src/HOL/Ord.ML
author nipkow
Thu Jan 14 13:18:09 1999 +0100 (1999-01-14)
changeset 6128 2acc5d36610c
parent 6115 c70bce7deb0f
child 6157 29942d3a1818
permissions -rw-r--r--
More arith refinements.
clasohm@1465
     1
(*  Title:      HOL/Ord.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1993  University of Cambridge
clasohm@923
     5
clasohm@923
     6
The type class for ordered types
clasohm@923
     7
*)
clasohm@923
     8
paulson@5449
     9
(*Tell Blast_tac about overloading of < and <= to reduce the risk of
paulson@5449
    10
  its applying a rule for the wrong type*)
paulson@5449
    11
Blast.overloaded ("op <", domain_type); 
paulson@5449
    12
Blast.overloaded ("op <=", domain_type);
paulson@5449
    13
nipkow@2608
    14
(** mono **)
clasohm@923
    15
paulson@5316
    16
val [prem] = Goalw [mono_def]
clasohm@923
    17
    "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)";
clasohm@923
    18
by (REPEAT (ares_tac [allI, impI, prem] 1));
clasohm@923
    19
qed "monoI";
clasohm@923
    20
paulson@5316
    21
Goalw [mono_def] "[| mono(f);  A <= B |] ==> f(A) <= f(B)";
paulson@5316
    22
by (Fast_tac 1);
clasohm@923
    23
qed "monoD";
clasohm@923
    24
nipkow@2608
    25
nipkow@2608
    26
section "Orders";
nipkow@2608
    27
paulson@5538
    28
(** Reflexivity **)
paulson@5538
    29
nipkow@6115
    30
AddIffs [order_refl];
nipkow@2608
    31
paulson@4600
    32
(*This form is useful with the classical reasoner*)
wenzelm@5069
    33
Goal "!!x::'a::order. x = y ==> x <= y";
paulson@4600
    34
by (etac ssubst 1);
paulson@4600
    35
by (rtac order_refl 1);
paulson@4600
    36
qed "order_eq_refl";
paulson@4600
    37
wenzelm@5069
    38
Goal "~ x < (x::'a::order)";
wenzelm@4089
    39
by (simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@2608
    40
qed "order_less_irrefl";
paulson@5449
    41
Addsimps [order_less_irrefl];
nipkow@2608
    42
wenzelm@5069
    43
Goal "(x::'a::order) <= y = (x < y | x = y)";
wenzelm@4089
    44
by (simp_tac (simpset() addsimps [order_less_le]) 1);
paulson@5449
    45
   (*NOT suitable for AddIffs, since it can cause PROOF FAILED*)
paulson@5449
    46
by (blast_tac (claset() addSIs [order_refl]) 1);
nipkow@2608
    47
qed "order_le_less";
nipkow@2608
    48
paulson@5538
    49
(** Asymmetry **)
paulson@5538
    50
paulson@5538
    51
Goal "(x::'a::order) < y ==> ~ (y<x)";
paulson@5538
    52
by (asm_full_simp_tac (simpset() addsimps [order_less_le, order_antisym]) 1);
paulson@5538
    53
qed "order_less_not_sym";
paulson@5538
    54
paulson@5538
    55
(* [| n<m;  ~P ==> m<n |] ==> P *)
paulson@5538
    56
bind_thm ("order_less_asym", order_less_not_sym RS swap);
paulson@5538
    57
nipkow@6073
    58
(* Transitivity *)
nipkow@6073
    59
nipkow@6073
    60
Goal "!!x::'a::order. [| x < y; y < z |] ==> x < z";
nipkow@6073
    61
by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@6073
    62
by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
nipkow@6073
    63
qed "order_less_trans";
nipkow@6073
    64
paulson@5538
    65
paulson@5538
    66
(** Useful for simplification, but too risky to include by default. **)
paulson@5538
    67
paulson@5538
    68
Goal "(x::'a::order) < y ==>  (~ y < x) = True";
paulson@5538
    69
by (blast_tac (claset() addEs [order_less_asym]) 1);
paulson@5538
    70
qed "order_less_imp_not_less";
paulson@5538
    71
paulson@5538
    72
Goal "(x::'a::order) < y ==>  (y < x --> P) = True";
paulson@5538
    73
by (blast_tac (claset() addEs [order_less_asym]) 1);
paulson@5538
    74
qed "order_less_imp_triv";
paulson@5538
    75
paulson@5538
    76
Goal "(x::'a::order) < y ==>  (x = y) = False";
paulson@5538
    77
by Auto_tac;
paulson@5538
    78
qed "order_less_imp_not_eq";
paulson@5538
    79
paulson@5538
    80
Goal "(x::'a::order) < y ==>  (y = x) = False";
paulson@5538
    81
by Auto_tac;
paulson@5538
    82
qed "order_less_imp_not_eq2";
paulson@5538
    83
paulson@5538
    84
nipkow@2608
    85
(** min **)
nipkow@2608
    86
paulson@5143
    87
val prems = Goalw [min_def] "(!!x. least <= x) ==> min least x = least";
paulson@5143
    88
by (simp_tac (simpset() addsimps prems) 1);
nipkow@2608
    89
qed "min_leastL";
nipkow@2608
    90
paulson@5316
    91
val prems = Goalw [min_def]
nipkow@2608
    92
 "(!!x::'a::order. least <= x) ==> min x least = least";
paulson@2935
    93
by (cut_facts_tac prems 1);
paulson@2935
    94
by (Asm_simp_tac 1);
wenzelm@4089
    95
by (blast_tac (claset() addIs [order_antisym]) 1);
nipkow@2608
    96
qed "min_leastR";
nipkow@4640
    97
nipkow@4640
    98
nipkow@4640
    99
section "Linear/Total Orders";
nipkow@4640
   100
wenzelm@5069
   101
Goal "!!x::'a::linorder. x<y | x=y | y<x";
nipkow@4640
   102
by (simp_tac (simpset() addsimps [order_less_le]) 1);
wenzelm@5132
   103
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   104
by (Blast_tac 1);
nipkow@4640
   105
qed "linorder_less_linear";
nipkow@4640
   106
nipkow@6128
   107
Goal "!!x::'a::linorder. (~ x < y) = (y <= x)";
nipkow@6128
   108
by (simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@6128
   109
by (cut_facts_tac [linorder_linear] 1);
nipkow@6128
   110
by (blast_tac (claset() addIs [order_antisym]) 1);
nipkow@6128
   111
qed "linorder_not_less";
nipkow@6128
   112
nipkow@6128
   113
Goal "!!x::'a::linorder. (~ x <= y) = (y < x)";
nipkow@6128
   114
by (simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@6128
   115
by (cut_facts_tac [linorder_linear] 1);
nipkow@6128
   116
by (blast_tac (claset() addIs [order_antisym]) 1);
nipkow@6128
   117
qed "linorder_not_le";
nipkow@6128
   118
nipkow@6128
   119
Goal "!!x::'a::linorder. (x ~= y) = (x<y | y<x)";
nipkow@6128
   120
by (cut_inst_tac [("x","x"),("y","y")] linorder_less_linear 1);
nipkow@6128
   121
by Auto_tac;
nipkow@6128
   122
qed "linorder_neq_iff";
nipkow@6128
   123
nipkow@6128
   124
(* eliminates ~= in premises *)
nipkow@6128
   125
bind_thm("linorder_neqE", linorder_neq_iff RS iffD1 RS disjE);
nipkow@6128
   126
nipkow@6128
   127
(** min & max **)
nipkow@6128
   128
wenzelm@5069
   129
Goalw [max_def] "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)";
nipkow@4686
   130
by (Simp_tac 1);
wenzelm@5132
   131
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   132
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   133
qed "le_max_iff_disj";
nipkow@4640
   134
nipkow@6073
   135
Goalw [max_def] "!!z::'a::linorder. (z < max x y) = (z < x | z < y)";
nipkow@6073
   136
by (simp_tac (simpset() addsimps [order_le_less]) 1);
nipkow@6073
   137
by (cut_facts_tac [linorder_less_linear] 1);
nipkow@6073
   138
by (blast_tac (claset() addIs [order_less_trans]) 1);
nipkow@6073
   139
qed "less_max_iff_disj";
nipkow@6073
   140
wenzelm@5069
   141
Goalw [max_def] "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)";
nipkow@4686
   142
by (Simp_tac 1);
wenzelm@5132
   143
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   144
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   145
qed "max_le_iff_conj";
nipkow@5673
   146
Addsimps [max_le_iff_conj];
nipkow@4640
   147
wenzelm@5069
   148
Goalw [min_def] "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)";
nipkow@4686
   149
by (Simp_tac 1);
wenzelm@5132
   150
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   151
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   152
qed "le_min_iff_conj";
nipkow@5673
   153
Addsimps [le_min_iff_conj];
nipkow@5673
   154
(* AddIffs screws up a blast_tac in MiniML *)
nipkow@4640
   155
wenzelm@5069
   156
Goalw [min_def] "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)";
nipkow@4686
   157
by (Simp_tac 1);
wenzelm@5132
   158
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   159
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   160
qed "min_le_iff_disj";