berghofe@13403
    59
berghofe@13403
    60
datatype sumbool = Left | Right
berghofe@13403
    61
berghofe@13403
    62
subsection {* Type of extracted program *}
berghofe@13403
    63
berghofe@13403
    64
extract_type
berghofe@13403
    65
  "typeof (Trueprop P) \<equiv> typeof P"
berghofe@13403
    66
berghofe@13403
    67
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    68
     typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('Q))"
berghofe@13403
    69
berghofe@13403
    70
  "typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE(Null))"
berghofe@13403
    71
berghofe@13403
    72
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    73
     typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('P \<Rightarrow> 'Q))"
berghofe@13403
    74
berghofe@13403
    75
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
    76
     typeof (\<forall>x. P x) \<equiv> Type (TYPE(Null))"
berghofe@13403
    77
berghofe@13403
    78
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
    79
     typeof (\<forall>x::'a. P x) \<equiv> Type (TYPE('a \<Rightarrow> 'P))"
berghofe@13403
    80
berghofe@13403
    81
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
    82
     typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a))"
berghofe@13403
    83
berghofe@13403
    84
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
    85
     typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a \<times> 'P))"
berghofe@13403
    86
berghofe@13403
    87
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
    88
     typeof (P \<or> Q) \<equiv> Type (TYPE(sumbool))"
berghofe@13403
    89
berghofe@13403
    90
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    91
     typeof (P \<or> Q) \<equiv> Type (TYPE('Q option))"
berghofe@13403
    92
berghofe@13403
    93
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
    94
     typeof (P \<or> Q) \<equiv> Type (TYPE('P option))"
berghofe@13403
    95
berghofe@13403
    96
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    97
     typeof (P \<or> Q) \<equiv> Type (TYPE('P + 'Q))"
berghofe@13403
    98
berghofe@13403
    99
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
   100
     typeof (P \<and> Q) \<equiv> Type (TYPE('Q))"
berghofe@13403
   101
berghofe@13403
   102
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   103
     typeof (P \<and> Q) \<equiv> Type (TYPE('P))"
berghofe@13403
   104
berghofe@13403
   105
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
   106
     typeof (P \<and> Q) \<equiv> Type (TYPE('P \<times> 'Q))"
berghofe@13403
   107
berghofe@13403
   108
  "typeof (P = Q) \<equiv> typeof ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P))"
berghofe@13403
   109
berghofe@13403
   110
  "typeof (x \<in> P) \<equiv> typeof P"
berghofe@13403
   111
berghofe@13403
   112
subsection {* Realizability *}
berghofe@13403
   113
berghofe@13403
   114
realizability
berghofe@13403
   115
  "(realizes t (Trueprop P)) \<equiv> (Trueprop (realizes t P))"
berghofe@13403
   116
berghofe@13403
   117
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   118
     (realizes t (P \<longrightarrow> Q)) \<equiv> (realizes Null P \<longrightarrow> realizes t Q)"
berghofe@13403
   119
berghofe@13403
   120
  "(typeof P) \<equiv> (Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
   121
   (typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   122
     (realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x::'P. realizes x P \<longrightarrow> realizes Null Q)"
berghofe@13403
   123
berghofe@13403
   124
  "(realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x. realizes x P \<longrightarrow> realizes (t x) Q)"
berghofe@13403
   125
berghofe@13403
   126
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   127
     (realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes Null (P x))"
berghofe@13403
   128
berghofe@13403
   129
  "(realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes (t x) (P x))"
berghofe@13403
   130
berghofe@13403
   131
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   132
     (realizes t (\<exists>x. P x)) \<equiv> (realizes Null (P t))"
berghofe@13403
   133
berghofe@13403
   134
  "(realizes t (\<exists>x. P x)) \<equiv> (realizes (snd t) (P (fst t)))"
berghofe@13403
   135
berghofe@13403
   136
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   137
   (typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   138
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   139
     (case t of Left \<Rightarrow> realizes Null P | Right \<Rightarrow> realizes Null Q)"
berghofe@13403
   140
berghofe@13403
   141
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   142
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   143
     (case t of None \<Rightarrow> realizes Null P | Some q \<Rightarrow> realizes q Q)"
berghofe@13403
   144
berghofe@13403
   145
  "(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   146
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   147
     (case t of None \<Rightarrow> realizes Null Q | Some p \<Rightarrow> realizes p P)"
berghofe@13403
   148
berghofe@13403
   149
  "(realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   150
   (case t of Inl p \<Rightarrow> realizes p P | Inr q \<Rightarrow> realizes q Q)"
berghofe@13403
   151
berghofe@13403
   152
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   153
     (realizes t (P \<and> Q)) \<equiv> (realizes Null P \<and> realizes t Q)"
berghofe@13403
   154
berghofe@13403
   155
  "(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   156
     (realizes t (P \<and> Q)) \<equiv> (realizes t P \<and> realizes Null Q)"
berghofe@13403
   157
berghofe@13403
   158
  "(realizes t (P \<and> Q)) \<equiv> (realizes (fst t) P \<and> realizes (snd t) Q)"
berghofe@13403
   159
berghofe@13403
   160
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   161
     realizes t (\<not> P) \<equiv> \<not> realizes Null P"
berghofe@13403
   162
berghofe@13403
   163
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow>
berghofe@13403
   164
     realizes t (\<not> P) \<equiv> (\<forall>x::'P. \<not> realizes x P)"
berghofe@13403
   165
berghofe@13403
   166
  "typeof (P::bool) \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   167
   typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   168
     realizes t (P = Q) \<equiv> realizes Null P = realizes Null Q"
berghofe@13403
   169
berghofe@13403
   170
  "(realizes t (P = Q)) \<equiv> (realizes t ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)))"
berghofe@13403
   171
berghofe@13403
   172
subsection {* Computational content of basic inference rules *}
berghofe@13403
   173
berghofe@13403
   174
theorem disjE_realizer:
berghofe@13403
   175
  assumes r: "case x of Inl p \<Rightarrow> P p | Inr q \<Rightarrow> Q q"
berghofe@13403
   176
  and r1: "\<And>p. P p \<Longrightarrow> R (f p)" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
berghofe@13403
   177
  shows "R (case x of Inl p \<Rightarrow> f p | Inr q \<Rightarrow> g q)"
berghofe@13403
   178
proof (cases x)
berghofe@13403
   179
  case Inl
berghofe@13403
   180
  with r show ?thesis by simp (rule r1)
berghofe@13403
   181
next
berghofe@13403
   182
  case Inr
berghofe@13403
   183
  with r show ?thesis by simp (rule r2)
berghofe@13403
   184
qed
berghofe@13403
   185
berghofe@13403
   186
theorem disjE_realizer2:
berghofe@13403
   187
  assumes r: "case x of None \<Rightarrow> P | Some q \<Rightarrow> Q q"
berghofe@13403
   188
  and r1: "P \<Longrightarrow> R f" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
berghofe@13403
   189
  shows "R (case x of None \<Rightarrow> f | Some q \<Rightarrow> g q)"
berghofe@13403
   190
proof (cases x)
berghofe@13403
   191
  case None
berghofe@13403
   192
  with r show ?thesis by simp (rule r1)
berghofe@13403
   193
next
berghofe@13403
   194
  case Some
berghofe@13403
   195
  with r show ?thesis by simp (rule r2)
berghofe@13403
   196
qed
berghofe@13403
   197
berghofe@13403
   198
theorem disjE_realizer3:
berghofe@13403
   199
  assumes r: "case x of Left \<Rightarrow> P | Right \<Rightarrow> Q"
berghofe@13403
   200
  and r1: "P \<Longrightarrow> R f" and r2: "Q \<Longrightarrow> R g"
berghofe@13403
   201
  shows "R (case x of Left \<Rightarrow> f | Right \<Rightarrow> g)"
berghofe@13403
   202
proof (cases x)
berghofe@13403
   203
  case Left
berghofe@13403
   204
  with r show ?thesis by simp (rule r1)
berghofe@13403
   205
next
berghofe@13403
   206
  case Right
berghofe@13403
   207
  with r show ?thesis by simp (rule r2)
berghofe@13403
   208
qed
berghofe@13403
   209
berghofe@13403
   210
theorem conjI_realizer:
berghofe@13403
   211
  "P p \<Longrightarrow> Q q \<Longrightarrow> P (fst (p, q)) \<and> Q (snd (p, q))"
berghofe@13403
   212
  by simp
berghofe@13403
   213
berghofe@13403
   214
theorem exI_realizer:
berghofe@13918
   215
  "P y x \<Longrightarrow> P (snd (x, y)) (fst (x, y))" by simp
berghofe@13918
   216
berghofe@13918
   217
theorem exE_realizer: "P (snd p) (fst p) \<Longrightarrow>
berghofe@15393
   218
  (\<And>x y. P y x \<Longrightarrow> Q (f x y)) \<Longrightarrow> Q (let (x, y) = p in f x y)"
berghofe@15393
   219
  by (cases p) (simp add: Let_def)
berghofe@13918
   220
berghofe@13918
   221
theorem exE_realizer': "P (snd p) (fst p) \<Longrightarrow>
berghofe@13918
   222
  (\<And>x y. P y x \<Longrightarrow> Q) \<Longrightarrow> Q" by (cases p) simp
berghofe@13403
   223
haftmann@27982
   224
setup {*
haftmann@27982
   225
  Sign.add_const_constraint (@{const_name "default"}, SOME @{typ "'a::type"})
haftmann@27982
   226
*}
haftmann@27982
   227
berghofe@13403
   228
realizers
berghofe@13725
   229
  impI (P, Q): "\<lambda>pq. pq"
skalberg@14168
   230
    "\<Lambda> P Q pq (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   231
berghofe@13403
   232
  impI (P): "Null"
skalberg@14168
   233
    "\<Lambda> P Q (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   234
skalberg@14168
   235
  impI (Q): "\<lambda>q. q" "\<Lambda> P Q q. impI \<cdot> _ \<cdot> _"
berghofe@13403
   236
berghofe@13725
   237
  impI: "Null" "impI"
berghofe@13403
   238
berghofe@13725
   239
  mp (P, Q): "\<lambda>pq. pq"
skalberg@14168
   240
    "\<Lambda> P Q pq (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   241
berghofe@13403
   242
  mp (P): "Null"
skalberg@14168
   243
    "\<Lambda> P Q (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   244
skalberg@14168
   245
  mp (Q): "\<lambda>q. q" "\<Lambda> P Q q. mp \<cdot> _ \<cdot> _"
berghofe@13403
   246
berghofe@13725
   247
  mp: "Null" "mp"
berghofe@13403
   248
skalberg@14168
   249
  allI (P): "\<lambda>p. p" "\<Lambda> P p. allI \<cdot> _"
berghofe@13403
   250
berghofe@13725
   251
  allI: "Null" "allI"
berghofe@13403
   252
skalberg@14168
   253
  spec (P): "\<lambda>x p. p x" "\<Lambda> P x p. spec \<cdot> _ \<cdot> x"
berghofe@13403
   254
berghofe@13725
   255
  spec: "Null" "spec"
berghofe@13403
   256
skalberg@14168
   257
  exI (P): "\<lambda>x p. (x, p)" "\<Lambda> P x p. exI_realizer \<cdot> P \<cdot> p \<cdot> x"
berghofe@13403
   258
skalberg@14168
   259
  exI: "\<lambda>x. x" "\<Lambda> P x (h: _). h"
berghofe@13403
   260
berghofe@15393
   261
  exE (P, Q): "\<lambda>p pq. let (x, y) = p in pq x y"
skalberg@14168
   262
    "\<Lambda> P Q p (h: _) pq. exE_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> pq \<bullet> h"
berghofe@13403
   263
berghofe@13403
   264
  exE (P): "Null"
skalberg@14168
   265
    "\<Lambda> P Q p. exE_realizer' \<cdot> _ \<cdot> _ \<cdot> _"
berghofe@13403
   266
berghofe@13725
   267
  exE (Q): "\<lambda>x pq. pq x"
skalberg@14168
   268
    "\<Lambda> P Q x (h1: _) pq (h2: _). h2 \<cdot> x \<bullet> h1"
berghofe@13403
   269
berghofe@13403
   270
  exE: "Null"
skalberg@14168
   271
    "\<Lambda> P Q x (h1: _) (h2: _). h2 \<cdot> x \<bullet> h1"
berghofe@13403
   272
berghofe@13725
   273
  conjI (P, Q): "Pair"
skalberg@14168
   274
    "\<Lambda> P Q p (h: _) q. conjI_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> q \<bullet> h"
berghofe@13403
   275
berghofe@13725
   276
  conjI (P): "\<lambda>p. p"
skalberg@14168
   277
    "\<Lambda> P Q p. conjI \<cdot> _ \<cdot> _"
berghofe@13403
   278
berghofe@13725
   279
  conjI (Q): "\<lambda>q. q"
skalberg@14168
   280
    "\<Lambda> P Q (h: _) q. conjI \<cdot> _ \<cdot> _ \<bullet> h"
berghofe@13403
   281
berghofe@13725
   282
  conjI: "Null" "conjI"
berghofe@13403
   283
berghofe@13725
   284
  conjunct1 (P, Q): "fst"
skalberg@14168
   285
    "\<Lambda> P Q pq. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   286
berghofe@13725
   287
  conjunct1 (P): "\<lambda>p. p"
skalberg@14168
   288
    "\<Lambda> P Q p. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   289
berghofe@13403
   290
  conjunct1 (Q): "Null"
skalberg@14168
   291
    "\<Lambda> P Q q. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   292
berghofe@13725
   293
  conjunct1: "Null" "conjunct1"
berghofe@13403
   294
berghofe@13725
   295
  conjunct2 (P, Q): "snd"
skalberg@14168
   296
    "\<Lambda> P Q pq. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   297
berghofe@13403
   298
  conjunct2 (P): "Null"
skalberg@14168
   299
    "\<Lambda> P Q p. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   300
berghofe@13725
   301
  conjunct2 (Q): "\<lambda>p. p"
skalberg@14168
   302
    "\<Lambda> P Q p. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   303
berghofe@13725
   304
  conjunct2: "Null" "conjunct2"
berghofe@13725
   305
berghofe@13725
   306
  disjI1 (P, Q): "Inl"
skalberg@14168
   307
    "\<Lambda> P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_1 \<cdot> P \<cdot> _ \<cdot> p)"
berghofe@13403
   308
berghofe@13725
   309
  disjI1 (P): "Some"
skalberg@14168
   310
    "\<Lambda> P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> P \<cdot> p)"
berghofe@13403
   311
berghofe@13725
   312
  disjI1 (Q): "None"
skalberg@14168
   313
    "\<Lambda> P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   314
berghofe@13725
   315
  disjI1: "Left"
skalberg@14168
   316
    "\<Lambda> P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   317
berghofe@13725
   318
  disjI2 (P, Q): "Inr"
skalberg@14168
   319
    "\<Lambda> Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
berghofe@13403
   320
berghofe@13725
   321
  disjI2 (P): "None"
skalberg@14168
   322
    "\<Lambda> Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   323
berghofe@13725
   324
  disjI2 (Q): "Some"
skalberg@14168
   325
    "\<Lambda> Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
berghofe@13403
   326
berghofe@13725
   327
  disjI2: "Right"
skalberg@14168
   328
    "\<Lambda> Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_2 \<cdot> _ \<cdot> _)"
berghofe@13403
   329
berghofe@13725
   330
  disjE (P, Q, R): "\<lambda>pq pr qr.
berghofe@13403
   331
     (case pq of Inl p \<Rightarrow> pr p | Inr q \<Rightarrow> qr q)"
skalberg@14168
   332
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   333
       disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   334
berghofe@13725
   335
  disjE (Q, R): "\<lambda>pq pr qr.
berghofe@13403
   336
     (case pq of None \<Rightarrow> pr | Some q \<Rightarrow> qr q)"
skalberg@14168
   337
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   338
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   339
berghofe@13725
   340
  disjE (P, R): "\<lambda>pq pr qr.
berghofe@13403
   341
     (case pq of None \<Rightarrow> qr | Some p \<Rightarrow> pr p)"
skalberg@14168
   342
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr (h3: _).
berghofe@13725
   343
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> qr \<cdot> pr \<bullet> h1 \<bullet> h3 \<bullet> h2"
berghofe@13403
   344
berghofe@13725
   345
  disjE (R): "\<lambda>pq pr qr.
berghofe@13403
   346
     (case pq of Left \<Rightarrow> pr | Right \<Rightarrow> qr)"
skalberg@14168
   347
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   348
       disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   349
berghofe@13403
   350
  disjE (P, Q): "Null"
skalberg@14168
   351
    "\<Lambda> P Q R pq. disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   352
berghofe@13403
   353
  disjE (Q): "Null"
skalberg@14168
   354
    "\<Lambda> P Q R pq. disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   355
berghofe@13403
   356
  disjE (P): "Null"
skalberg@14168
   357
    "\<Lambda> P Q R pq (h1: _) (h2: _) (h3: _).
berghofe@13725
   358
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _ \<bullet> h1 \<bullet> h3 \<bullet> h2"
berghofe@13403
   359
berghofe@13403
   360
  disjE: "Null"
skalberg@14168
   361
    "\<Lambda> P Q R pq. disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   362
haftmann@27982
   363
  FalseE (P): "default"
skalberg@14168
   364
    "\<Lambda> P. FalseE \<cdot> _"
berghofe@13403
   365
berghofe@13725
   366
  FalseE: "Null" "FalseE"
berghofe@13403
   367
berghofe@13403
   368
  notI (P): "Null"
skalberg@14168
   369
    "\<Lambda> P (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. notI \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   370
berghofe@13725
   371
  notI: "Null" "notI"
berghofe@13403
   372
haftmann@27982
   373
  notE (P, R): "\<lambda>p. default"
skalberg@14168
   374
    "\<Lambda> P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   375
berghofe@13403
   376
  notE (P): "Null"
skalberg@14168
   377
    "\<Lambda> P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   378
haftmann@27982
   379
  notE (R): "default"
skalberg@14168
   380
    "\<Lambda> P R. notE \<cdot> _ \<cdot> _"
berghofe@13403
   381
berghofe@13725
   382
  notE: "Null" "notE"
berghofe@13403
   383
berghofe@13725
   384
  subst (P): "\<lambda>s t ps. ps"
skalberg@14168
   385
    "\<Lambda> s t P (h: _) ps. subst \<cdot> s \<cdot> t \<cdot> P ps \<bullet> h"
berghofe@13403
   386
berghofe@13725
   387
  subst: "Null" "subst"
berghofe@13725
   388
berghofe@13725
   389
  iffD1 (P, Q): "fst"
skalberg@14168
   390
    "\<Lambda> Q P pq (h: _) p.
berghofe@13403
   391
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   392
berghofe@13725
   393
  iffD1 (P): "\<lambda>p. p"
skalberg@14168
   394
    "\<Lambda> Q P p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h)"
berghofe@13403
   395
berghofe@13403
   396
  iffD1 (Q): "Null"
skalberg@14168
   397
    "\<Lambda> Q P q1 (h: _) q2.
berghofe@13403
   398
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   399
berghofe@13725
   400
  iffD1: "Null" "iffD1"
berghofe@13403
   401
berghofe@13725
   402
  iffD2 (P, Q): "snd"
skalberg@14168
   403
    "\<Lambda> P Q pq (h: _) q.
berghofe@13403
   404
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   405
berghofe@13725
   406
  iffD2 (P): "\<lambda>p. p"
skalberg@14168
   407
    "\<Lambda> P Q p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h)"
berghofe@13403
   408
berghofe@13403
   409
  iffD2 (Q): "Null"
skalberg@14168
   410
    "\<Lambda> P Q q1 (h: _) q2.
berghofe@13403
   411
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   412
berghofe@13725
   413
  iffD2: "Null" "iffD2"
berghofe@13403
   414
berghofe@13725
   415
  iffI (P, Q): "Pair"
skalberg@14168
   416
    "\<Lambda> P Q pq (h1 : _) qp (h2 : _). conjI_realizer \<cdot>
berghofe@13725
   417
       (\<lambda>pq. \<forall>x. P x \<longrightarrow> Q (pq x)) \<cdot> pq \<cdot>
berghofe@13725
   418
       (\<lambda>qp. \<forall>x. Q x \<longrightarrow> P (qp x)) \<cdot> qp \<bullet>
skalberg@14168
   419
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
skalberg@14168
   420
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
berghofe@13403
   421
berghofe@13725
   422
  iffI (P): "\<lambda>p. p"
skalberg@14168
   423
    "\<Lambda> P Q (h1 : _) p (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
skalberg@14168
   424
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
berghofe@13403
   425
       (impI \<cdot> _ \<cdot> _ \<bullet> h2)"
berghofe@13403
   426
berghofe@13725
   427
  iffI (Q): "\<lambda>q. q"
skalberg@14168
   428
    "\<Lambda> P Q q (h1 : _) (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
berghofe@13403
   429
       (impI \<cdot> _ \<cdot> _ \<bullet> h1) \<bullet>
skalberg@14168
   430
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
berghofe@13403
   431
berghofe@13725
   432
  iffI: "Null" "iffI"
berghofe@13403
   433
berghofe@13725
   434
(*
berghofe@13403
   435
  classical: "Null"
skalberg@14168
   436
    "\<Lambda> P. classical \<cdot> _"
berghofe@13725
   437
*)
berghofe@13403
   438
haftmann@27982
   439
setup {*
haftmann@27982
   440
  Sign.add_const_constraint (@{const_name "default"}, SOME @{typ "'a::default"})
haftmann@27982
   441
*}
haftmann@27982
   442
berghofe@13403
   443
end