src/HOL/Hyperreal/NthRoot.thy
author huffman
Sun May 20 08:00:48 2007 +0200 (2007-05-20)
changeset 23044 2ad82c359175
parent 23042 492514b39956
child 23046 12f35ece221f
permissions -rw-r--r--
change premises of DERIV_inverse_function lemma
paulson@12196
     1
(*  Title       : NthRoot.thy
paulson@12196
     2
    Author      : Jacques D. Fleuriot
paulson@12196
     3
    Copyright   : 1998  University of Cambridge
paulson@14477
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@12196
     5
*)
paulson@12196
     6
huffman@22956
     7
header {* Nth Roots of Real Numbers *}
paulson@14324
     8
nipkow@15131
     9
theory NthRoot
huffman@23009
    10
imports SEQ Parity Deriv
nipkow@15131
    11
begin
paulson@14324
    12
huffman@22956
    13
subsection {* Existence of Nth Root *}
huffman@20687
    14
huffman@23009
    15
text {* Existence follows from the Intermediate Value Theorem *}
paulson@14324
    16
huffman@23009
    17
lemma realpow_pos_nth:
huffman@23009
    18
  assumes n: "0 < n"
huffman@23009
    19
  assumes a: "0 < a"
huffman@23009
    20
  shows "\<exists>r>0. r ^ n = (a::real)"
huffman@23009
    21
proof -
huffman@23009
    22
  have "\<exists>r\<ge>0. r \<le> (max 1 a) \<and> r ^ n = a"
huffman@23009
    23
  proof (rule IVT)
huffman@23009
    24
    show "0 ^ n \<le> a" using n a by (simp add: power_0_left)
huffman@23009
    25
    show "0 \<le> max 1 a" by simp
huffman@23009
    26
    from n have n1: "1 \<le> n" by simp
huffman@23009
    27
    have "a \<le> max 1 a ^ 1" by simp
huffman@23009
    28
    also have "max 1 a ^ 1 \<le> max 1 a ^ n"
huffman@23009
    29
      using n1 by (rule power_increasing, simp)
huffman@23009
    30
    finally show "a \<le> max 1 a ^ n" .
huffman@23009
    31
    show "\<forall>r. 0 \<le> r \<and> r \<le> max 1 a \<longrightarrow> isCont (\<lambda>x. x ^ n) r"
huffman@23009
    32
      by (simp add: isCont_power isCont_Id)
huffman@23009
    33
  qed
huffman@23009
    34
  then obtain r where r: "0 \<le> r \<and> r ^ n = a" by fast
huffman@23009
    35
  with n a have "r \<noteq> 0" by (auto simp add: power_0_left)
huffman@23009
    36
  with r have "0 < r \<and> r ^ n = a" by simp
huffman@23009
    37
  thus ?thesis ..
huffman@23009
    38
qed
paulson@14325
    39
huffman@23009
    40
text {* Uniqueness of nth positive root *}
paulson@14324
    41
paulson@14324
    42
lemma realpow_pos_nth_unique:
huffman@23009
    43
  "\<lbrakk>0 < n; 0 < a\<rbrakk> \<Longrightarrow> \<exists>!r. 0 < r \<and> r ^ n = (a::real)"
paulson@14324
    44
apply (auto intro!: realpow_pos_nth)
huffman@23009
    45
apply (rule_tac n=n in power_eq_imp_eq_base, simp_all)
paulson@14324
    46
done
paulson@14324
    47
huffman@20687
    48
subsection {* Nth Root *}
huffman@20687
    49
huffman@22956
    50
text {* We define roots of negative reals such that
huffman@22956
    51
  @{term "root n (- x) = - root n x"}. This allows
huffman@22956
    52
  us to omit side conditions from many theorems. *}
huffman@20687
    53
huffman@22956
    54
definition
huffman@22956
    55
  root :: "[nat, real] \<Rightarrow> real" where
huffman@22956
    56
  "root n x = (if 0 < x then (THE u. 0 < u \<and> u ^ n = x) else
huffman@22956
    57
               if x < 0 then - (THE u. 0 < u \<and> u ^ n = - x) else 0)"
huffman@20687
    58
huffman@22956
    59
lemma real_root_zero [simp]: "root n 0 = 0"
huffman@22956
    60
unfolding root_def by simp
huffman@22956
    61
huffman@22956
    62
lemma real_root_minus: "0 < n \<Longrightarrow> root n (- x) = - root n x"
huffman@22956
    63
unfolding root_def by simp
huffman@22956
    64
huffman@22956
    65
lemma real_root_gt_zero: "\<lbrakk>0 < n; 0 < x\<rbrakk> \<Longrightarrow> 0 < root n x"
huffman@20687
    66
apply (simp add: root_def)
huffman@22956
    67
apply (drule (1) realpow_pos_nth_unique)
huffman@20687
    68
apply (erule theI' [THEN conjunct1])
huffman@20687
    69
done
huffman@20687
    70
huffman@22956
    71
lemma real_root_pow_pos: (* TODO: rename *)
huffman@22956
    72
  "\<lbrakk>0 < n; 0 < x\<rbrakk> \<Longrightarrow> root n x ^ n = x"
huffman@22956
    73
apply (simp add: root_def)
huffman@22956
    74
apply (drule (1) realpow_pos_nth_unique)
huffman@22956
    75
apply (erule theI' [THEN conjunct2])
huffman@22956
    76
done
huffman@20687
    77
huffman@22956
    78
lemma real_root_pow_pos2 [simp]: (* TODO: rename *)
huffman@22956
    79
  "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n x ^ n = x"
huffman@22956
    80
by (auto simp add: order_le_less real_root_pow_pos)
huffman@22956
    81
huffman@22956
    82
lemma real_root_ge_zero: "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> 0 \<le> root n x"
huffman@20687
    83
by (auto simp add: order_le_less real_root_gt_zero)
huffman@20687
    84
huffman@22956
    85
lemma real_root_power_cancel: "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n (x ^ n) = x"
huffman@22956
    86
apply (subgoal_tac "0 \<le> x ^ n")
huffman@22956
    87
apply (subgoal_tac "0 \<le> root n (x ^ n)")
huffman@22956
    88
apply (subgoal_tac "root n (x ^ n) ^ n = x ^ n")
huffman@22956
    89
apply (erule (3) power_eq_imp_eq_base)
huffman@22956
    90
apply (erule (1) real_root_pow_pos2)
huffman@22956
    91
apply (erule (1) real_root_ge_zero)
huffman@22956
    92
apply (erule zero_le_power)
huffman@20687
    93
done
huffman@20687
    94
huffman@22956
    95
lemma real_root_pos_unique:
huffman@22956
    96
  "\<lbrakk>0 < n; 0 \<le> y; y ^ n = x\<rbrakk> \<Longrightarrow> root n x = y"
huffman@22956
    97
by (erule subst, rule real_root_power_cancel)
huffman@22956
    98
huffman@22956
    99
lemma real_root_one [simp]: "0 < n \<Longrightarrow> root n 1 = 1"
huffman@22956
   100
by (simp add: real_root_pos_unique)
huffman@22956
   101
huffman@22956
   102
text {* Root function is strictly monotonic, hence injective *}
huffman@22956
   103
huffman@22956
   104
lemma real_root_less_mono_lemma:
huffman@22956
   105
  "\<lbrakk>0 < n; 0 \<le> x; x < y\<rbrakk> \<Longrightarrow> root n x < root n y"
huffman@22856
   106
apply (subgoal_tac "0 \<le> y")
huffman@22956
   107
apply (subgoal_tac "root n x ^ n < root n y ^ n")
huffman@22956
   108
apply (erule power_less_imp_less_base)
huffman@22956
   109
apply (erule (1) real_root_ge_zero)
huffman@22956
   110
apply simp
huffman@22956
   111
apply simp
huffman@22721
   112
done
huffman@22721
   113
huffman@22956
   114
lemma real_root_less_mono: "\<lbrakk>0 < n; x < y\<rbrakk> \<Longrightarrow> root n x < root n y"
huffman@22956
   115
apply (cases "0 \<le> x")
huffman@22956
   116
apply (erule (2) real_root_less_mono_lemma)
huffman@22956
   117
apply (cases "0 \<le> y")
huffman@22956
   118
apply (rule_tac y=0 in order_less_le_trans)
huffman@22956
   119
apply (subgoal_tac "0 < root n (- x)")
huffman@22956
   120
apply (simp add: real_root_minus)
huffman@22956
   121
apply (simp add: real_root_gt_zero)
huffman@22956
   122
apply (simp add: real_root_ge_zero)
huffman@22956
   123
apply (subgoal_tac "root n (- y) < root n (- x)")
huffman@22956
   124
apply (simp add: real_root_minus)
huffman@22956
   125
apply (simp add: real_root_less_mono_lemma)
huffman@22721
   126
done
huffman@22721
   127
huffman@22956
   128
lemma real_root_le_mono: "\<lbrakk>0 < n; x \<le> y\<rbrakk> \<Longrightarrow> root n x \<le> root n y"
huffman@22956
   129
by (auto simp add: order_le_less real_root_less_mono)
huffman@22956
   130
huffman@22721
   131
lemma real_root_less_iff [simp]:
huffman@22956
   132
  "0 < n \<Longrightarrow> (root n x < root n y) = (x < y)"
huffman@22956
   133
apply (cases "x < y")
huffman@22956
   134
apply (simp add: real_root_less_mono)
huffman@22956
   135
apply (simp add: linorder_not_less real_root_le_mono)
huffman@22721
   136
done
huffman@22721
   137
huffman@22721
   138
lemma real_root_le_iff [simp]:
huffman@22956
   139
  "0 < n \<Longrightarrow> (root n x \<le> root n y) = (x \<le> y)"
huffman@22956
   140
apply (cases "x \<le> y")
huffman@22956
   141
apply (simp add: real_root_le_mono)
huffman@22956
   142
apply (simp add: linorder_not_le real_root_less_mono)
huffman@22721
   143
done
huffman@22721
   144
huffman@22721
   145
lemma real_root_eq_iff [simp]:
huffman@22956
   146
  "0 < n \<Longrightarrow> (root n x = root n y) = (x = y)"
huffman@22956
   147
by (simp add: order_eq_iff)
huffman@22956
   148
huffman@22956
   149
lemmas real_root_gt_0_iff [simp] = real_root_less_iff [where x=0, simplified]
huffman@22956
   150
lemmas real_root_lt_0_iff [simp] = real_root_less_iff [where y=0, simplified]
huffman@22956
   151
lemmas real_root_ge_0_iff [simp] = real_root_le_iff [where x=0, simplified]
huffman@22956
   152
lemmas real_root_le_0_iff [simp] = real_root_le_iff [where y=0, simplified]
huffman@22956
   153
lemmas real_root_eq_0_iff [simp] = real_root_eq_iff [where y=0, simplified]
huffman@22721
   154
huffman@22956
   155
text {* Roots of multiplication and division *}
huffman@22956
   156
huffman@22956
   157
lemma real_root_mult_lemma:
huffman@22956
   158
  "\<lbrakk>0 < n; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> root n (x * y) = root n x * root n y"
huffman@22956
   159
by (simp add: real_root_pos_unique mult_nonneg_nonneg power_mult_distrib)
huffman@22956
   160
huffman@22956
   161
lemma real_root_inverse_lemma:
huffman@22956
   162
  "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n (inverse x) = inverse (root n x)"
huffman@22956
   163
by (simp add: real_root_pos_unique power_inverse [symmetric])
huffman@22721
   164
huffman@22721
   165
lemma real_root_mult:
huffman@22956
   166
  assumes n: "0 < n"
huffman@22956
   167
  shows "root n (x * y) = root n x * root n y"
huffman@22956
   168
proof (rule linorder_le_cases, rule_tac [!] linorder_le_cases)
huffman@22956
   169
  assume "0 \<le> x" and "0 \<le> y"
huffman@22956
   170
  thus ?thesis by (rule real_root_mult_lemma [OF n])
huffman@22956
   171
next
huffman@22956
   172
  assume "0 \<le> x" and "y \<le> 0"
huffman@22956
   173
  hence "0 \<le> x" and "0 \<le> - y" by simp_all
huffman@22956
   174
  hence "root n (x * - y) = root n x * root n (- y)"
huffman@22956
   175
    by (rule real_root_mult_lemma [OF n])
huffman@22956
   176
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   177
next
huffman@22956
   178
  assume "x \<le> 0" and "0 \<le> y"
huffman@22956
   179
  hence "0 \<le> - x" and "0 \<le> y" by simp_all
huffman@22956
   180
  hence "root n (- x * y) = root n (- x) * root n y"
huffman@22956
   181
    by (rule real_root_mult_lemma [OF n])
huffman@22956
   182
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   183
next
huffman@22956
   184
  assume "x \<le> 0" and "y \<le> 0"
huffman@22956
   185
  hence "0 \<le> - x" and "0 \<le> - y" by simp_all
huffman@22956
   186
  hence "root n (- x * - y) = root n (- x) * root n (- y)"
huffman@22956
   187
    by (rule real_root_mult_lemma [OF n])
huffman@22956
   188
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   189
qed
huffman@22721
   190
huffman@22721
   191
lemma real_root_inverse:
huffman@22956
   192
  assumes n: "0 < n"
huffman@22956
   193
  shows "root n (inverse x) = inverse (root n x)"
huffman@22956
   194
proof (rule linorder_le_cases)
huffman@22956
   195
  assume "0 \<le> x"
huffman@22956
   196
  thus ?thesis by (rule real_root_inverse_lemma [OF n])
huffman@22956
   197
next
huffman@22956
   198
  assume "x \<le> 0"
huffman@22956
   199
  hence "0 \<le> - x" by simp
huffman@22956
   200
  hence "root n (inverse (- x)) = inverse (root n (- x))"
huffman@22956
   201
    by (rule real_root_inverse_lemma [OF n])
huffman@22956
   202
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   203
qed
huffman@22721
   204
huffman@22956
   205
lemma real_root_divide:
huffman@22956
   206
  "0 < n \<Longrightarrow> root n (x / y) = root n x / root n y"
huffman@22956
   207
by (simp add: divide_inverse real_root_mult real_root_inverse)
huffman@22956
   208
huffman@22956
   209
lemma real_root_power:
huffman@22956
   210
  "0 < n \<Longrightarrow> root n (x ^ k) = root n x ^ k"
huffman@22956
   211
by (induct k, simp_all add: real_root_mult)
huffman@22721
   212
huffman@23042
   213
lemma real_root_abs: "0 < n \<Longrightarrow> root n \<bar>x\<bar> = \<bar>root n x\<bar>"
huffman@23042
   214
by (simp add: abs_if real_root_minus)
huffman@23042
   215
huffman@23042
   216
text {* Continuity and derivatives *}
huffman@23042
   217
huffman@23042
   218
lemma isCont_root_pos:
huffman@23042
   219
  assumes n: "0 < n"
huffman@23042
   220
  assumes x: "0 < x"
huffman@23042
   221
  shows "isCont (root n) x"
huffman@23042
   222
proof -
huffman@23042
   223
  have "isCont (root n) (root n x ^ n)"
huffman@23042
   224
  proof (rule isCont_inverse_function [where f="\<lambda>a. a ^ n"])
huffman@23042
   225
    show "0 < root n x" using n x by simp
huffman@23042
   226
    show "\<forall>z. \<bar>z - root n x\<bar> \<le> root n x \<longrightarrow> root n (z ^ n) = z"
huffman@23042
   227
      by (simp add: abs_le_iff real_root_power_cancel n)
huffman@23042
   228
    show "\<forall>z. \<bar>z - root n x\<bar> \<le> root n x \<longrightarrow> isCont (\<lambda>a. a ^ n) z"
huffman@23042
   229
      by (simp add: isCont_power isCont_Id)
huffman@23042
   230
  qed
huffman@23042
   231
  thus ?thesis using n x by simp
huffman@23042
   232
qed
huffman@23042
   233
huffman@23042
   234
lemma isCont_root_neg:
huffman@23042
   235
  "\<lbrakk>0 < n; x < 0\<rbrakk> \<Longrightarrow> isCont (root n) x"
huffman@23042
   236
apply (subgoal_tac "isCont (\<lambda>x. - root n (- x)) x")
huffman@23042
   237
apply (simp add: real_root_minus)
huffman@23042
   238
apply (rule isCont_o2 [OF isCont_minus [OF isCont_Id]])
huffman@23042
   239
apply (simp add: isCont_minus isCont_root_pos)
huffman@23042
   240
done
huffman@23042
   241
huffman@23042
   242
lemma isCont_root_zero:
huffman@23042
   243
  "0 < n \<Longrightarrow> isCont (root n) 0"
huffman@23042
   244
unfolding isCont_def
huffman@23042
   245
apply (rule LIM_I)
huffman@23042
   246
apply (rule_tac x="r ^ n" in exI, safe)
huffman@23042
   247
apply (simp add: zero_less_power)
huffman@23042
   248
apply (simp add: real_root_abs [symmetric])
huffman@23042
   249
apply (rule_tac n="n" in power_less_imp_less_base, simp_all)
huffman@23042
   250
done
huffman@23042
   251
huffman@23042
   252
lemma isCont_real_root: "0 < n \<Longrightarrow> isCont (root n) x"
huffman@23042
   253
apply (rule_tac x=x and y=0 in linorder_cases)
huffman@23042
   254
apply (simp_all add: isCont_root_pos isCont_root_neg isCont_root_zero)
huffman@23042
   255
done
huffman@23042
   256
huffman@23042
   257
lemma DERIV_real_root:
huffman@23042
   258
  assumes n: "0 < n"
huffman@23042
   259
  assumes x: "0 < x"
huffman@23042
   260
  shows "DERIV (root n) x :> inverse (real n * root n x ^ (n - Suc 0))"
huffman@23042
   261
proof (rule DERIV_inverse_function)
huffman@23044
   262
  show "0 < x" using x .
huffman@23044
   263
  show "x < x + 1" by simp
huffman@23044
   264
  show "\<forall>y. 0 < y \<and> y < x + 1 \<longrightarrow> root n y ^ n = y"
huffman@23042
   265
    using n by simp
huffman@23042
   266
  show "DERIV (\<lambda>x. x ^ n) (root n x) :> real n * root n x ^ (n - Suc 0)"
huffman@23042
   267
    by (rule DERIV_pow)
huffman@23042
   268
  show "real n * root n x ^ (n - Suc 0) \<noteq> 0"
huffman@23042
   269
    using n x by simp
huffman@23042
   270
  show "isCont (root n) x"
huffman@23042
   271
    by (rule isCont_real_root)
huffman@23042
   272
qed
huffman@23042
   273
huffman@22956
   274
subsection {* Square Root *}
huffman@20687
   275
huffman@22956
   276
definition
huffman@22956
   277
  sqrt :: "real \<Rightarrow> real" where
huffman@22956
   278
  "sqrt = root 2"
huffman@20687
   279
huffman@22956
   280
lemma pos2: "0 < (2::nat)" by simp
huffman@22956
   281
huffman@22956
   282
lemma real_sqrt_unique: "\<lbrakk>y\<twosuperior> = x; 0 \<le> y\<rbrakk> \<Longrightarrow> sqrt x = y"
huffman@22956
   283
unfolding sqrt_def by (rule real_root_pos_unique [OF pos2])
huffman@20687
   284
huffman@22956
   285
lemma real_sqrt_abs [simp]: "sqrt (x\<twosuperior>) = \<bar>x\<bar>"
huffman@22956
   286
apply (rule real_sqrt_unique)
huffman@22956
   287
apply (rule power2_abs)
huffman@22956
   288
apply (rule abs_ge_zero)
huffman@22956
   289
done
huffman@20687
   290
huffman@22956
   291
lemma real_sqrt_pow2 [simp]: "0 \<le> x \<Longrightarrow> (sqrt x)\<twosuperior> = x"
huffman@22956
   292
unfolding sqrt_def by (rule real_root_pow_pos2 [OF pos2])
huffman@22856
   293
huffman@22956
   294
lemma real_sqrt_pow2_iff [simp]: "((sqrt x)\<twosuperior> = x) = (0 \<le> x)"
huffman@22856
   295
apply (rule iffI)
huffman@22856
   296
apply (erule subst)
huffman@22856
   297
apply (rule zero_le_power2)
huffman@22856
   298
apply (erule real_sqrt_pow2)
huffman@20687
   299
done
huffman@20687
   300
huffman@22956
   301
lemma real_sqrt_zero [simp]: "sqrt 0 = 0"
huffman@22956
   302
unfolding sqrt_def by (rule real_root_zero)
huffman@22956
   303
huffman@22956
   304
lemma real_sqrt_one [simp]: "sqrt 1 = 1"
huffman@22956
   305
unfolding sqrt_def by (rule real_root_one [OF pos2])
huffman@22956
   306
huffman@22956
   307
lemma real_sqrt_minus: "sqrt (- x) = - sqrt x"
huffman@22956
   308
unfolding sqrt_def by (rule real_root_minus [OF pos2])
huffman@22956
   309
huffman@22956
   310
lemma real_sqrt_mult: "sqrt (x * y) = sqrt x * sqrt y"
huffman@22956
   311
unfolding sqrt_def by (rule real_root_mult [OF pos2])
huffman@22956
   312
huffman@22956
   313
lemma real_sqrt_inverse: "sqrt (inverse x) = inverse (sqrt x)"
huffman@22956
   314
unfolding sqrt_def by (rule real_root_inverse [OF pos2])
huffman@22956
   315
huffman@22956
   316
lemma real_sqrt_divide: "sqrt (x / y) = sqrt x / sqrt y"
huffman@22956
   317
unfolding sqrt_def by (rule real_root_divide [OF pos2])
huffman@22956
   318
huffman@22956
   319
lemma real_sqrt_power: "sqrt (x ^ k) = sqrt x ^ k"
huffman@22956
   320
unfolding sqrt_def by (rule real_root_power [OF pos2])
huffman@22956
   321
huffman@22956
   322
lemma real_sqrt_gt_zero: "0 < x \<Longrightarrow> 0 < sqrt x"
huffman@22956
   323
unfolding sqrt_def by (rule real_root_gt_zero [OF pos2])
huffman@22956
   324
huffman@22956
   325
lemma real_sqrt_ge_zero: "0 \<le> x \<Longrightarrow> 0 \<le> sqrt x"
huffman@22956
   326
unfolding sqrt_def by (rule real_root_ge_zero [OF pos2])
huffman@20687
   327
huffman@22956
   328
lemma real_sqrt_less_mono: "x < y \<Longrightarrow> sqrt x < sqrt y"
huffman@22956
   329
unfolding sqrt_def by (rule real_root_less_mono [OF pos2])
huffman@22956
   330
huffman@22956
   331
lemma real_sqrt_le_mono: "x \<le> y \<Longrightarrow> sqrt x \<le> sqrt y"
huffman@22956
   332
unfolding sqrt_def by (rule real_root_le_mono [OF pos2])
huffman@22956
   333
huffman@22956
   334
lemma real_sqrt_less_iff [simp]: "(sqrt x < sqrt y) = (x < y)"
huffman@22956
   335
unfolding sqrt_def by (rule real_root_less_iff [OF pos2])
huffman@22956
   336
huffman@22956
   337
lemma real_sqrt_le_iff [simp]: "(sqrt x \<le> sqrt y) = (x \<le> y)"
huffman@22956
   338
unfolding sqrt_def by (rule real_root_le_iff [OF pos2])
huffman@22956
   339
huffman@22956
   340
lemma real_sqrt_eq_iff [simp]: "(sqrt x = sqrt y) = (x = y)"
huffman@22956
   341
unfolding sqrt_def by (rule real_root_eq_iff [OF pos2])
huffman@22956
   342
huffman@22956
   343
lemmas real_sqrt_gt_0_iff [simp] = real_sqrt_less_iff [where x=0, simplified]
huffman@22956
   344
lemmas real_sqrt_lt_0_iff [simp] = real_sqrt_less_iff [where y=0, simplified]
huffman@22956
   345
lemmas real_sqrt_ge_0_iff [simp] = real_sqrt_le_iff [where x=0, simplified]
huffman@22956
   346
lemmas real_sqrt_le_0_iff [simp] = real_sqrt_le_iff [where y=0, simplified]
huffman@22956
   347
lemmas real_sqrt_eq_0_iff [simp] = real_sqrt_eq_iff [where y=0, simplified]
huffman@22956
   348
huffman@22956
   349
lemmas real_sqrt_gt_1_iff [simp] = real_sqrt_less_iff [where x=1, simplified]
huffman@22956
   350
lemmas real_sqrt_lt_1_iff [simp] = real_sqrt_less_iff [where y=1, simplified]
huffman@22956
   351
lemmas real_sqrt_ge_1_iff [simp] = real_sqrt_le_iff [where x=1, simplified]
huffman@22956
   352
lemmas real_sqrt_le_1_iff [simp] = real_sqrt_le_iff [where y=1, simplified]
huffman@22956
   353
lemmas real_sqrt_eq_1_iff [simp] = real_sqrt_eq_iff [where y=1, simplified]
huffman@20687
   354
huffman@23042
   355
lemma isCont_real_sqrt: "isCont sqrt x"
huffman@23042
   356
unfolding sqrt_def by (rule isCont_real_root [OF pos2])
huffman@23042
   357
huffman@23042
   358
lemma DERIV_real_sqrt:
huffman@23042
   359
  "0 < x \<Longrightarrow> DERIV sqrt x :> inverse (sqrt x) / 2"
huffman@23042
   360
unfolding sqrt_def by (rule DERIV_real_root [OF pos2, simplified])
huffman@23042
   361
huffman@20687
   362
lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)"
huffman@20687
   363
apply auto
huffman@20687
   364
apply (cut_tac x = x and y = 0 in linorder_less_linear)
huffman@20687
   365
apply (simp add: zero_less_mult_iff)
huffman@20687
   366
done
huffman@20687
   367
huffman@20687
   368
lemma real_sqrt_abs2 [simp]: "sqrt(x*x) = \<bar>x\<bar>"
huffman@22856
   369
apply (subst power2_eq_square [symmetric])
huffman@20687
   370
apply (rule real_sqrt_abs)
huffman@20687
   371
done
huffman@20687
   372
huffman@20687
   373
lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\<twosuperior>"
huffman@22956
   374
by simp (* TODO: delete *)
huffman@20687
   375
huffman@20687
   376
lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \<noteq> 0"
huffman@22956
   377
by simp (* TODO: delete *)
huffman@20687
   378
huffman@20687
   379
lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x"
huffman@22856
   380
by (simp add: power_inverse [symmetric])
huffman@20687
   381
huffman@20687
   382
lemma real_sqrt_eq_zero_cancel: "[| 0 \<le> x; sqrt(x) = 0|] ==> x = 0"
huffman@22956
   383
by simp
huffman@20687
   384
huffman@20687
   385
lemma real_sqrt_ge_one: "1 \<le> x ==> 1 \<le> sqrt x"
huffman@22956
   386
by simp
huffman@20687
   387
huffman@22443
   388
lemma sqrt_divide_self_eq:
huffman@22443
   389
  assumes nneg: "0 \<le> x"
huffman@22443
   390
  shows "sqrt x / x = inverse (sqrt x)"
huffman@22443
   391
proof cases
huffman@22443
   392
  assume "x=0" thus ?thesis by simp
huffman@22443
   393
next
huffman@22443
   394
  assume nz: "x\<noteq>0" 
huffman@22443
   395
  hence pos: "0<x" using nneg by arith
huffman@22443
   396
  show ?thesis
huffman@22443
   397
  proof (rule right_inverse_eq [THEN iffD1, THEN sym]) 
huffman@22443
   398
    show "sqrt x / x \<noteq> 0" by (simp add: divide_inverse nneg nz) 
huffman@22443
   399
    show "inverse (sqrt x) / (sqrt x / x) = 1"
huffman@22443
   400
      by (simp add: divide_inverse mult_assoc [symmetric] 
huffman@22443
   401
                  power2_eq_square [symmetric] real_inv_sqrt_pow2 pos nz) 
huffman@22443
   402
  qed
huffman@22443
   403
qed
huffman@22443
   404
huffman@22721
   405
lemma real_divide_square_eq [simp]: "(((r::real) * a) / (r * r)) = a / r"
huffman@22721
   406
apply (simp add: divide_inverse)
huffman@22721
   407
apply (case_tac "r=0")
huffman@22721
   408
apply (auto simp add: mult_ac)
huffman@22721
   409
done
huffman@22721
   410
huffman@22856
   411
subsection {* Square Root of Sum of Squares *}
huffman@22856
   412
huffman@22856
   413
lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \<le> sqrt(x*x + y*y)"
huffman@22968
   414
by (rule real_sqrt_ge_zero [OF sum_squares_ge_zero])
huffman@22856
   415
huffman@22856
   416
lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@22961
   417
by simp
huffman@22856
   418
huffman@22856
   419
lemma real_sqrt_sum_squares_mult_ge_zero [simp]:
huffman@22856
   420
     "0 \<le> sqrt ((x\<twosuperior> + y\<twosuperior>)*(xa\<twosuperior> + ya\<twosuperior>))"
huffman@22856
   421
by (auto intro!: real_sqrt_ge_zero simp add: zero_le_mult_iff)
huffman@22856
   422
huffman@22856
   423
lemma real_sqrt_sum_squares_mult_squared_eq [simp]:
huffman@22856
   424
     "sqrt ((x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)) ^ 2 = (x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)"
huffman@22956
   425
by (auto simp add: zero_le_mult_iff)
huffman@22856
   426
huffman@22856
   427
lemma real_sqrt_sum_squares_ge1 [simp]: "x \<le> sqrt(x\<twosuperior> + y\<twosuperior>)"
huffman@22856
   428
by (rule power2_le_imp_le, simp_all)
huffman@22856
   429
huffman@22856
   430
lemma real_sqrt_sum_squares_ge2 [simp]: "y \<le> sqrt(x\<twosuperior> + y\<twosuperior>)"
huffman@22856
   431
by (rule power2_le_imp_le, simp_all)
huffman@22856
   432
huffman@22858
   433
lemma power2_sum:
huffman@22858
   434
  fixes x y :: "'a::{number_ring,recpower}"
huffman@22858
   435
  shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y"
huffman@22858
   436
by (simp add: left_distrib right_distrib power2_eq_square)
huffman@22858
   437
huffman@22858
   438
lemma power2_diff:
huffman@22858
   439
  fixes x y :: "'a::{number_ring,recpower}"
huffman@22858
   440
  shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y"
huffman@22858
   441
by (simp add: left_diff_distrib right_diff_distrib power2_eq_square)
huffman@22858
   442
huffman@22858
   443
lemma real_sqrt_sum_squares_triangle_ineq:
huffman@22858
   444
  "sqrt ((a + c)\<twosuperior> + (b + d)\<twosuperior>) \<le> sqrt (a\<twosuperior> + b\<twosuperior>) + sqrt (c\<twosuperior> + d\<twosuperior>)"
huffman@22858
   445
apply (rule power2_le_imp_le, simp)
huffman@22858
   446
apply (simp add: power2_sum)
huffman@22858
   447
apply (simp only: mult_assoc right_distrib [symmetric])
huffman@22858
   448
apply (rule mult_left_mono)
huffman@22858
   449
apply (rule power2_le_imp_le)
huffman@22858
   450
apply (simp add: power2_sum power_mult_distrib)
huffman@22858
   451
apply (simp add: ring_distrib)
huffman@22858
   452
apply (subgoal_tac "0 \<le> b\<twosuperior> * c\<twosuperior> + a\<twosuperior> * d\<twosuperior> - 2 * (a * c) * (b * d)", simp)
huffman@22858
   453
apply (rule_tac b="(a * d - b * c)\<twosuperior>" in ord_le_eq_trans)
huffman@22858
   454
apply (rule zero_le_power2)
huffman@22858
   455
apply (simp add: power2_diff power_mult_distrib)
huffman@22858
   456
apply (simp add: mult_nonneg_nonneg)
huffman@22858
   457
apply simp
huffman@22858
   458
apply (simp add: add_increasing)
huffman@22858
   459
done
huffman@22858
   460
huffman@22956
   461
text "Legacy theorem names:"
huffman@22956
   462
lemmas real_root_pos2 = real_root_power_cancel
huffman@22956
   463
lemmas real_root_pos_pos = real_root_gt_zero [THEN order_less_imp_le]
huffman@22956
   464
lemmas real_root_pos_pos_le = real_root_ge_zero
huffman@22956
   465
lemmas real_sqrt_mult_distrib = real_sqrt_mult
huffman@22956
   466
lemmas real_sqrt_mult_distrib2 = real_sqrt_mult
huffman@22956
   467
lemmas real_sqrt_eq_zero_cancel_iff = real_sqrt_eq_0_iff
huffman@22956
   468
huffman@22956
   469
(* needed for CauchysMeanTheorem.het_base from AFP *)
huffman@22956
   470
lemma real_root_pos: "0 < x \<Longrightarrow> root (Suc n) (x ^ (Suc n)) = x"
huffman@22956
   471
by (rule real_root_power_cancel [OF zero_less_Suc order_less_imp_le])
huffman@22956
   472
huffman@22956
   473
(* FIXME: the stronger version of real_root_less_iff
huffman@22956
   474
 breaks CauchysMeanTheorem.list_gmean_gt_iff from AFP. *)
huffman@22956
   475
huffman@22956
   476
declare real_root_less_iff [simp del]
huffman@22956
   477
lemma real_root_less_iff_nonneg [simp]:
huffman@22956
   478
  "\<lbrakk>0 < n; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> (root n x < root n y) = (x < y)"
huffman@22956
   479
by (rule real_root_less_iff)
huffman@22956
   480
paulson@14324
   481
end