src/HOL/Tools/numeral_simprocs.ML
author haftmann
Mon Jul 19 16:09:44 2010 +0200 (2010-07-19)
changeset 37887 2ae085b07f2f
parent 36945 9bec62c10714
child 38549 d0385f2764d8
permissions -rw-r--r--
diff_minus subsumes diff_def
haftmann@31068
     1
(* Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
haftmann@31068
     2
   Copyright   2000  University of Cambridge
wenzelm@23164
     3
haftmann@36751
     4
Simprocs for the (integer) numerals.
wenzelm@23164
     5
*)
wenzelm@23164
     6
wenzelm@23164
     7
(*To quote from Provers/Arith/cancel_numeral_factor.ML:
wenzelm@23164
     8
wenzelm@23164
     9
Cancels common coefficients in balanced expressions:
wenzelm@23164
    10
wenzelm@23164
    11
     u*#m ~~ u'*#m'  ==  #n*u ~~ #n'*u'
wenzelm@23164
    12
wenzelm@23164
    13
where ~~ is an appropriate balancing operation (e.g. =, <=, <, div, /)
wenzelm@23164
    14
and d = gcd(m,m') and n=m/d and n'=m'/d.
wenzelm@23164
    15
*)
wenzelm@23164
    16
haftmann@31068
    17
signature NUMERAL_SIMPROCS =
haftmann@31068
    18
sig
haftmann@31068
    19
  val assoc_fold_simproc: simproc
haftmann@31068
    20
  val combine_numerals: simproc
haftmann@31068
    21
  val cancel_numerals: simproc list
haftmann@31068
    22
  val cancel_factors: simproc list
haftmann@31068
    23
  val cancel_numeral_factors: simproc list
haftmann@31068
    24
  val field_combine_numerals: simproc
haftmann@31068
    25
  val field_cancel_numeral_factors: simproc list
haftmann@31068
    26
  val num_ss: simpset
haftmann@36751
    27
  val field_comp_conv: conv
haftmann@31068
    28
end;
haftmann@31068
    29
haftmann@31068
    30
structure Numeral_Simprocs : NUMERAL_SIMPROCS =
haftmann@31068
    31
struct
haftmann@31068
    32
haftmann@33359
    33
val mk_number = Arith_Data.mk_number;
haftmann@33359
    34
val mk_sum = Arith_Data.mk_sum;
haftmann@33359
    35
val long_mk_sum = Arith_Data.long_mk_sum;
haftmann@33359
    36
val dest_sum = Arith_Data.dest_sum;
haftmann@31068
    37
haftmann@35267
    38
val mk_diff = HOLogic.mk_binop @{const_name Groups.minus};
haftmann@35267
    39
val dest_diff = HOLogic.dest_bin @{const_name Groups.minus} Term.dummyT;
haftmann@31068
    40
haftmann@35267
    41
val mk_times = HOLogic.mk_binop @{const_name Groups.times};
haftmann@31068
    42
haftmann@35267
    43
fun one_of T = Const(@{const_name Groups.one}, T);
haftmann@31068
    44
haftmann@31068
    45
(* build product with trailing 1 rather than Numeral 1 in order to avoid the
haftmann@31068
    46
   unnecessary restriction to type class number_ring
haftmann@31068
    47
   which is not required for cancellation of common factors in divisions.
haftmann@31068
    48
*)
haftmann@31068
    49
fun mk_prod T = 
haftmann@31068
    50
  let val one = one_of T
haftmann@31068
    51
  fun mk [] = one
haftmann@31068
    52
    | mk [t] = t
haftmann@31068
    53
    | mk (t :: ts) = if t = one then mk ts else mk_times (t, mk ts)
haftmann@31068
    54
  in mk end;
haftmann@31068
    55
haftmann@31068
    56
(*This version ALWAYS includes a trailing one*)
haftmann@31068
    57
fun long_mk_prod T []        = one_of T
haftmann@31068
    58
  | long_mk_prod T (t :: ts) = mk_times (t, mk_prod T ts);
haftmann@31068
    59
haftmann@35267
    60
val dest_times = HOLogic.dest_bin @{const_name Groups.times} Term.dummyT;
haftmann@31068
    61
haftmann@31068
    62
fun dest_prod t =
haftmann@31068
    63
      let val (t,u) = dest_times t
haftmann@31068
    64
      in dest_prod t @ dest_prod u end
haftmann@31068
    65
      handle TERM _ => [t];
haftmann@31068
    66
haftmann@33359
    67
fun find_first_numeral past (t::terms) =
haftmann@33359
    68
        ((snd (HOLogic.dest_number t), rev past @ terms)
haftmann@33359
    69
         handle TERM _ => find_first_numeral (t::past) terms)
haftmann@33359
    70
  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
haftmann@33359
    71
haftmann@31068
    72
(*DON'T do the obvious simplifications; that would create special cases*)
haftmann@31068
    73
fun mk_coeff (k, t) = mk_times (mk_number (Term.fastype_of t) k, t);
haftmann@31068
    74
haftmann@31068
    75
(*Express t as a product of (possibly) a numeral with other sorted terms*)
haftmann@35267
    76
fun dest_coeff sign (Const (@{const_name Groups.uminus}, _) $ t) = dest_coeff (~sign) t
haftmann@31068
    77
  | dest_coeff sign t =
wenzelm@35408
    78
    let val ts = sort Term_Ord.term_ord (dest_prod t)
haftmann@31068
    79
        val (n, ts') = find_first_numeral [] ts
haftmann@31068
    80
                          handle TERM _ => (1, ts)
haftmann@31068
    81
    in (sign*n, mk_prod (Term.fastype_of t) ts') end;
haftmann@31068
    82
haftmann@31068
    83
(*Find first coefficient-term THAT MATCHES u*)
haftmann@31068
    84
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
haftmann@31068
    85
  | find_first_coeff past u (t::terms) =
haftmann@31068
    86
        let val (n,u') = dest_coeff 1 t
haftmann@31068
    87
        in if u aconv u' then (n, rev past @ terms)
haftmann@31068
    88
                         else find_first_coeff (t::past) u terms
haftmann@31068
    89
        end
haftmann@31068
    90
        handle TERM _ => find_first_coeff (t::past) u terms;
haftmann@31068
    91
haftmann@31068
    92
(*Fractions as pairs of ints. Can't use Rat.rat because the representation
haftmann@31068
    93
  needs to preserve negative values in the denominator.*)
haftmann@31068
    94
fun mk_frac (p, q) = if q = 0 then raise Div else (p, q);
haftmann@31068
    95
haftmann@31068
    96
(*Don't reduce fractions; sums must be proved by rule add_frac_eq.
haftmann@31068
    97
  Fractions are reduced later by the cancel_numeral_factor simproc.*)
haftmann@31068
    98
fun add_frac ((p1, q1), (p2, q2)) = (p1 * q2 + p2 * q1, q1 * q2);
haftmann@31068
    99
haftmann@35084
   100
val mk_divide = HOLogic.mk_binop @{const_name Rings.divide};
haftmann@31068
   101
haftmann@31068
   102
(*Build term (p / q) * t*)
haftmann@31068
   103
fun mk_fcoeff ((p, q), t) =
haftmann@31068
   104
  let val T = Term.fastype_of t
haftmann@31068
   105
  in mk_times (mk_divide (mk_number T p, mk_number T q), t) end;
haftmann@31068
   106
haftmann@31068
   107
(*Express t as a product of a fraction with other sorted terms*)
haftmann@35267
   108
fun dest_fcoeff sign (Const (@{const_name Groups.uminus}, _) $ t) = dest_fcoeff (~sign) t
haftmann@35084
   109
  | dest_fcoeff sign (Const (@{const_name Rings.divide}, _) $ t $ u) =
haftmann@31068
   110
    let val (p, t') = dest_coeff sign t
haftmann@31068
   111
        val (q, u') = dest_coeff 1 u
haftmann@31068
   112
    in (mk_frac (p, q), mk_divide (t', u')) end
haftmann@31068
   113
  | dest_fcoeff sign t =
haftmann@31068
   114
    let val (p, t') = dest_coeff sign t
haftmann@31068
   115
        val T = Term.fastype_of t
haftmann@31068
   116
    in (mk_frac (p, 1), mk_divide (t', one_of T)) end;
haftmann@31068
   117
haftmann@31068
   118
haftmann@31068
   119
(** New term ordering so that AC-rewriting brings numerals to the front **)
haftmann@31068
   120
haftmann@31068
   121
(*Order integers by absolute value and then by sign. The standard integer
haftmann@31068
   122
  ordering is not well-founded.*)
haftmann@31068
   123
fun num_ord (i,j) =
haftmann@31068
   124
  (case int_ord (abs i, abs j) of
haftmann@31068
   125
    EQUAL => int_ord (Int.sign i, Int.sign j) 
haftmann@31068
   126
  | ord => ord);
haftmann@31068
   127
wenzelm@35408
   128
(*This resembles Term_Ord.term_ord, but it puts binary numerals before other
haftmann@31068
   129
  non-atomic terms.*)
haftmann@31068
   130
local open Term 
haftmann@31068
   131
in 
haftmann@31068
   132
fun numterm_ord (Abs (_, T, t), Abs(_, U, u)) =
wenzelm@35408
   133
      (case numterm_ord (t, u) of EQUAL => Term_Ord.typ_ord (T, U) | ord => ord)
haftmann@31068
   134
  | numterm_ord
haftmann@31068
   135
     (Const(@{const_name Int.number_of}, _) $ v, Const(@{const_name Int.number_of}, _) $ w) =
haftmann@31068
   136
     num_ord (HOLogic.dest_numeral v, HOLogic.dest_numeral w)
haftmann@31068
   137
  | numterm_ord (Const(@{const_name Int.number_of}, _) $ _, _) = LESS
haftmann@31068
   138
  | numterm_ord (_, Const(@{const_name Int.number_of}, _) $ _) = GREATER
haftmann@31068
   139
  | numterm_ord (t, u) =
haftmann@31068
   140
      (case int_ord (size_of_term t, size_of_term u) of
haftmann@31068
   141
        EQUAL =>
haftmann@31068
   142
          let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
wenzelm@35408
   143
            (case Term_Ord.hd_ord (f, g) of EQUAL => numterms_ord (ts, us) | ord => ord)
haftmann@31068
   144
          end
haftmann@31068
   145
      | ord => ord)
haftmann@31068
   146
and numterms_ord (ts, us) = list_ord numterm_ord (ts, us)
haftmann@31068
   147
end;
haftmann@31068
   148
haftmann@31068
   149
fun numtermless tu = (numterm_ord tu = LESS);
haftmann@31068
   150
haftmann@31068
   151
val num_ss = HOL_ss settermless numtermless;
haftmann@31068
   152
haftmann@31068
   153
(*Maps 0 to Numeral0 and 1 to Numeral1 so that arithmetic isn't complicated by the abstract 0 and 1.*)
haftmann@31068
   154
val numeral_syms = [@{thm numeral_0_eq_0} RS sym, @{thm numeral_1_eq_1} RS sym];
haftmann@31068
   155
haftmann@31068
   156
(*Simplify Numeral0+n, n+Numeral0, Numeral1*n, n*Numeral1, 1*x, x*1, x/1 *)
haftmann@31068
   157
val add_0s =  @{thms add_0s};
haftmann@31068
   158
val mult_1s = @{thms mult_1s mult_1_left mult_1_right divide_1};
haftmann@31068
   159
haftmann@31068
   160
(*Simplify inverse Numeral1, a/Numeral1*)
haftmann@31068
   161
val inverse_1s = [@{thm inverse_numeral_1}];
haftmann@31068
   162
val divide_1s = [@{thm divide_numeral_1}];
haftmann@31068
   163
haftmann@31068
   164
(*To perform binary arithmetic.  The "left" rewriting handles patterns
haftmann@31068
   165
  created by the Numeral_Simprocs, such as 3 * (5 * x). *)
haftmann@31068
   166
val simps = [@{thm numeral_0_eq_0} RS sym, @{thm numeral_1_eq_1} RS sym,
haftmann@31068
   167
                 @{thm add_number_of_left}, @{thm mult_number_of_left}] @
haftmann@31068
   168
                @{thms arith_simps} @ @{thms rel_simps};
haftmann@31068
   169
haftmann@31068
   170
(*Binary arithmetic BUT NOT ADDITION since it may collapse adjacent terms
haftmann@31068
   171
  during re-arrangement*)
haftmann@31068
   172
val non_add_simps =
haftmann@31068
   173
  subtract Thm.eq_thm [@{thm add_number_of_left}, @{thm number_of_add} RS sym] simps;
wenzelm@23164
   174
haftmann@31068
   175
(*To evaluate binary negations of coefficients*)
haftmann@31068
   176
val minus_simps = [@{thm numeral_m1_eq_minus_1} RS sym, @{thm number_of_minus} RS sym] @
haftmann@31068
   177
                   @{thms minus_bin_simps} @ @{thms pred_bin_simps};
haftmann@31068
   178
haftmann@31068
   179
(*To let us treat subtraction as addition*)
haftmann@31068
   180
val diff_simps = [@{thm diff_minus}, @{thm minus_add_distrib}, @{thm minus_minus}];
haftmann@31068
   181
haftmann@31068
   182
(*To let us treat division as multiplication*)
haftmann@31068
   183
val divide_simps = [@{thm divide_inverse}, @{thm inverse_mult_distrib}, @{thm inverse_inverse_eq}];
haftmann@31068
   184
wenzelm@35020
   185
(*push the unary minus down*)
wenzelm@35020
   186
val minus_mult_eq_1_to_2 = @{lemma "- (a::'a::ring) * b = a * - b" by simp};
haftmann@31068
   187
haftmann@31068
   188
(*to extract again any uncancelled minuses*)
haftmann@31068
   189
val minus_from_mult_simps =
haftmann@31068
   190
    [@{thm minus_minus}, @{thm mult_minus_left}, @{thm mult_minus_right}];
haftmann@31068
   191
haftmann@31068
   192
(*combine unary minus with numeric literals, however nested within a product*)
haftmann@31068
   193
val mult_minus_simps =
haftmann@31068
   194
    [@{thm mult_assoc}, @{thm minus_mult_left}, minus_mult_eq_1_to_2];
haftmann@31068
   195
haftmann@31068
   196
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
haftmann@31068
   197
  diff_simps @ minus_simps @ @{thms add_ac}
haftmann@31068
   198
val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps
haftmann@31068
   199
val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac}
haftmann@31068
   200
haftmann@31068
   201
structure CancelNumeralsCommon =
haftmann@31068
   202
  struct
haftmann@31068
   203
  val mk_sum            = mk_sum
haftmann@31068
   204
  val dest_sum          = dest_sum
haftmann@31068
   205
  val mk_coeff          = mk_coeff
haftmann@31068
   206
  val dest_coeff        = dest_coeff 1
haftmann@31068
   207
  val find_first_coeff  = find_first_coeff []
wenzelm@31368
   208
  fun trans_tac _       = Arith_Data.trans_tac
haftmann@31068
   209
haftmann@31068
   210
  fun norm_tac ss =
haftmann@31068
   211
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
haftmann@31068
   212
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
haftmann@31068
   213
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
haftmann@31068
   214
haftmann@31068
   215
  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps
haftmann@31068
   216
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@31068
   217
  val simplify_meta_eq = Arith_Data.simplify_meta_eq (add_0s @ mult_1s)
haftmann@31068
   218
  end;
haftmann@31068
   219
haftmann@31068
   220
haftmann@31068
   221
structure EqCancelNumerals = CancelNumeralsFun
haftmann@31068
   222
 (open CancelNumeralsCommon
haftmann@31068
   223
  val prove_conv = Arith_Data.prove_conv
haftmann@31068
   224
  val mk_bal   = HOLogic.mk_eq
haftmann@31068
   225
  val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
haftmann@31068
   226
  val bal_add1 = @{thm eq_add_iff1} RS trans
haftmann@31068
   227
  val bal_add2 = @{thm eq_add_iff2} RS trans
haftmann@31068
   228
);
haftmann@31068
   229
haftmann@31068
   230
structure LessCancelNumerals = CancelNumeralsFun
haftmann@31068
   231
 (open CancelNumeralsCommon
haftmann@31068
   232
  val prove_conv = Arith_Data.prove_conv
haftmann@35092
   233
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less}
haftmann@35092
   234
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
haftmann@31068
   235
  val bal_add1 = @{thm less_add_iff1} RS trans
haftmann@31068
   236
  val bal_add2 = @{thm less_add_iff2} RS trans
haftmann@31068
   237
);
haftmann@31068
   238
haftmann@31068
   239
structure LeCancelNumerals = CancelNumeralsFun
haftmann@31068
   240
 (open CancelNumeralsCommon
haftmann@31068
   241
  val prove_conv = Arith_Data.prove_conv
haftmann@35092
   242
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less_eq}
haftmann@35092
   243
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
haftmann@31068
   244
  val bal_add1 = @{thm le_add_iff1} RS trans
haftmann@31068
   245
  val bal_add2 = @{thm le_add_iff2} RS trans
haftmann@31068
   246
);
haftmann@31068
   247
haftmann@31068
   248
val cancel_numerals =
wenzelm@32155
   249
  map (Arith_Data.prep_simproc @{theory})
haftmann@31068
   250
   [("inteq_cancel_numerals",
haftmann@31068
   251
     ["(l::'a::number_ring) + m = n",
haftmann@31068
   252
      "(l::'a::number_ring) = m + n",
haftmann@31068
   253
      "(l::'a::number_ring) - m = n",
haftmann@31068
   254
      "(l::'a::number_ring) = m - n",
haftmann@31068
   255
      "(l::'a::number_ring) * m = n",
haftmann@31068
   256
      "(l::'a::number_ring) = m * n"],
haftmann@31068
   257
     K EqCancelNumerals.proc),
haftmann@31068
   258
    ("intless_cancel_numerals",
haftmann@35028
   259
     ["(l::'a::{linordered_idom,number_ring}) + m < n",
haftmann@35028
   260
      "(l::'a::{linordered_idom,number_ring}) < m + n",
haftmann@35028
   261
      "(l::'a::{linordered_idom,number_ring}) - m < n",
haftmann@35028
   262
      "(l::'a::{linordered_idom,number_ring}) < m - n",
haftmann@35028
   263
      "(l::'a::{linordered_idom,number_ring}) * m < n",
haftmann@35028
   264
      "(l::'a::{linordered_idom,number_ring}) < m * n"],
haftmann@31068
   265
     K LessCancelNumerals.proc),
haftmann@31068
   266
    ("intle_cancel_numerals",
haftmann@35028
   267
     ["(l::'a::{linordered_idom,number_ring}) + m <= n",
haftmann@35028
   268
      "(l::'a::{linordered_idom,number_ring}) <= m + n",
haftmann@35028
   269
      "(l::'a::{linordered_idom,number_ring}) - m <= n",
haftmann@35028
   270
      "(l::'a::{linordered_idom,number_ring}) <= m - n",
haftmann@35028
   271
      "(l::'a::{linordered_idom,number_ring}) * m <= n",
haftmann@35028
   272
      "(l::'a::{linordered_idom,number_ring}) <= m * n"],
haftmann@31068
   273
     K LeCancelNumerals.proc)];
haftmann@31068
   274
haftmann@31068
   275
structure CombineNumeralsData =
haftmann@31068
   276
  struct
haftmann@31068
   277
  type coeff            = int
haftmann@31068
   278
  val iszero            = (fn x => x = 0)
haftmann@31068
   279
  val add               = op +
haftmann@31068
   280
  val mk_sum            = long_mk_sum    (*to work for e.g. 2*x + 3*x *)
haftmann@31068
   281
  val dest_sum          = dest_sum
haftmann@31068
   282
  val mk_coeff          = mk_coeff
haftmann@31068
   283
  val dest_coeff        = dest_coeff 1
haftmann@31068
   284
  val left_distrib      = @{thm combine_common_factor} RS trans
haftmann@31068
   285
  val prove_conv        = Arith_Data.prove_conv_nohyps
wenzelm@31368
   286
  fun trans_tac _       = Arith_Data.trans_tac
haftmann@31068
   287
haftmann@31068
   288
  fun norm_tac ss =
haftmann@31068
   289
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
haftmann@31068
   290
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
haftmann@31068
   291
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
haftmann@31068
   292
haftmann@31068
   293
  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps
haftmann@31068
   294
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@31068
   295
  val simplify_meta_eq = Arith_Data.simplify_meta_eq (add_0s @ mult_1s)
haftmann@31068
   296
  end;
haftmann@31068
   297
haftmann@31068
   298
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
haftmann@31068
   299
haftmann@31068
   300
(*Version for fields, where coefficients can be fractions*)
haftmann@31068
   301
structure FieldCombineNumeralsData =
haftmann@31068
   302
  struct
haftmann@31068
   303
  type coeff            = int * int
haftmann@31068
   304
  val iszero            = (fn (p, q) => p = 0)
haftmann@31068
   305
  val add               = add_frac
haftmann@31068
   306
  val mk_sum            = long_mk_sum
haftmann@31068
   307
  val dest_sum          = dest_sum
haftmann@31068
   308
  val mk_coeff          = mk_fcoeff
haftmann@31068
   309
  val dest_coeff        = dest_fcoeff 1
haftmann@31068
   310
  val left_distrib      = @{thm combine_common_factor} RS trans
haftmann@31068
   311
  val prove_conv        = Arith_Data.prove_conv_nohyps
wenzelm@31368
   312
  fun trans_tac _       = Arith_Data.trans_tac
haftmann@31068
   313
haftmann@31068
   314
  val norm_ss1a = norm_ss1 addsimps inverse_1s @ divide_simps
haftmann@31068
   315
  fun norm_tac ss =
haftmann@31068
   316
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1a))
haftmann@31068
   317
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
haftmann@31068
   318
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
haftmann@31068
   319
haftmann@31068
   320
  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps @ [@{thm add_frac_eq}]
haftmann@31068
   321
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@31068
   322
  val simplify_meta_eq = Arith_Data.simplify_meta_eq (add_0s @ mult_1s @ divide_1s)
haftmann@31068
   323
  end;
haftmann@31068
   324
haftmann@31068
   325
structure FieldCombineNumerals = CombineNumeralsFun(FieldCombineNumeralsData);
haftmann@31068
   326
haftmann@31068
   327
val combine_numerals =
wenzelm@32155
   328
  Arith_Data.prep_simproc @{theory}
haftmann@31068
   329
    ("int_combine_numerals", 
haftmann@31068
   330
     ["(i::'a::number_ring) + j", "(i::'a::number_ring) - j"], 
haftmann@31068
   331
     K CombineNumerals.proc);
haftmann@31068
   332
haftmann@31068
   333
val field_combine_numerals =
wenzelm@32155
   334
  Arith_Data.prep_simproc @{theory}
haftmann@31068
   335
    ("field_combine_numerals", 
haftmann@36409
   336
     ["(i::'a::{field_inverse_zero, number_ring}) + j",
haftmann@36409
   337
      "(i::'a::{field_inverse_zero, number_ring}) - j"], 
haftmann@31068
   338
     K FieldCombineNumerals.proc);
haftmann@31068
   339
haftmann@31068
   340
(** Constant folding for multiplication in semirings **)
haftmann@31068
   341
haftmann@31068
   342
(*We do not need folding for addition: combine_numerals does the same thing*)
haftmann@31068
   343
haftmann@31068
   344
structure Semiring_Times_Assoc_Data : ASSOC_FOLD_DATA =
haftmann@31068
   345
struct
haftmann@31068
   346
  val assoc_ss = HOL_ss addsimps @{thms mult_ac}
haftmann@31068
   347
  val eq_reflection = eq_reflection
boehmes@35983
   348
  val is_numeral = can HOLogic.dest_number
haftmann@31068
   349
end;
haftmann@31068
   350
haftmann@31068
   351
structure Semiring_Times_Assoc = Assoc_Fold (Semiring_Times_Assoc_Data);
haftmann@31068
   352
haftmann@31068
   353
val assoc_fold_simproc =
wenzelm@32155
   354
  Arith_Data.prep_simproc @{theory}
haftmann@31068
   355
   ("semiring_assoc_fold", ["(a::'a::comm_semiring_1_cancel) * b"],
haftmann@31068
   356
    K Semiring_Times_Assoc.proc);
wenzelm@23164
   357
wenzelm@23164
   358
structure CancelNumeralFactorCommon =
wenzelm@23164
   359
  struct
wenzelm@23164
   360
  val mk_coeff          = mk_coeff
wenzelm@23164
   361
  val dest_coeff        = dest_coeff 1
wenzelm@31368
   362
  fun trans_tac _       = Arith_Data.trans_tac
wenzelm@23164
   363
wenzelm@23164
   364
  val norm_ss1 = HOL_ss addsimps minus_from_mult_simps @ mult_1s
wenzelm@23164
   365
  val norm_ss2 = HOL_ss addsimps simps @ mult_minus_simps
haftmann@23881
   366
  val norm_ss3 = HOL_ss addsimps @{thms mult_ac}
wenzelm@23164
   367
  fun norm_tac ss =
wenzelm@23164
   368
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
wenzelm@23164
   369
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
wenzelm@23164
   370
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
wenzelm@23164
   371
haftmann@31068
   372
  val numeral_simp_ss = HOL_ss addsimps
haftmann@31068
   373
    [@{thm eq_number_of_eq}, @{thm less_number_of}, @{thm le_number_of}] @ simps
wenzelm@23164
   374
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@30518
   375
  val simplify_meta_eq = Arith_Data.simplify_meta_eq
haftmann@35064
   376
    [@{thm Nat.add_0}, @{thm Nat.add_0_right}, @{thm mult_zero_left},
huffman@26086
   377
      @{thm mult_zero_right}, @{thm mult_Bit1}, @{thm mult_1_right}];
wenzelm@23164
   378
  end
wenzelm@23164
   379
haftmann@30931
   380
(*Version for semiring_div*)
haftmann@30931
   381
structure DivCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   382
 (open CancelNumeralFactorCommon
haftmann@30496
   383
  val prove_conv = Arith_Data.prove_conv
wenzelm@23164
   384
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
haftmann@30931
   385
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} Term.dummyT
haftmann@30931
   386
  val cancel = @{thm div_mult_mult1} RS trans
wenzelm@23164
   387
  val neg_exchanges = false
wenzelm@23164
   388
)
wenzelm@23164
   389
wenzelm@23164
   390
(*Version for fields*)
wenzelm@23164
   391
structure DivideCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   392
 (open CancelNumeralFactorCommon
haftmann@30496
   393
  val prove_conv = Arith_Data.prove_conv
haftmann@35084
   394
  val mk_bal   = HOLogic.mk_binop @{const_name Rings.divide}
haftmann@35084
   395
  val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} Term.dummyT
nipkow@23413
   396
  val cancel = @{thm mult_divide_mult_cancel_left} RS trans
wenzelm@23164
   397
  val neg_exchanges = false
wenzelm@23164
   398
)
wenzelm@23164
   399
wenzelm@23164
   400
structure EqCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   401
 (open CancelNumeralFactorCommon
haftmann@30496
   402
  val prove_conv = Arith_Data.prove_conv
wenzelm@23164
   403
  val mk_bal   = HOLogic.mk_eq
wenzelm@23164
   404
  val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
wenzelm@23164
   405
  val cancel = @{thm mult_cancel_left} RS trans
wenzelm@23164
   406
  val neg_exchanges = false
wenzelm@23164
   407
)
wenzelm@23164
   408
wenzelm@23164
   409
structure LessCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   410
 (open CancelNumeralFactorCommon
haftmann@30496
   411
  val prove_conv = Arith_Data.prove_conv
haftmann@35092
   412
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less}
haftmann@35092
   413
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
wenzelm@23164
   414
  val cancel = @{thm mult_less_cancel_left} RS trans
wenzelm@23164
   415
  val neg_exchanges = true
wenzelm@23164
   416
)
wenzelm@23164
   417
wenzelm@23164
   418
structure LeCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   419
 (open CancelNumeralFactorCommon
haftmann@30496
   420
  val prove_conv = Arith_Data.prove_conv
haftmann@35092
   421
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less_eq}
haftmann@35092
   422
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
wenzelm@23164
   423
  val cancel = @{thm mult_le_cancel_left} RS trans
wenzelm@23164
   424
  val neg_exchanges = true
wenzelm@23164
   425
)
wenzelm@23164
   426
wenzelm@23164
   427
val cancel_numeral_factors =
wenzelm@32155
   428
  map (Arith_Data.prep_simproc @{theory})
wenzelm@23164
   429
   [("ring_eq_cancel_numeral_factor",
wenzelm@23164
   430
     ["(l::'a::{idom,number_ring}) * m = n",
wenzelm@23164
   431
      "(l::'a::{idom,number_ring}) = m * n"],
wenzelm@23164
   432
     K EqCancelNumeralFactor.proc),
wenzelm@23164
   433
    ("ring_less_cancel_numeral_factor",
haftmann@35028
   434
     ["(l::'a::{linordered_idom,number_ring}) * m < n",
haftmann@35028
   435
      "(l::'a::{linordered_idom,number_ring}) < m * n"],
wenzelm@23164
   436
     K LessCancelNumeralFactor.proc),
wenzelm@23164
   437
    ("ring_le_cancel_numeral_factor",
haftmann@35028
   438
     ["(l::'a::{linordered_idom,number_ring}) * m <= n",
haftmann@35028
   439
      "(l::'a::{linordered_idom,number_ring}) <= m * n"],
wenzelm@23164
   440
     K LeCancelNumeralFactor.proc),
wenzelm@23164
   441
    ("int_div_cancel_numeral_factors",
haftmann@30931
   442
     ["((l::'a::{semiring_div,number_ring}) * m) div n",
haftmann@30931
   443
      "(l::'a::{semiring_div,number_ring}) div (m * n)"],
haftmann@30931
   444
     K DivCancelNumeralFactor.proc),
wenzelm@23164
   445
    ("divide_cancel_numeral_factor",
haftmann@36409
   446
     ["((l::'a::{field_inverse_zero,number_ring}) * m) / n",
haftmann@36409
   447
      "(l::'a::{field_inverse_zero,number_ring}) / (m * n)",
haftmann@36409
   448
      "((number_of v)::'a::{field_inverse_zero,number_ring}) / (number_of w)"],
wenzelm@23164
   449
     K DivideCancelNumeralFactor.proc)];
wenzelm@23164
   450
wenzelm@23164
   451
val field_cancel_numeral_factors =
wenzelm@32155
   452
  map (Arith_Data.prep_simproc @{theory})
wenzelm@23164
   453
   [("field_eq_cancel_numeral_factor",
wenzelm@23164
   454
     ["(l::'a::{field,number_ring}) * m = n",
wenzelm@23164
   455
      "(l::'a::{field,number_ring}) = m * n"],
wenzelm@23164
   456
     K EqCancelNumeralFactor.proc),
wenzelm@23164
   457
    ("field_cancel_numeral_factor",
haftmann@36409
   458
     ["((l::'a::{field_inverse_zero,number_ring}) * m) / n",
haftmann@36409
   459
      "(l::'a::{field_inverse_zero,number_ring}) / (m * n)",
haftmann@36409
   460
      "((number_of v)::'a::{field_inverse_zero,number_ring}) / (number_of w)"],
wenzelm@23164
   461
     K DivideCancelNumeralFactor.proc)]
wenzelm@23164
   462
wenzelm@23164
   463
wenzelm@23164
   464
(** Declarations for ExtractCommonTerm **)
wenzelm@23164
   465
wenzelm@23164
   466
(*Find first term that matches u*)
wenzelm@23164
   467
fun find_first_t past u []         = raise TERM ("find_first_t", [])
wenzelm@23164
   468
  | find_first_t past u (t::terms) =
wenzelm@23164
   469
        if u aconv t then (rev past @ terms)
wenzelm@23164
   470
        else find_first_t (t::past) u terms
wenzelm@23164
   471
        handle TERM _ => find_first_t (t::past) u terms;
wenzelm@23164
   472
wenzelm@23164
   473
(** Final simplification for the CancelFactor simprocs **)
haftmann@30518
   474
val simplify_one = Arith_Data.simplify_meta_eq  
nipkow@30031
   475
  [@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_by_1}, @{thm numeral_1_eq_1}];
wenzelm@23164
   476
nipkow@30649
   477
fun cancel_simplify_meta_eq ss cancel_th th =
wenzelm@23164
   478
    simplify_one ss (([th, cancel_th]) MRS trans);
wenzelm@23164
   479
nipkow@30649
   480
local
haftmann@31067
   481
  val Tp_Eq = Thm.reflexive (Thm.cterm_of @{theory HOL} HOLogic.Trueprop)
nipkow@30649
   482
  fun Eq_True_elim Eq = 
nipkow@30649
   483
    Thm.equal_elim (Thm.combination Tp_Eq (Thm.symmetric Eq)) @{thm TrueI}
nipkow@30649
   484
in
nipkow@30649
   485
fun sign_conv pos_th neg_th ss t =
nipkow@30649
   486
  let val T = fastype_of t;
haftmann@35267
   487
      val zero = Const(@{const_name Groups.zero}, T);
haftmann@35092
   488
      val less = Const(@{const_name Orderings.less}, [T,T] ---> HOLogic.boolT);
nipkow@30649
   489
      val pos = less $ zero $ t and neg = less $ t $ zero
nipkow@30649
   490
      fun prove p =
haftmann@31101
   491
        Option.map Eq_True_elim (Lin_Arith.simproc ss p)
nipkow@30649
   492
        handle THM _ => NONE
nipkow@30649
   493
    in case prove pos of
nipkow@30649
   494
         SOME th => SOME(th RS pos_th)
nipkow@30649
   495
       | NONE => (case prove neg of
nipkow@30649
   496
                    SOME th => SOME(th RS neg_th)
nipkow@30649
   497
                  | NONE => NONE)
nipkow@30649
   498
    end;
nipkow@30649
   499
end
nipkow@30649
   500
wenzelm@23164
   501
structure CancelFactorCommon =
wenzelm@23164
   502
  struct
wenzelm@23164
   503
  val mk_sum            = long_mk_prod
wenzelm@23164
   504
  val dest_sum          = dest_prod
wenzelm@23164
   505
  val mk_coeff          = mk_coeff
wenzelm@23164
   506
  val dest_coeff        = dest_coeff
wenzelm@23164
   507
  val find_first        = find_first_t []
wenzelm@31368
   508
  fun trans_tac _       = Arith_Data.trans_tac
haftmann@23881
   509
  val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
wenzelm@23164
   510
  fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))
nipkow@30649
   511
  val simplify_meta_eq  = cancel_simplify_meta_eq 
wenzelm@23164
   512
  end;
wenzelm@23164
   513
wenzelm@23164
   514
(*mult_cancel_left requires a ring with no zero divisors.*)
wenzelm@23164
   515
structure EqCancelFactor = ExtractCommonTermFun
wenzelm@23164
   516
 (open CancelFactorCommon
haftmann@30496
   517
  val prove_conv = Arith_Data.prove_conv
wenzelm@23164
   518
  val mk_bal   = HOLogic.mk_eq
wenzelm@23164
   519
  val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
wenzelm@31368
   520
  fun simp_conv _ _ = SOME @{thm mult_cancel_left}
nipkow@30649
   521
);
nipkow@30649
   522
nipkow@30649
   523
(*for ordered rings*)
nipkow@30649
   524
structure LeCancelFactor = ExtractCommonTermFun
nipkow@30649
   525
 (open CancelFactorCommon
nipkow@30649
   526
  val prove_conv = Arith_Data.prove_conv
haftmann@35092
   527
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less_eq}
haftmann@35092
   528
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
nipkow@30649
   529
  val simp_conv = sign_conv
nipkow@30649
   530
    @{thm mult_le_cancel_left_pos} @{thm mult_le_cancel_left_neg}
nipkow@30649
   531
);
nipkow@30649
   532
nipkow@30649
   533
(*for ordered rings*)
nipkow@30649
   534
structure LessCancelFactor = ExtractCommonTermFun
nipkow@30649
   535
 (open CancelFactorCommon
nipkow@30649
   536
  val prove_conv = Arith_Data.prove_conv
haftmann@35092
   537
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less}
haftmann@35092
   538
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
nipkow@30649
   539
  val simp_conv = sign_conv
nipkow@30649
   540
    @{thm mult_less_cancel_left_pos} @{thm mult_less_cancel_left_neg}
wenzelm@23164
   541
);
wenzelm@23164
   542
haftmann@30931
   543
(*for semirings with division*)
haftmann@30931
   544
structure DivCancelFactor = ExtractCommonTermFun
wenzelm@23164
   545
 (open CancelFactorCommon
haftmann@30496
   546
  val prove_conv = Arith_Data.prove_conv
wenzelm@23164
   547
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
haftmann@30931
   548
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} Term.dummyT
wenzelm@31368
   549
  fun simp_conv _ _ = SOME @{thm div_mult_mult1_if}
wenzelm@23164
   550
);
wenzelm@23164
   551
haftmann@30931
   552
structure ModCancelFactor = ExtractCommonTermFun
nipkow@24395
   553
 (open CancelFactorCommon
haftmann@30496
   554
  val prove_conv = Arith_Data.prove_conv
nipkow@24395
   555
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.mod}
haftmann@31067
   556
  val dest_bal = HOLogic.dest_bin @{const_name Divides.mod} Term.dummyT
wenzelm@31368
   557
  fun simp_conv _ _ = SOME @{thm mod_mult_mult1}
nipkow@24395
   558
);
nipkow@24395
   559
haftmann@30931
   560
(*for idoms*)
haftmann@30931
   561
structure DvdCancelFactor = ExtractCommonTermFun
nipkow@23969
   562
 (open CancelFactorCommon
haftmann@30496
   563
  val prove_conv = Arith_Data.prove_conv
haftmann@35050
   564
  val mk_bal   = HOLogic.mk_binrel @{const_name Rings.dvd}
haftmann@35050
   565
  val dest_bal = HOLogic.dest_bin @{const_name Rings.dvd} Term.dummyT
wenzelm@31368
   566
  fun simp_conv _ _ = SOME @{thm dvd_mult_cancel_left}
nipkow@23969
   567
);
nipkow@23969
   568
wenzelm@23164
   569
(*Version for all fields, including unordered ones (type complex).*)
wenzelm@23164
   570
structure DivideCancelFactor = ExtractCommonTermFun
wenzelm@23164
   571
 (open CancelFactorCommon
haftmann@30496
   572
  val prove_conv = Arith_Data.prove_conv
haftmann@35084
   573
  val mk_bal   = HOLogic.mk_binop @{const_name Rings.divide}
haftmann@35084
   574
  val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} Term.dummyT
wenzelm@31368
   575
  fun simp_conv _ _ = SOME @{thm mult_divide_mult_cancel_left_if}
wenzelm@23164
   576
);
wenzelm@23164
   577
wenzelm@23164
   578
val cancel_factors =
wenzelm@32155
   579
  map (Arith_Data.prep_simproc @{theory})
wenzelm@23164
   580
   [("ring_eq_cancel_factor",
haftmann@30931
   581
     ["(l::'a::idom) * m = n",
haftmann@30931
   582
      "(l::'a::idom) = m * n"],
nipkow@30649
   583
     K EqCancelFactor.proc),
haftmann@35043
   584
    ("linordered_ring_le_cancel_factor",
haftmann@35028
   585
     ["(l::'a::linordered_ring) * m <= n",
haftmann@35028
   586
      "(l::'a::linordered_ring) <= m * n"],
nipkow@30649
   587
     K LeCancelFactor.proc),
haftmann@35043
   588
    ("linordered_ring_less_cancel_factor",
haftmann@35028
   589
     ["(l::'a::linordered_ring) * m < n",
haftmann@35028
   590
      "(l::'a::linordered_ring) < m * n"],
nipkow@30649
   591
     K LessCancelFactor.proc),
wenzelm@23164
   592
    ("int_div_cancel_factor",
haftmann@30931
   593
     ["((l::'a::semiring_div) * m) div n", "(l::'a::semiring_div) div (m * n)"],
haftmann@30931
   594
     K DivCancelFactor.proc),
nipkow@24395
   595
    ("int_mod_cancel_factor",
haftmann@30931
   596
     ["((l::'a::semiring_div) * m) mod n", "(l::'a::semiring_div) mod (m * n)"],
haftmann@30931
   597
     K ModCancelFactor.proc),
huffman@29981
   598
    ("dvd_cancel_factor",
huffman@29981
   599
     ["((l::'a::idom) * m) dvd n", "(l::'a::idom) dvd (m * n)"],
haftmann@30931
   600
     K DvdCancelFactor.proc),
wenzelm@23164
   601
    ("divide_cancel_factor",
haftmann@36409
   602
     ["((l::'a::field_inverse_zero) * m) / n",
haftmann@36409
   603
      "(l::'a::field_inverse_zero) / (m * n)"],
wenzelm@23164
   604
     K DivideCancelFactor.proc)];
wenzelm@23164
   605
haftmann@36751
   606
local
haftmann@36751
   607
 val zr = @{cpat "0"}
haftmann@36751
   608
 val zT = ctyp_of_term zr
haftmann@36751
   609
 val geq = @{cpat "op ="}
haftmann@36751
   610
 val eqT = Thm.dest_ctyp (ctyp_of_term geq) |> hd
haftmann@36751
   611
 val add_frac_eq = mk_meta_eq @{thm "add_frac_eq"}
haftmann@36751
   612
 val add_frac_num = mk_meta_eq @{thm "add_frac_num"}
haftmann@36751
   613
 val add_num_frac = mk_meta_eq @{thm "add_num_frac"}
haftmann@36751
   614
haftmann@36751
   615
 fun prove_nz ss T t =
haftmann@36751
   616
    let
wenzelm@36945
   617
      val z = Thm.instantiate_cterm ([(zT,T)],[]) zr
wenzelm@36945
   618
      val eq = Thm.instantiate_cterm ([(eqT,T)],[]) geq
haftmann@36751
   619
      val th = Simplifier.rewrite (ss addsimps @{thms simp_thms})
haftmann@36751
   620
           (Thm.capply @{cterm "Trueprop"} (Thm.capply @{cterm "Not"}
haftmann@36751
   621
                  (Thm.capply (Thm.capply eq t) z)))
wenzelm@36945
   622
    in Thm.equal_elim (Thm.symmetric th) TrueI
haftmann@36751
   623
    end
haftmann@36751
   624
haftmann@36751
   625
 fun proc phi ss ct =
haftmann@36751
   626
  let
haftmann@36751
   627
    val ((x,y),(w,z)) =
haftmann@36751
   628
         (Thm.dest_binop #> (fn (a,b) => (Thm.dest_binop a, Thm.dest_binop b))) ct
haftmann@36751
   629
    val _ = map (HOLogic.dest_number o term_of) [x,y,z,w]
haftmann@36751
   630
    val T = ctyp_of_term x
haftmann@36751
   631
    val [y_nz, z_nz] = map (prove_nz ss T) [y, z]
haftmann@36751
   632
    val th = instantiate' [SOME T] (map SOME [y,z,x,w]) add_frac_eq
wenzelm@36945
   633
  in SOME (Thm.implies_elim (Thm.implies_elim th y_nz) z_nz)
haftmann@36751
   634
  end
haftmann@36751
   635
  handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
haftmann@36751
   636
haftmann@36751
   637
 fun proc2 phi ss ct =
haftmann@36751
   638
  let
haftmann@36751
   639
    val (l,r) = Thm.dest_binop ct
haftmann@36751
   640
    val T = ctyp_of_term l
haftmann@36751
   641
  in (case (term_of l, term_of r) of
haftmann@36751
   642
      (Const(@{const_name Rings.divide},_)$_$_, _) =>
haftmann@36751
   643
        let val (x,y) = Thm.dest_binop l val z = r
haftmann@36751
   644
            val _ = map (HOLogic.dest_number o term_of) [x,y,z]
haftmann@36751
   645
            val ynz = prove_nz ss T y
wenzelm@36945
   646
        in SOME (Thm.implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz)
haftmann@36751
   647
        end
haftmann@36751
   648
     | (_, Const (@{const_name Rings.divide},_)$_$_) =>
haftmann@36751
   649
        let val (x,y) = Thm.dest_binop r val z = l
haftmann@36751
   650
            val _ = map (HOLogic.dest_number o term_of) [x,y,z]
haftmann@36751
   651
            val ynz = prove_nz ss T y
wenzelm@36945
   652
        in SOME (Thm.implies_elim (instantiate' [SOME T] (map SOME [y,z,x]) add_num_frac) ynz)
haftmann@36751
   653
        end
haftmann@36751
   654
     | _ => NONE)
haftmann@36751
   655
  end
haftmann@36751
   656
  handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
haftmann@36751
   657
haftmann@36751
   658
 fun is_number (Const(@{const_name Rings.divide},_)$a$b) = is_number a andalso is_number b
haftmann@36751
   659
   | is_number t = can HOLogic.dest_number t
haftmann@36751
   660
haftmann@36751
   661
 val is_number = is_number o term_of
haftmann@36751
   662
haftmann@36751
   663
 fun proc3 phi ss ct =
haftmann@36751
   664
  (case term_of ct of
haftmann@36751
   665
    Const(@{const_name Orderings.less},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
haftmann@36751
   666
      let
haftmann@36751
   667
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@36751
   668
        val _ = map is_number [a,b,c]
haftmann@36751
   669
        val T = ctyp_of_term c
haftmann@36751
   670
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"}
haftmann@36751
   671
      in SOME (mk_meta_eq th) end
haftmann@36751
   672
  | Const(@{const_name Orderings.less_eq},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
haftmann@36751
   673
      let
haftmann@36751
   674
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@36751
   675
        val _ = map is_number [a,b,c]
haftmann@36751
   676
        val T = ctyp_of_term c
haftmann@36751
   677
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"}
haftmann@36751
   678
      in SOME (mk_meta_eq th) end
haftmann@36751
   679
  | Const("op =",_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
haftmann@36751
   680
      let
haftmann@36751
   681
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@36751
   682
        val _ = map is_number [a,b,c]
haftmann@36751
   683
        val T = ctyp_of_term c
haftmann@36751
   684
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"}
haftmann@36751
   685
      in SOME (mk_meta_eq th) end
haftmann@36751
   686
  | Const(@{const_name Orderings.less},_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
haftmann@36751
   687
    let
haftmann@36751
   688
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@36751
   689
        val _ = map is_number [a,b,c]
haftmann@36751
   690
        val T = ctyp_of_term c
haftmann@36751
   691
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"}
haftmann@36751
   692
      in SOME (mk_meta_eq th) end
haftmann@36751
   693
  | Const(@{const_name Orderings.less_eq},_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
haftmann@36751
   694
    let
haftmann@36751
   695
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@36751
   696
        val _ = map is_number [a,b,c]
haftmann@36751
   697
        val T = ctyp_of_term c
haftmann@36751
   698
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"}
haftmann@36751
   699
      in SOME (mk_meta_eq th) end
haftmann@36751
   700
  | Const("op =",_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
haftmann@36751
   701
    let
haftmann@36751
   702
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@36751
   703
        val _ = map is_number [a,b,c]
haftmann@36751
   704
        val T = ctyp_of_term c
haftmann@36751
   705
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "eq_divide_eq"}
haftmann@36751
   706
      in SOME (mk_meta_eq th) end
haftmann@36751
   707
  | _ => NONE)
haftmann@36751
   708
  handle TERM _ => NONE | CTERM _ => NONE | THM _ => NONE
haftmann@36751
   709
haftmann@36751
   710
val add_frac_frac_simproc =
haftmann@36751
   711
       make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + (?w::?'a::field)/?z"}],
haftmann@36751
   712
                     name = "add_frac_frac_simproc",
haftmann@36751
   713
                     proc = proc, identifier = []}
haftmann@36751
   714
haftmann@36751
   715
val add_frac_num_simproc =
haftmann@36751
   716
       make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + ?z"}, @{cpat "?z + (?x::?'a::field)/?y"}],
haftmann@36751
   717
                     name = "add_frac_num_simproc",
haftmann@36751
   718
                     proc = proc2, identifier = []}
haftmann@36751
   719
haftmann@36751
   720
val ord_frac_simproc =
haftmann@36751
   721
  make_simproc
haftmann@36751
   722
    {lhss = [@{cpat "(?a::(?'a::{field, ord}))/?b < ?c"},
haftmann@36751
   723
             @{cpat "(?a::(?'a::{field, ord}))/?b <= ?c"},
haftmann@36751
   724
             @{cpat "?c < (?a::(?'a::{field, ord}))/?b"},
haftmann@36751
   725
             @{cpat "?c <= (?a::(?'a::{field, ord}))/?b"},
haftmann@36751
   726
             @{cpat "?c = ((?a::(?'a::{field, ord}))/?b)"},
haftmann@36751
   727
             @{cpat "((?a::(?'a::{field, ord}))/ ?b) = ?c"}],
haftmann@36751
   728
             name = "ord_frac_simproc", proc = proc3, identifier = []}
haftmann@36751
   729
haftmann@36751
   730
val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"},
haftmann@36751
   731
           @{thm "divide_Numeral1"},
haftmann@36751
   732
           @{thm "divide_zero"}, @{thm "divide_Numeral0"},
haftmann@36751
   733
           @{thm "divide_divide_eq_left"}, 
haftmann@36751
   734
           @{thm "times_divide_eq_left"}, @{thm "times_divide_eq_right"},
haftmann@36751
   735
           @{thm "times_divide_times_eq"},
haftmann@36751
   736
           @{thm "divide_divide_eq_right"},
haftmann@37887
   737
           @{thm "diff_minus"}, @{thm "minus_divide_left"},
haftmann@36751
   738
           @{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym,
haftmann@36751
   739
           @{thm field_divide_inverse} RS sym, @{thm inverse_divide}, 
haftmann@36751
   740
           Conv.fconv_rule (Conv.arg_conv (Conv.arg1_conv (Conv.rewr_conv (mk_meta_eq @{thm mult_commute}))))   
haftmann@36751
   741
           (@{thm field_divide_inverse} RS sym)]
haftmann@36751
   742
haftmann@36751
   743
in
haftmann@36751
   744
haftmann@36751
   745
val field_comp_conv = (Simplifier.rewrite
haftmann@36751
   746
(HOL_basic_ss addsimps @{thms "semiring_norm"}
haftmann@36751
   747
              addsimps ths addsimps @{thms simp_thms}
haftmann@36751
   748
              addsimprocs field_cancel_numeral_factors
haftmann@36751
   749
               addsimprocs [add_frac_frac_simproc, add_frac_num_simproc,
haftmann@36751
   750
                            ord_frac_simproc]
haftmann@36751
   751
                addcongs [@{thm "if_weak_cong"}]))
haftmann@36751
   752
then_conv (Simplifier.rewrite (HOL_basic_ss addsimps
haftmann@36751
   753
  [@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)}))
haftmann@36751
   754
haftmann@36751
   755
end
haftmann@36751
   756
wenzelm@23164
   757
end;
wenzelm@23164
   758
haftmann@31068
   759
Addsimprocs Numeral_Simprocs.cancel_numerals;
haftmann@31068
   760
Addsimprocs [Numeral_Simprocs.combine_numerals];
haftmann@31068
   761
Addsimprocs [Numeral_Simprocs.field_combine_numerals];
haftmann@31068
   762
Addsimprocs [Numeral_Simprocs.assoc_fold_simproc];
haftmann@31068
   763
haftmann@31068
   764
(*examples:
haftmann@31068
   765
print_depth 22;
haftmann@31068
   766
set timing;
haftmann@31068
   767
set trace_simp;
haftmann@31068
   768
fun test s = (Goal s, by (Simp_tac 1));
haftmann@31068
   769
haftmann@31068
   770
test "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)";
haftmann@31068
   771
haftmann@31068
   772
test "2*u = (u::int)";
haftmann@31068
   773
test "(i + j + 12 + (k::int)) - 15 = y";
haftmann@31068
   774
test "(i + j + 12 + (k::int)) - 5 = y";
haftmann@31068
   775
haftmann@31068
   776
test "y - b < (b::int)";
haftmann@31068
   777
test "y - (3*b + c) < (b::int) - 2*c";
haftmann@31068
   778
haftmann@31068
   779
test "(2*x - (u*v) + y) - v*3*u = (w::int)";
haftmann@31068
   780
test "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)";
haftmann@31068
   781
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)";
haftmann@31068
   782
test "u*v - (x*u*v + (u*v)*4 + y) = (w::int)";
haftmann@31068
   783
haftmann@31068
   784
test "(i + j + 12 + (k::int)) = u + 15 + y";
haftmann@31068
   785
test "(i + j*2 + 12 + (k::int)) = j + 5 + y";
haftmann@31068
   786
haftmann@31068
   787
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)";
haftmann@31068
   788
haftmann@31068
   789
test "a + -(b+c) + b = (d::int)";
haftmann@31068
   790
test "a + -(b+c) - b = (d::int)";
haftmann@31068
   791
haftmann@31068
   792
(*negative numerals*)
haftmann@31068
   793
test "(i + j + -2 + (k::int)) - (u + 5 + y) = zz";
haftmann@31068
   794
test "(i + j + -3 + (k::int)) < u + 5 + y";
haftmann@31068
   795
test "(i + j + 3 + (k::int)) < u + -6 + y";
haftmann@31068
   796
test "(i + j + -12 + (k::int)) - 15 = y";
haftmann@31068
   797
test "(i + j + 12 + (k::int)) - -15 = y";
haftmann@31068
   798
test "(i + j + -12 + (k::int)) - -15 = y";
haftmann@31068
   799
*)
haftmann@31068
   800
haftmann@31068
   801
Addsimprocs Numeral_Simprocs.cancel_numeral_factors;
haftmann@31068
   802
haftmann@31068
   803
(*examples:
haftmann@31068
   804
print_depth 22;
haftmann@31068
   805
set timing;
haftmann@31068
   806
set trace_simp;
haftmann@31068
   807
fun test s = (Goal s; by (Simp_tac 1));
haftmann@31068
   808
haftmann@31068
   809
test "9*x = 12 * (y::int)";
haftmann@31068
   810
test "(9*x) div (12 * (y::int)) = z";
haftmann@31068
   811
test "9*x < 12 * (y::int)";
haftmann@31068
   812
test "9*x <= 12 * (y::int)";
haftmann@31068
   813
haftmann@31068
   814
test "-99*x = 132 * (y::int)";
haftmann@31068
   815
test "(-99*x) div (132 * (y::int)) = z";
haftmann@31068
   816
test "-99*x < 132 * (y::int)";
haftmann@31068
   817
test "-99*x <= 132 * (y::int)";
haftmann@31068
   818
haftmann@31068
   819
test "999*x = -396 * (y::int)";
haftmann@31068
   820
test "(999*x) div (-396 * (y::int)) = z";
haftmann@31068
   821
test "999*x < -396 * (y::int)";
haftmann@31068
   822
test "999*x <= -396 * (y::int)";
haftmann@31068
   823
haftmann@31068
   824
test "-99*x = -81 * (y::int)";
haftmann@31068
   825
test "(-99*x) div (-81 * (y::int)) = z";
haftmann@31068
   826
test "-99*x <= -81 * (y::int)";
haftmann@31068
   827
test "-99*x < -81 * (y::int)";
haftmann@31068
   828
haftmann@31068
   829
test "-2 * x = -1 * (y::int)";
haftmann@31068
   830
test "-2 * x = -(y::int)";
haftmann@31068
   831
test "(-2 * x) div (-1 * (y::int)) = z";
haftmann@31068
   832
test "-2 * x < -(y::int)";
haftmann@31068
   833
test "-2 * x <= -1 * (y::int)";
haftmann@31068
   834
test "-x < -23 * (y::int)";
haftmann@31068
   835
test "-x <= -23 * (y::int)";
haftmann@31068
   836
*)
haftmann@31068
   837
haftmann@31068
   838
(*And the same examples for fields such as rat or real:
haftmann@31068
   839
test "0 <= (y::rat) * -2";
haftmann@31068
   840
test "9*x = 12 * (y::rat)";
haftmann@31068
   841
test "(9*x) / (12 * (y::rat)) = z";
haftmann@31068
   842
test "9*x < 12 * (y::rat)";
haftmann@31068
   843
test "9*x <= 12 * (y::rat)";
haftmann@31068
   844
haftmann@31068
   845
test "-99*x = 132 * (y::rat)";
haftmann@31068
   846
test "(-99*x) / (132 * (y::rat)) = z";
haftmann@31068
   847
test "-99*x < 132 * (y::rat)";
haftmann@31068
   848
test "-99*x <= 132 * (y::rat)";
haftmann@31068
   849
haftmann@31068
   850
test "999*x = -396 * (y::rat)";
haftmann@31068
   851
test "(999*x) / (-396 * (y::rat)) = z";
haftmann@31068
   852
test "999*x < -396 * (y::rat)";
haftmann@31068
   853
test "999*x <= -396 * (y::rat)";
haftmann@31068
   854
haftmann@31068
   855
test  "(- ((2::rat) * x) <= 2 * y)";
haftmann@31068
   856
test "-99*x = -81 * (y::rat)";
haftmann@31068
   857
test "(-99*x) / (-81 * (y::rat)) = z";
haftmann@31068
   858
test "-99*x <= -81 * (y::rat)";
haftmann@31068
   859
test "-99*x < -81 * (y::rat)";
haftmann@31068
   860
haftmann@31068
   861
test "-2 * x = -1 * (y::rat)";
haftmann@31068
   862
test "-2 * x = -(y::rat)";
haftmann@31068
   863
test "(-2 * x) / (-1 * (y::rat)) = z";
haftmann@31068
   864
test "-2 * x < -(y::rat)";
haftmann@31068
   865
test "-2 * x <= -1 * (y::rat)";
haftmann@31068
   866
test "-x < -23 * (y::rat)";
haftmann@31068
   867
test "-x <= -23 * (y::rat)";
haftmann@31068
   868
*)
haftmann@31068
   869
haftmann@31068
   870
Addsimprocs Numeral_Simprocs.cancel_factors;
wenzelm@23164
   871
wenzelm@23164
   872
wenzelm@23164
   873
(*examples:
wenzelm@23164
   874
print_depth 22;
wenzelm@23164
   875
set timing;
wenzelm@23164
   876
set trace_simp;
wenzelm@23164
   877
fun test s = (Goal s; by (Asm_simp_tac 1));
wenzelm@23164
   878
wenzelm@23164
   879
test "x*k = k*(y::int)";
wenzelm@23164
   880
test "k = k*(y::int)";
wenzelm@23164
   881
test "a*(b*c) = (b::int)";
wenzelm@23164
   882
test "a*(b*c) = d*(b::int)*(x*a)";
wenzelm@23164
   883
wenzelm@23164
   884
test "(x*k) div (k*(y::int)) = (uu::int)";
wenzelm@23164
   885
test "(k) div (k*(y::int)) = (uu::int)";
wenzelm@23164
   886
test "(a*(b*c)) div ((b::int)) = (uu::int)";
wenzelm@23164
   887
test "(a*(b*c)) div (d*(b::int)*(x*a)) = (uu::int)";
wenzelm@23164
   888
*)
wenzelm@23164
   889
wenzelm@23164
   890
(*And the same examples for fields such as rat or real:
wenzelm@23164
   891
print_depth 22;
wenzelm@23164
   892
set timing;
wenzelm@23164
   893
set trace_simp;
wenzelm@23164
   894
fun test s = (Goal s; by (Asm_simp_tac 1));
wenzelm@23164
   895
wenzelm@23164
   896
test "x*k = k*(y::rat)";
wenzelm@23164
   897
test "k = k*(y::rat)";
wenzelm@23164
   898
test "a*(b*c) = (b::rat)";
wenzelm@23164
   899
test "a*(b*c) = d*(b::rat)*(x*a)";
wenzelm@23164
   900
wenzelm@23164
   901
wenzelm@23164
   902
test "(x*k) / (k*(y::rat)) = (uu::rat)";
wenzelm@23164
   903
test "(k) / (k*(y::rat)) = (uu::rat)";
wenzelm@23164
   904
test "(a*(b*c)) / ((b::rat)) = (uu::rat)";
wenzelm@23164
   905
test "(a*(b*c)) / (d*(b::rat)*(x*a)) = (uu::rat)";
wenzelm@23164
   906
wenzelm@23164
   907
(*FIXME: what do we do about this?*)
wenzelm@23164
   908
test "a*(b*c)/(y*z) = d*(b::rat)*(x*a)/z";
wenzelm@23164
   909
*)