src/HOL/HOL.thy
author berghofe
Thu Oct 10 14:21:49 2002 +0200 (2002-10-10)
changeset 13638 2b234b079245
parent 13598 8bc77b17f59f
child 13723 c7d104550205
permissions -rw-r--r--
Added choice_eq.
clasohm@923
     1
(*  Title:      HOL/HOL.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@11750
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
wenzelm@12386
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
wenzelm@11750
     5
*)
clasohm@923
     6
wenzelm@11750
     7
header {* The basis of Higher-Order Logic *}
clasohm@923
     8
wenzelm@7357
     9
theory HOL = CPure
paulson@11451
    10
files ("HOL_lemmas.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML"):
clasohm@923
    11
wenzelm@2260
    12
wenzelm@11750
    13
subsection {* Primitive logic *}
wenzelm@11750
    14
wenzelm@11750
    15
subsubsection {* Core syntax *}
wenzelm@2260
    16
wenzelm@12338
    17
classes type < logic
wenzelm@12338
    18
defaultsort type
wenzelm@3947
    19
wenzelm@12338
    20
global
clasohm@923
    21
wenzelm@7357
    22
typedecl bool
clasohm@923
    23
clasohm@923
    24
arities
wenzelm@12338
    25
  bool :: type
wenzelm@12338
    26
  fun :: (type, type) type
clasohm@923
    27
wenzelm@11750
    28
judgment
wenzelm@11750
    29
  Trueprop      :: "bool => prop"                   ("(_)" 5)
clasohm@923
    30
wenzelm@11750
    31
consts
wenzelm@7357
    32
  Not           :: "bool => bool"                   ("~ _" [40] 40)
wenzelm@7357
    33
  True          :: bool
wenzelm@7357
    34
  False         :: bool
wenzelm@7357
    35
  If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
wenzelm@3947
    36
  arbitrary     :: 'a
clasohm@923
    37
wenzelm@11432
    38
  The           :: "('a => bool) => 'a"
wenzelm@7357
    39
  All           :: "('a => bool) => bool"           (binder "ALL " 10)
wenzelm@7357
    40
  Ex            :: "('a => bool) => bool"           (binder "EX " 10)
wenzelm@7357
    41
  Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
wenzelm@7357
    42
  Let           :: "['a, 'a => 'b] => 'b"
clasohm@923
    43
wenzelm@7357
    44
  "="           :: "['a, 'a] => bool"               (infixl 50)
wenzelm@7357
    45
  &             :: "[bool, bool] => bool"           (infixr 35)
wenzelm@7357
    46
  "|"           :: "[bool, bool] => bool"           (infixr 30)
wenzelm@7357
    47
  -->           :: "[bool, bool] => bool"           (infixr 25)
clasohm@923
    48
wenzelm@10432
    49
local
wenzelm@10432
    50
wenzelm@2260
    51
wenzelm@11750
    52
subsubsection {* Additional concrete syntax *}
wenzelm@2260
    53
wenzelm@4868
    54
nonterminals
clasohm@923
    55
  letbinds  letbind
clasohm@923
    56
  case_syn  cases_syn
clasohm@923
    57
clasohm@923
    58
syntax
wenzelm@12650
    59
  "_not_equal"  :: "['a, 'a] => bool"                    (infixl "~=" 50)
wenzelm@11432
    60
  "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
clasohm@923
    61
wenzelm@7357
    62
  "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
wenzelm@7357
    63
  ""            :: "letbind => letbinds"                 ("_")
wenzelm@7357
    64
  "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
wenzelm@7357
    65
  "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
clasohm@923
    66
wenzelm@9060
    67
  "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
wenzelm@9060
    68
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
wenzelm@7357
    69
  ""            :: "case_syn => cases_syn"               ("_")
wenzelm@9060
    70
  "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
clasohm@923
    71
clasohm@923
    72
translations
wenzelm@7238
    73
  "x ~= y"                == "~ (x = y)"
wenzelm@11432
    74
  "THE x. P"              == "The (%x. P)"
clasohm@923
    75
  "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
nipkow@1114
    76
  "let x = a in e"        == "Let a (%x. e)"
clasohm@923
    77
wenzelm@12633
    78
syntax (output)
wenzelm@11687
    79
  "="           :: "['a, 'a] => bool"                    (infix 50)
wenzelm@12650
    80
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "~=" 50)
wenzelm@2260
    81
wenzelm@12114
    82
syntax (xsymbols)
wenzelm@11687
    83
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
wenzelm@11687
    84
  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
wenzelm@11687
    85
  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
wenzelm@12114
    86
  "op -->"      :: "[bool, bool] => bool"                (infixr "\<longrightarrow>" 25)
wenzelm@12650
    87
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@11687
    88
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
wenzelm@11687
    89
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
wenzelm@11687
    90
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
wenzelm@11687
    91
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
wenzelm@9060
    92
(*"_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ \\<orelse> _")*)
wenzelm@2372
    93
wenzelm@12114
    94
syntax (xsymbols output)
wenzelm@12650
    95
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@3820
    96
wenzelm@6340
    97
syntax (HTML output)
wenzelm@11687
    98
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
wenzelm@6340
    99
wenzelm@7238
   100
syntax (HOL)
wenzelm@7357
   101
  "ALL "        :: "[idts, bool] => bool"                ("(3! _./ _)" [0, 10] 10)
wenzelm@7357
   102
  "EX "         :: "[idts, bool] => bool"                ("(3? _./ _)" [0, 10] 10)
wenzelm@7357
   103
  "EX! "        :: "[idts, bool] => bool"                ("(3?! _./ _)" [0, 10] 10)
wenzelm@7238
   104
wenzelm@7238
   105
wenzelm@11750
   106
subsubsection {* Axioms and basic definitions *}
wenzelm@2260
   107
wenzelm@7357
   108
axioms
wenzelm@7357
   109
  eq_reflection: "(x=y) ==> (x==y)"
clasohm@923
   110
wenzelm@7357
   111
  refl:         "t = (t::'a)"
wenzelm@7357
   112
  subst:        "[| s = t; P(s) |] ==> P(t::'a)"
paulson@6289
   113
wenzelm@7357
   114
  ext:          "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
wenzelm@11750
   115
    -- {* Extensionality is built into the meta-logic, and this rule expresses *}
wenzelm@11750
   116
    -- {* a related property.  It is an eta-expanded version of the traditional *}
wenzelm@11750
   117
    -- {* rule, and similar to the ABS rule of HOL *}
paulson@6289
   118
wenzelm@11432
   119
  the_eq_trivial: "(THE x. x = a) = (a::'a)"
clasohm@923
   120
wenzelm@7357
   121
  impI:         "(P ==> Q) ==> P-->Q"
wenzelm@7357
   122
  mp:           "[| P-->Q;  P |] ==> Q"
clasohm@923
   123
clasohm@923
   124
defs
wenzelm@7357
   125
  True_def:     "True      == ((%x::bool. x) = (%x. x))"
wenzelm@7357
   126
  All_def:      "All(P)    == (P = (%x. True))"
paulson@11451
   127
  Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
wenzelm@7357
   128
  False_def:    "False     == (!P. P)"
wenzelm@7357
   129
  not_def:      "~ P       == P-->False"
wenzelm@7357
   130
  and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
wenzelm@7357
   131
  or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
wenzelm@7357
   132
  Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
clasohm@923
   133
wenzelm@7357
   134
axioms
wenzelm@7357
   135
  iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
wenzelm@7357
   136
  True_or_False:  "(P=True) | (P=False)"
clasohm@923
   137
clasohm@923
   138
defs
wenzelm@7357
   139
  Let_def:      "Let s f == f(s)"
paulson@11451
   140
  if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
wenzelm@5069
   141
paulson@11451
   142
  arbitrary_def:  "False ==> arbitrary == (THE x. False)"
wenzelm@11750
   143
    -- {* @{term arbitrary} is completely unspecified, but is made to appear as a
wenzelm@11750
   144
    definition syntactically *}
clasohm@923
   145
nipkow@3320
   146
wenzelm@11750
   147
subsubsection {* Generic algebraic operations *}
wenzelm@4868
   148
wenzelm@12338
   149
axclass zero < type
wenzelm@12338
   150
axclass one < type
wenzelm@12338
   151
axclass plus < type
wenzelm@12338
   152
axclass minus < type
wenzelm@12338
   153
axclass times < type
wenzelm@12338
   154
axclass inverse < type
wenzelm@11750
   155
wenzelm@11750
   156
global
wenzelm@11750
   157
wenzelm@11750
   158
consts
wenzelm@11750
   159
  "0"           :: "'a::zero"                       ("0")
wenzelm@11750
   160
  "1"           :: "'a::one"                        ("1")
wenzelm@11750
   161
  "+"           :: "['a::plus, 'a]  => 'a"          (infixl 65)
wenzelm@11750
   162
  -             :: "['a::minus, 'a] => 'a"          (infixl 65)
wenzelm@11750
   163
  uminus        :: "['a::minus] => 'a"              ("- _" [81] 80)
wenzelm@11750
   164
  *             :: "['a::times, 'a] => 'a"          (infixl 70)
wenzelm@11750
   165
wenzelm@13456
   166
syntax
wenzelm@13456
   167
  "_index1"  :: index    ("\<^sub>1")
wenzelm@13456
   168
translations
wenzelm@13456
   169
  (index) "\<^sub>1" == "_index 1"
wenzelm@13456
   170
wenzelm@11750
   171
local
wenzelm@11750
   172
wenzelm@11750
   173
typed_print_translation {*
wenzelm@11750
   174
  let
wenzelm@11750
   175
    fun tr' c = (c, fn show_sorts => fn T => fn ts =>
wenzelm@11750
   176
      if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
wenzelm@11750
   177
      else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
wenzelm@11750
   178
  in [tr' "0", tr' "1"] end;
wenzelm@11750
   179
*} -- {* show types that are presumably too general *}
wenzelm@11750
   180
wenzelm@11750
   181
wenzelm@11750
   182
consts
wenzelm@11750
   183
  abs           :: "'a::minus => 'a"
wenzelm@11750
   184
  inverse       :: "'a::inverse => 'a"
wenzelm@11750
   185
  divide        :: "['a::inverse, 'a] => 'a"        (infixl "'/" 70)
wenzelm@11750
   186
wenzelm@11750
   187
syntax (xsymbols)
wenzelm@11750
   188
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
wenzelm@11750
   189
syntax (HTML output)
wenzelm@11750
   190
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
wenzelm@11750
   191
wenzelm@11750
   192
axclass plus_ac0 < plus, zero
wenzelm@11750
   193
  commute: "x + y = y + x"
wenzelm@11750
   194
  assoc:   "(x + y) + z = x + (y + z)"
wenzelm@11750
   195
  zero:    "0 + x = x"
wenzelm@11750
   196
wenzelm@11750
   197
wenzelm@11750
   198
subsection {* Theory and package setup *}
wenzelm@11750
   199
wenzelm@11750
   200
subsubsection {* Basic lemmas *}
wenzelm@4868
   201
nipkow@9736
   202
use "HOL_lemmas.ML"
wenzelm@11687
   203
theorems case_split = case_split_thm [case_names True False]
wenzelm@9869
   204
wenzelm@12386
   205
wenzelm@12386
   206
subsubsection {* Intuitionistic Reasoning *}
wenzelm@12386
   207
wenzelm@12386
   208
lemma impE':
wenzelm@12937
   209
  assumes 1: "P --> Q"
wenzelm@12937
   210
    and 2: "Q ==> R"
wenzelm@12937
   211
    and 3: "P --> Q ==> P"
wenzelm@12937
   212
  shows R
wenzelm@12386
   213
proof -
wenzelm@12386
   214
  from 3 and 1 have P .
wenzelm@12386
   215
  with 1 have Q by (rule impE)
wenzelm@12386
   216
  with 2 show R .
wenzelm@12386
   217
qed
wenzelm@12386
   218
wenzelm@12386
   219
lemma allE':
wenzelm@12937
   220
  assumes 1: "ALL x. P x"
wenzelm@12937
   221
    and 2: "P x ==> ALL x. P x ==> Q"
wenzelm@12937
   222
  shows Q
wenzelm@12386
   223
proof -
wenzelm@12386
   224
  from 1 have "P x" by (rule spec)
wenzelm@12386
   225
  from this and 1 show Q by (rule 2)
wenzelm@12386
   226
qed
wenzelm@12386
   227
wenzelm@12937
   228
lemma notE':
wenzelm@12937
   229
  assumes 1: "~ P"
wenzelm@12937
   230
    and 2: "~ P ==> P"
wenzelm@12937
   231
  shows R
wenzelm@12386
   232
proof -
wenzelm@12386
   233
  from 2 and 1 have P .
wenzelm@12386
   234
  with 1 show R by (rule notE)
wenzelm@12386
   235
qed
wenzelm@12386
   236
wenzelm@12386
   237
lemmas [CPure.elim!] = disjE iffE FalseE conjE exE
wenzelm@12386
   238
  and [CPure.intro!] = iffI conjI impI TrueI notI allI refl
wenzelm@12386
   239
  and [CPure.elim 2] = allE notE' impE'
wenzelm@12386
   240
  and [CPure.intro] = exI disjI2 disjI1
wenzelm@12386
   241
wenzelm@12386
   242
lemmas [trans] = trans
wenzelm@12386
   243
  and [sym] = sym not_sym
wenzelm@12386
   244
  and [CPure.elim?] = iffD1 iffD2 impE
wenzelm@11750
   245
wenzelm@11438
   246
wenzelm@11750
   247
subsubsection {* Atomizing meta-level connectives *}
wenzelm@11750
   248
wenzelm@11750
   249
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
wenzelm@12003
   250
proof
wenzelm@9488
   251
  assume "!!x. P x"
wenzelm@10383
   252
  show "ALL x. P x" by (rule allI)
wenzelm@9488
   253
next
wenzelm@9488
   254
  assume "ALL x. P x"
wenzelm@10383
   255
  thus "!!x. P x" by (rule allE)
wenzelm@9488
   256
qed
wenzelm@9488
   257
wenzelm@11750
   258
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
wenzelm@12003
   259
proof
wenzelm@9488
   260
  assume r: "A ==> B"
wenzelm@10383
   261
  show "A --> B" by (rule impI) (rule r)
wenzelm@9488
   262
next
wenzelm@9488
   263
  assume "A --> B" and A
wenzelm@10383
   264
  thus B by (rule mp)
wenzelm@9488
   265
qed
wenzelm@9488
   266
wenzelm@11750
   267
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
wenzelm@12003
   268
proof
wenzelm@10432
   269
  assume "x == y"
wenzelm@10432
   270
  show "x = y" by (unfold prems) (rule refl)
wenzelm@10432
   271
next
wenzelm@10432
   272
  assume "x = y"
wenzelm@10432
   273
  thus "x == y" by (rule eq_reflection)
wenzelm@10432
   274
qed
wenzelm@10432
   275
wenzelm@12023
   276
lemma atomize_conj [atomize]:
wenzelm@12023
   277
  "(!!C. (A ==> B ==> PROP C) ==> PROP C) == Trueprop (A & B)"
wenzelm@12003
   278
proof
wenzelm@11953
   279
  assume "!!C. (A ==> B ==> PROP C) ==> PROP C"
wenzelm@11953
   280
  show "A & B" by (rule conjI)
wenzelm@11953
   281
next
wenzelm@11953
   282
  fix C
wenzelm@11953
   283
  assume "A & B"
wenzelm@11953
   284
  assume "A ==> B ==> PROP C"
wenzelm@11953
   285
  thus "PROP C"
wenzelm@11953
   286
  proof this
wenzelm@11953
   287
    show A by (rule conjunct1)
wenzelm@11953
   288
    show B by (rule conjunct2)
wenzelm@11953
   289
  qed
wenzelm@11953
   290
qed
wenzelm@11953
   291
wenzelm@12386
   292
lemmas [symmetric, rulify] = atomize_all atomize_imp
wenzelm@12386
   293
wenzelm@11750
   294
wenzelm@11750
   295
subsubsection {* Classical Reasoner setup *}
wenzelm@9529
   296
wenzelm@10383
   297
use "cladata.ML"
wenzelm@10383
   298
setup hypsubst_setup
wenzelm@11977
   299
wenzelm@12386
   300
ML_setup {*
wenzelm@12386
   301
  Context.>> (ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac));
wenzelm@12386
   302
*}
wenzelm@11977
   303
wenzelm@10383
   304
setup Classical.setup
wenzelm@10383
   305
setup clasetup
wenzelm@10383
   306
wenzelm@12386
   307
lemmas [intro?] = ext
wenzelm@12386
   308
  and [elim?] = ex1_implies_ex
wenzelm@11977
   309
wenzelm@9869
   310
use "blastdata.ML"
wenzelm@9869
   311
setup Blast.setup
wenzelm@4868
   312
wenzelm@11750
   313
wenzelm@11750
   314
subsubsection {* Simplifier setup *}
wenzelm@11750
   315
wenzelm@12281
   316
lemma meta_eq_to_obj_eq: "x == y ==> x = y"
wenzelm@12281
   317
proof -
wenzelm@12281
   318
  assume r: "x == y"
wenzelm@12281
   319
  show "x = y" by (unfold r) (rule refl)
wenzelm@12281
   320
qed
wenzelm@12281
   321
wenzelm@12281
   322
lemma eta_contract_eq: "(%s. f s) = f" ..
wenzelm@12281
   323
wenzelm@12281
   324
lemma simp_thms:
wenzelm@12937
   325
  shows not_not: "(~ ~ P) = P"
wenzelm@12937
   326
  and
berghofe@12436
   327
    "(P ~= Q) = (P = (~Q))"
berghofe@12436
   328
    "(P | ~P) = True"    "(~P | P) = True"
berghofe@12436
   329
    "((~P) = (~Q)) = (P=Q)"
wenzelm@12281
   330
    "(x = x) = True"
wenzelm@12281
   331
    "(~True) = False"  "(~False) = True"
berghofe@12436
   332
    "(~P) ~= P"  "P ~= (~P)"
wenzelm@12281
   333
    "(True=P) = P"  "(P=True) = P"  "(False=P) = (~P)"  "(P=False) = (~P)"
wenzelm@12281
   334
    "(True --> P) = P"  "(False --> P) = True"
wenzelm@12281
   335
    "(P --> True) = True"  "(P --> P) = True"
wenzelm@12281
   336
    "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
wenzelm@12281
   337
    "(P & True) = P"  "(True & P) = P"
wenzelm@12281
   338
    "(P & False) = False"  "(False & P) = False"
wenzelm@12281
   339
    "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
wenzelm@12281
   340
    "(P & ~P) = False"    "(~P & P) = False"
wenzelm@12281
   341
    "(P | True) = True"  "(True | P) = True"
wenzelm@12281
   342
    "(P | False) = P"  "(False | P) = P"
berghofe@12436
   343
    "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
wenzelm@12281
   344
    "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
wenzelm@12281
   345
    -- {* needed for the one-point-rule quantifier simplification procs *}
wenzelm@12281
   346
    -- {* essential for termination!! *} and
wenzelm@12281
   347
    "!!P. (EX x. x=t & P(x)) = P(t)"
wenzelm@12281
   348
    "!!P. (EX x. t=x & P(x)) = P(t)"
wenzelm@12281
   349
    "!!P. (ALL x. x=t --> P(x)) = P(t)"
wenzelm@12937
   350
    "!!P. (ALL x. t=x --> P(x)) = P(t)"
berghofe@12436
   351
  by (blast, blast, blast, blast, blast, rules+)
wenzelm@13421
   352
wenzelm@12281
   353
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
wenzelm@12354
   354
  by rules
wenzelm@12281
   355
wenzelm@12281
   356
lemma ex_simps:
wenzelm@12281
   357
  "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
wenzelm@12281
   358
  "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
wenzelm@12281
   359
  "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
wenzelm@12281
   360
  "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
wenzelm@12281
   361
  "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
wenzelm@12281
   362
  "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
wenzelm@12281
   363
  -- {* Miniscoping: pushing in existential quantifiers. *}
berghofe@12436
   364
  by (rules | blast)+
wenzelm@12281
   365
wenzelm@12281
   366
lemma all_simps:
wenzelm@12281
   367
  "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
wenzelm@12281
   368
  "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
wenzelm@12281
   369
  "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
wenzelm@12281
   370
  "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
wenzelm@12281
   371
  "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
wenzelm@12281
   372
  "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
wenzelm@12281
   373
  -- {* Miniscoping: pushing in universal quantifiers. *}
berghofe@12436
   374
  by (rules | blast)+
wenzelm@12281
   375
wenzelm@12281
   376
lemma eq_ac:
wenzelm@12937
   377
  shows eq_commute: "(a=b) = (b=a)"
wenzelm@12937
   378
    and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
wenzelm@12937
   379
    and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (rules, blast+)
berghofe@12436
   380
lemma neq_commute: "(a~=b) = (b~=a)" by rules
wenzelm@12281
   381
wenzelm@12281
   382
lemma conj_comms:
wenzelm@12937
   383
  shows conj_commute: "(P&Q) = (Q&P)"
wenzelm@12937
   384
    and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by rules+
berghofe@12436
   385
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by rules
wenzelm@12281
   386
wenzelm@12281
   387
lemma disj_comms:
wenzelm@12937
   388
  shows disj_commute: "(P|Q) = (Q|P)"
wenzelm@12937
   389
    and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by rules+
berghofe@12436
   390
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by rules
wenzelm@12281
   391
berghofe@12436
   392
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by rules
berghofe@12436
   393
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by rules
wenzelm@12281
   394
berghofe@12436
   395
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by rules
berghofe@12436
   396
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by rules
wenzelm@12281
   397
berghofe@12436
   398
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by rules
berghofe@12436
   399
lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by rules
berghofe@12436
   400
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by rules
wenzelm@12281
   401
wenzelm@12281
   402
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
wenzelm@12281
   403
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
wenzelm@12281
   404
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
wenzelm@12281
   405
wenzelm@12281
   406
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
wenzelm@12281
   407
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
wenzelm@12281
   408
berghofe@12436
   409
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by rules
wenzelm@12281
   410
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
wenzelm@12281
   411
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
wenzelm@12281
   412
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
wenzelm@12281
   413
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
wenzelm@12281
   414
lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
wenzelm@12281
   415
  by blast
wenzelm@12281
   416
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
wenzelm@12281
   417
berghofe@12436
   418
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by rules
wenzelm@12281
   419
wenzelm@12281
   420
wenzelm@12281
   421
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
wenzelm@12281
   422
  -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
wenzelm@12281
   423
  -- {* cases boil down to the same thing. *}
wenzelm@12281
   424
  by blast
wenzelm@12281
   425
wenzelm@12281
   426
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
wenzelm@12281
   427
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
berghofe@12436
   428
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by rules
berghofe@12436
   429
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by rules
wenzelm@12281
   430
berghofe@12436
   431
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by rules
berghofe@12436
   432
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by rules
wenzelm@12281
   433
wenzelm@12281
   434
text {*
wenzelm@12281
   435
  \medskip The @{text "&"} congruence rule: not included by default!
wenzelm@12281
   436
  May slow rewrite proofs down by as much as 50\% *}
wenzelm@12281
   437
wenzelm@12281
   438
lemma conj_cong:
wenzelm@12281
   439
    "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
wenzelm@12354
   440
  by rules
wenzelm@12281
   441
wenzelm@12281
   442
lemma rev_conj_cong:
wenzelm@12281
   443
    "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
wenzelm@12354
   444
  by rules
wenzelm@12281
   445
wenzelm@12281
   446
text {* The @{text "|"} congruence rule: not included by default! *}
wenzelm@12281
   447
wenzelm@12281
   448
lemma disj_cong:
wenzelm@12281
   449
    "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
wenzelm@12281
   450
  by blast
wenzelm@12281
   451
wenzelm@12281
   452
lemma eq_sym_conv: "(x = y) = (y = x)"
wenzelm@12354
   453
  by rules
wenzelm@12281
   454
wenzelm@12281
   455
wenzelm@12281
   456
text {* \medskip if-then-else rules *}
wenzelm@12281
   457
wenzelm@12281
   458
lemma if_True: "(if True then x else y) = x"
wenzelm@12281
   459
  by (unfold if_def) blast
wenzelm@12281
   460
wenzelm@12281
   461
lemma if_False: "(if False then x else y) = y"
wenzelm@12281
   462
  by (unfold if_def) blast
wenzelm@12281
   463
wenzelm@12281
   464
lemma if_P: "P ==> (if P then x else y) = x"
wenzelm@12281
   465
  by (unfold if_def) blast
wenzelm@12281
   466
wenzelm@12281
   467
lemma if_not_P: "~P ==> (if P then x else y) = y"
wenzelm@12281
   468
  by (unfold if_def) blast
wenzelm@12281
   469
wenzelm@12281
   470
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
wenzelm@12281
   471
  apply (rule case_split [of Q])
wenzelm@12281
   472
   apply (subst if_P)
wenzelm@12281
   473
    prefer 3 apply (subst if_not_P)
wenzelm@12281
   474
     apply blast+
wenzelm@12281
   475
  done
wenzelm@12281
   476
wenzelm@12281
   477
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
wenzelm@12281
   478
  apply (subst split_if)
wenzelm@12281
   479
  apply blast
wenzelm@12281
   480
  done
wenzelm@12281
   481
wenzelm@12281
   482
lemmas if_splits = split_if split_if_asm
wenzelm@12281
   483
wenzelm@12281
   484
lemma if_def2: "(if Q then x else y) = ((Q --> x) & (~ Q --> y))"
wenzelm@12281
   485
  by (rule split_if)
wenzelm@12281
   486
wenzelm@12281
   487
lemma if_cancel: "(if c then x else x) = x"
wenzelm@12281
   488
  apply (subst split_if)
wenzelm@12281
   489
  apply blast
wenzelm@12281
   490
  done
wenzelm@12281
   491
wenzelm@12281
   492
lemma if_eq_cancel: "(if x = y then y else x) = x"
wenzelm@12281
   493
  apply (subst split_if)
wenzelm@12281
   494
  apply blast
wenzelm@12281
   495
  done
wenzelm@12281
   496
wenzelm@12281
   497
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
wenzelm@12281
   498
  -- {* This form is useful for expanding @{text if}s on the RIGHT of the @{text "==>"} symbol. *}
wenzelm@12281
   499
  by (rule split_if)
wenzelm@12281
   500
wenzelm@12281
   501
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
wenzelm@12281
   502
  -- {* And this form is useful for expanding @{text if}s on the LEFT. *}
wenzelm@12281
   503
  apply (subst split_if)
wenzelm@12281
   504
  apply blast
wenzelm@12281
   505
  done
wenzelm@12281
   506
berghofe@12436
   507
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) rules
berghofe@12436
   508
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) rules
wenzelm@12281
   509
wenzelm@9869
   510
use "simpdata.ML"
wenzelm@9869
   511
setup Simplifier.setup
wenzelm@9869
   512
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup
wenzelm@9869
   513
setup Splitter.setup setup Clasimp.setup
wenzelm@9869
   514
berghofe@13638
   515
theorem choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
berghofe@13638
   516
  apply (rule iffI)
berghofe@13638
   517
  apply (rule_tac a = "%x. THE y. P x y" in ex1I)
berghofe@13638
   518
  apply (fast dest!: theI')
berghofe@13638
   519
  apply (fast intro: ext the1_equality [symmetric])
berghofe@13638
   520
  apply (erule ex1E)
berghofe@13638
   521
  apply (rule allI)
berghofe@13638
   522
  apply (rule ex1I)
berghofe@13638
   523
  apply (erule spec)
berghofe@13638
   524
  apply (rule ccontr)
berghofe@13638
   525
  apply (erule_tac x = "%z. if z = x then y else f z" in allE)
berghofe@13638
   526
  apply (erule impE)
berghofe@13638
   527
  apply (rule allI)
berghofe@13638
   528
  apply (rule_tac P = "xa = x" in case_split_thm)
berghofe@13638
   529
  apply (drule_tac [3] x = x in fun_cong)
berghofe@13638
   530
  apply simp_all
berghofe@13638
   531
  done
berghofe@13638
   532
nipkow@13438
   533
text{*Needs only HOL-lemmas:*}
nipkow@13438
   534
lemma mk_left_commute:
nipkow@13438
   535
  assumes a: "\<And>x y z. f (f x y) z = f x (f y z)" and
nipkow@13438
   536
          c: "\<And>x y. f x y = f y x"
nipkow@13438
   537
  shows "f x (f y z) = f y (f x z)"
nipkow@13438
   538
by(rule trans[OF trans[OF c a] arg_cong[OF c, of "f y"]])
nipkow@13438
   539
wenzelm@11750
   540
wenzelm@11824
   541
subsubsection {* Generic cases and induction *}
wenzelm@11824
   542
wenzelm@11824
   543
constdefs
wenzelm@11989
   544
  induct_forall :: "('a => bool) => bool"
wenzelm@11989
   545
  "induct_forall P == \<forall>x. P x"
wenzelm@11989
   546
  induct_implies :: "bool => bool => bool"
wenzelm@11989
   547
  "induct_implies A B == A --> B"
wenzelm@11989
   548
  induct_equal :: "'a => 'a => bool"
wenzelm@11989
   549
  "induct_equal x y == x = y"
wenzelm@11989
   550
  induct_conj :: "bool => bool => bool"
wenzelm@11989
   551
  "induct_conj A B == A & B"
wenzelm@11824
   552
wenzelm@11989
   553
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
wenzelm@11989
   554
  by (simp only: atomize_all induct_forall_def)
wenzelm@11824
   555
wenzelm@11989
   556
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
wenzelm@11989
   557
  by (simp only: atomize_imp induct_implies_def)
wenzelm@11824
   558
wenzelm@11989
   559
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
wenzelm@11989
   560
  by (simp only: atomize_eq induct_equal_def)
wenzelm@11824
   561
wenzelm@11989
   562
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
wenzelm@11989
   563
    induct_conj (induct_forall A) (induct_forall B)"
wenzelm@12354
   564
  by (unfold induct_forall_def induct_conj_def) rules
wenzelm@11824
   565
wenzelm@11989
   566
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
wenzelm@11989
   567
    induct_conj (induct_implies C A) (induct_implies C B)"
wenzelm@12354
   568
  by (unfold induct_implies_def induct_conj_def) rules
wenzelm@11989
   569
berghofe@13598
   570
lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
berghofe@13598
   571
proof
berghofe@13598
   572
  assume r: "induct_conj A B ==> PROP C" and A B
berghofe@13598
   573
  show "PROP C" by (rule r) (simp! add: induct_conj_def)
berghofe@13598
   574
next
berghofe@13598
   575
  assume r: "A ==> B ==> PROP C" and "induct_conj A B"
berghofe@13598
   576
  show "PROP C" by (rule r) (simp! add: induct_conj_def)+
berghofe@13598
   577
qed
wenzelm@11824
   578
wenzelm@11989
   579
lemma induct_impliesI: "(A ==> B) ==> induct_implies A B"
wenzelm@11989
   580
  by (simp add: induct_implies_def)
wenzelm@11824
   581
wenzelm@12161
   582
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq
wenzelm@12161
   583
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq
wenzelm@12161
   584
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@11989
   585
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
wenzelm@11824
   586
wenzelm@11989
   587
hide const induct_forall induct_implies induct_equal induct_conj
wenzelm@11824
   588
wenzelm@11824
   589
wenzelm@11824
   590
text {* Method setup. *}
wenzelm@11824
   591
wenzelm@11824
   592
ML {*
wenzelm@11824
   593
  structure InductMethod = InductMethodFun
wenzelm@11824
   594
  (struct
wenzelm@11824
   595
    val dest_concls = HOLogic.dest_concls;
wenzelm@11824
   596
    val cases_default = thm "case_split";
wenzelm@11989
   597
    val local_impI = thm "induct_impliesI";
wenzelm@11824
   598
    val conjI = thm "conjI";
wenzelm@11989
   599
    val atomize = thms "induct_atomize";
wenzelm@11989
   600
    val rulify1 = thms "induct_rulify1";
wenzelm@11989
   601
    val rulify2 = thms "induct_rulify2";
wenzelm@12240
   602
    val localize = [Thm.symmetric (thm "induct_implies_def")];
wenzelm@11824
   603
  end);
wenzelm@11824
   604
*}
wenzelm@11824
   605
wenzelm@11824
   606
setup InductMethod.setup
wenzelm@11824
   607
wenzelm@11824
   608
wenzelm@11750
   609
subsection {* Order signatures and orders *}
wenzelm@11750
   610
wenzelm@11750
   611
axclass
wenzelm@12338
   612
  ord < type
wenzelm@11750
   613
wenzelm@11750
   614
syntax
wenzelm@11750
   615
  "op <"        :: "['a::ord, 'a] => bool"             ("op <")
wenzelm@11750
   616
  "op <="       :: "['a::ord, 'a] => bool"             ("op <=")
wenzelm@11750
   617
wenzelm@11750
   618
global
wenzelm@11750
   619
wenzelm@11750
   620
consts
wenzelm@11750
   621
  "op <"        :: "['a::ord, 'a] => bool"             ("(_/ < _)"  [50, 51] 50)
wenzelm@11750
   622
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ <= _)" [50, 51] 50)
wenzelm@11750
   623
wenzelm@11750
   624
local
wenzelm@11750
   625
wenzelm@12114
   626
syntax (xsymbols)
wenzelm@11750
   627
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
wenzelm@11750
   628
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
wenzelm@11750
   629
wenzelm@11750
   630
wenzelm@11750
   631
subsubsection {* Monotonicity *}
wenzelm@11750
   632
wenzelm@13412
   633
locale mono =
wenzelm@13412
   634
  fixes f
wenzelm@13412
   635
  assumes mono: "A <= B ==> f A <= f B"
wenzelm@11750
   636
wenzelm@13421
   637
lemmas monoI [intro?] = mono.intro
wenzelm@13412
   638
  and monoD [dest?] = mono.mono
wenzelm@11750
   639
wenzelm@11750
   640
constdefs
wenzelm@11750
   641
  min :: "['a::ord, 'a] => 'a"
wenzelm@11750
   642
  "min a b == (if a <= b then a else b)"
wenzelm@11750
   643
  max :: "['a::ord, 'a] => 'a"
wenzelm@11750
   644
  "max a b == (if a <= b then b else a)"
wenzelm@11750
   645
wenzelm@11750
   646
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
wenzelm@11750
   647
  by (simp add: min_def)
wenzelm@11750
   648
wenzelm@11750
   649
lemma min_of_mono:
wenzelm@11750
   650
    "ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"
wenzelm@11750
   651
  by (simp add: min_def)
wenzelm@11750
   652
wenzelm@11750
   653
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
wenzelm@11750
   654
  by (simp add: max_def)
wenzelm@11750
   655
wenzelm@11750
   656
lemma max_of_mono:
wenzelm@11750
   657
    "ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"
wenzelm@11750
   658
  by (simp add: max_def)
wenzelm@11750
   659
wenzelm@11750
   660
wenzelm@11750
   661
subsubsection "Orders"
wenzelm@11750
   662
wenzelm@11750
   663
axclass order < ord
wenzelm@11750
   664
  order_refl [iff]: "x <= x"
wenzelm@11750
   665
  order_trans: "x <= y ==> y <= z ==> x <= z"
wenzelm@11750
   666
  order_antisym: "x <= y ==> y <= x ==> x = y"
wenzelm@11750
   667
  order_less_le: "(x < y) = (x <= y & x ~= y)"
wenzelm@11750
   668
wenzelm@11750
   669
wenzelm@11750
   670
text {* Reflexivity. *}
wenzelm@11750
   671
wenzelm@11750
   672
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"
wenzelm@11750
   673
    -- {* This form is useful with the classical reasoner. *}
wenzelm@11750
   674
  apply (erule ssubst)
wenzelm@11750
   675
  apply (rule order_refl)
wenzelm@11750
   676
  done
wenzelm@11750
   677
nipkow@13553
   678
lemma order_less_irrefl [iff]: "~ x < (x::'a::order)"
wenzelm@11750
   679
  by (simp add: order_less_le)
wenzelm@11750
   680
wenzelm@11750
   681
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"
wenzelm@11750
   682
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
wenzelm@11750
   683
  apply (simp add: order_less_le)
wenzelm@12256
   684
  apply blast
wenzelm@11750
   685
  done
wenzelm@11750
   686
wenzelm@11750
   687
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]
wenzelm@11750
   688
wenzelm@11750
   689
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"
wenzelm@11750
   690
  by (simp add: order_less_le)
wenzelm@11750
   691
wenzelm@11750
   692
wenzelm@11750
   693
text {* Asymmetry. *}
wenzelm@11750
   694
wenzelm@11750
   695
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"
wenzelm@11750
   696
  by (simp add: order_less_le order_antisym)
wenzelm@11750
   697
wenzelm@11750
   698
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"
wenzelm@11750
   699
  apply (drule order_less_not_sym)
wenzelm@11750
   700
  apply (erule contrapos_np)
wenzelm@11750
   701
  apply simp
wenzelm@11750
   702
  done
wenzelm@11750
   703
wenzelm@11750
   704
wenzelm@11750
   705
text {* Transitivity. *}
wenzelm@11750
   706
wenzelm@11750
   707
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"
wenzelm@11750
   708
  apply (simp add: order_less_le)
wenzelm@11750
   709
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   710
  done
wenzelm@11750
   711
wenzelm@11750
   712
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"
wenzelm@11750
   713
  apply (simp add: order_less_le)
wenzelm@11750
   714
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   715
  done
wenzelm@11750
   716
wenzelm@11750
   717
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"
wenzelm@11750
   718
  apply (simp add: order_less_le)
wenzelm@11750
   719
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   720
  done
wenzelm@11750
   721
wenzelm@11750
   722
wenzelm@11750
   723
text {* Useful for simplification, but too risky to include by default. *}
wenzelm@11750
   724
wenzelm@11750
   725
lemma order_less_imp_not_less: "(x::'a::order) < y ==>  (~ y < x) = True"
wenzelm@11750
   726
  by (blast elim: order_less_asym)
wenzelm@11750
   727
wenzelm@11750
   728
lemma order_less_imp_triv: "(x::'a::order) < y ==>  (y < x --> P) = True"
wenzelm@11750
   729
  by (blast elim: order_less_asym)
wenzelm@11750
   730
wenzelm@11750
   731
lemma order_less_imp_not_eq: "(x::'a::order) < y ==>  (x = y) = False"
wenzelm@11750
   732
  by auto
wenzelm@11750
   733
wenzelm@11750
   734
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==>  (y = x) = False"
wenzelm@11750
   735
  by auto
wenzelm@11750
   736
wenzelm@11750
   737
wenzelm@11750
   738
text {* Other operators. *}
wenzelm@11750
   739
wenzelm@11750
   740
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"
wenzelm@11750
   741
  apply (simp add: min_def)
wenzelm@11750
   742
  apply (blast intro: order_antisym)
wenzelm@11750
   743
  done
wenzelm@11750
   744
wenzelm@11750
   745
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"
wenzelm@11750
   746
  apply (simp add: max_def)
wenzelm@11750
   747
  apply (blast intro: order_antisym)
wenzelm@11750
   748
  done
wenzelm@11750
   749
wenzelm@11750
   750
wenzelm@11750
   751
subsubsection {* Least value operator *}
wenzelm@11750
   752
wenzelm@11750
   753
constdefs
wenzelm@11750
   754
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
wenzelm@11750
   755
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
wenzelm@11750
   756
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
wenzelm@11750
   757
wenzelm@11750
   758
lemma LeastI2:
wenzelm@11750
   759
  "[| P (x::'a::order);
wenzelm@11750
   760
      !!y. P y ==> x <= y;
wenzelm@11750
   761
      !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
wenzelm@12281
   762
   ==> Q (Least P)"
wenzelm@11750
   763
  apply (unfold Least_def)
wenzelm@11750
   764
  apply (rule theI2)
wenzelm@11750
   765
    apply (blast intro: order_antisym)+
wenzelm@11750
   766
  done
wenzelm@11750
   767
wenzelm@11750
   768
lemma Least_equality:
wenzelm@12281
   769
    "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
wenzelm@11750
   770
  apply (simp add: Least_def)
wenzelm@11750
   771
  apply (rule the_equality)
wenzelm@11750
   772
  apply (auto intro!: order_antisym)
wenzelm@11750
   773
  done
wenzelm@11750
   774
wenzelm@11750
   775
wenzelm@11750
   776
subsubsection "Linear / total orders"
wenzelm@11750
   777
wenzelm@11750
   778
axclass linorder < order
wenzelm@11750
   779
  linorder_linear: "x <= y | y <= x"
wenzelm@11750
   780
wenzelm@11750
   781
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"
wenzelm@11750
   782
  apply (simp add: order_less_le)
wenzelm@11750
   783
  apply (insert linorder_linear)
wenzelm@11750
   784
  apply blast
wenzelm@11750
   785
  done
wenzelm@11750
   786
wenzelm@11750
   787
lemma linorder_cases [case_names less equal greater]:
wenzelm@11750
   788
    "((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"
wenzelm@11750
   789
  apply (insert linorder_less_linear)
wenzelm@11750
   790
  apply blast
wenzelm@11750
   791
  done
wenzelm@11750
   792
wenzelm@11750
   793
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"
wenzelm@11750
   794
  apply (simp add: order_less_le)
wenzelm@11750
   795
  apply (insert linorder_linear)
wenzelm@11750
   796
  apply (blast intro: order_antisym)
wenzelm@11750
   797
  done
wenzelm@11750
   798
wenzelm@11750
   799
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"
wenzelm@11750
   800
  apply (simp add: order_less_le)
wenzelm@11750
   801
  apply (insert linorder_linear)
wenzelm@11750
   802
  apply (blast intro: order_antisym)
wenzelm@11750
   803
  done
wenzelm@11750
   804
wenzelm@11750
   805
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"
wenzelm@11750
   806
  apply (cut_tac x = x and y = y in linorder_less_linear)
wenzelm@11750
   807
  apply auto
wenzelm@11750
   808
  done
wenzelm@11750
   809
wenzelm@11750
   810
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"
wenzelm@11750
   811
  apply (simp add: linorder_neq_iff)
wenzelm@11750
   812
  apply blast
wenzelm@11750
   813
  done
wenzelm@11750
   814
wenzelm@11750
   815
wenzelm@11750
   816
subsubsection "Min and max on (linear) orders"
wenzelm@11750
   817
wenzelm@11750
   818
lemma min_same [simp]: "min (x::'a::order) x = x"
wenzelm@11750
   819
  by (simp add: min_def)
wenzelm@11750
   820
wenzelm@11750
   821
lemma max_same [simp]: "max (x::'a::order) x = x"
wenzelm@11750
   822
  by (simp add: max_def)
wenzelm@11750
   823
wenzelm@11750
   824
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"
wenzelm@11750
   825
  apply (simp add: max_def)
wenzelm@11750
   826
  apply (insert linorder_linear)
wenzelm@11750
   827
  apply (blast intro: order_trans)
wenzelm@11750
   828
  done
wenzelm@11750
   829
wenzelm@11750
   830
lemma le_maxI1: "(x::'a::linorder) <= max x y"
wenzelm@11750
   831
  by (simp add: le_max_iff_disj)
wenzelm@11750
   832
wenzelm@11750
   833
lemma le_maxI2: "(y::'a::linorder) <= max x y"
wenzelm@11750
   834
    -- {* CANNOT use with @{text "[intro!]"} because blast will give PROOF FAILED. *}
wenzelm@11750
   835
  by (simp add: le_max_iff_disj)
wenzelm@11750
   836
wenzelm@11750
   837
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"
wenzelm@11750
   838
  apply (simp add: max_def order_le_less)
wenzelm@11750
   839
  apply (insert linorder_less_linear)
wenzelm@11750
   840
  apply (blast intro: order_less_trans)
wenzelm@11750
   841
  done
wenzelm@11750
   842
wenzelm@11750
   843
lemma max_le_iff_conj [simp]:
wenzelm@11750
   844
    "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)"
wenzelm@11750
   845
  apply (simp add: max_def)
wenzelm@11750
   846
  apply (insert linorder_linear)
wenzelm@11750
   847
  apply (blast intro: order_trans)
wenzelm@11750
   848
  done
wenzelm@11750
   849
wenzelm@11750
   850
lemma max_less_iff_conj [simp]:
wenzelm@11750
   851
    "!!z::'a::linorder. (max x y < z) = (x < z & y < z)"
wenzelm@11750
   852
  apply (simp add: order_le_less max_def)
wenzelm@11750
   853
  apply (insert linorder_less_linear)
wenzelm@11750
   854
  apply (blast intro: order_less_trans)
wenzelm@11750
   855
  done
wenzelm@11750
   856
wenzelm@11750
   857
lemma le_min_iff_conj [simp]:
wenzelm@11750
   858
    "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)"
wenzelm@12892
   859
    -- {* @{text "[iff]"} screws up a @{text blast} in MiniML *}
wenzelm@11750
   860
  apply (simp add: min_def)
wenzelm@11750
   861
  apply (insert linorder_linear)
wenzelm@11750
   862
  apply (blast intro: order_trans)
wenzelm@11750
   863
  done
wenzelm@11750
   864
wenzelm@11750
   865
lemma min_less_iff_conj [simp]:
wenzelm@11750
   866
    "!!z::'a::linorder. (z < min x y) = (z < x & z < y)"
wenzelm@11750
   867
  apply (simp add: order_le_less min_def)
wenzelm@11750
   868
  apply (insert linorder_less_linear)
wenzelm@11750
   869
  apply (blast intro: order_less_trans)
wenzelm@11750
   870
  done
wenzelm@11750
   871
wenzelm@11750
   872
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"
wenzelm@11750
   873
  apply (simp add: min_def)
wenzelm@11750
   874
  apply (insert linorder_linear)
wenzelm@11750
   875
  apply (blast intro: order_trans)
wenzelm@11750
   876
  done
wenzelm@11750
   877
wenzelm@11750
   878
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"
wenzelm@11750
   879
  apply (simp add: min_def order_le_less)
wenzelm@11750
   880
  apply (insert linorder_less_linear)
wenzelm@11750
   881
  apply (blast intro: order_less_trans)
wenzelm@11750
   882
  done
wenzelm@11750
   883
nipkow@13438
   884
lemma max_assoc: "!!x::'a::linorder. max (max x y) z = max x (max y z)"
nipkow@13438
   885
apply(simp add:max_def)
nipkow@13438
   886
apply(rule conjI)
nipkow@13438
   887
apply(blast intro:order_trans)
nipkow@13438
   888
apply(simp add:linorder_not_le)
nipkow@13438
   889
apply(blast dest: order_less_trans order_le_less_trans)
nipkow@13438
   890
done
nipkow@13438
   891
nipkow@13438
   892
lemma max_commute: "!!x::'a::linorder. max x y = max y x"
nipkow@13438
   893
apply(simp add:max_def)
nipkow@13438
   894
apply(rule conjI)
nipkow@13438
   895
apply(blast intro:order_antisym)
nipkow@13438
   896
apply(simp add:linorder_not_le)
nipkow@13438
   897
apply(blast dest: order_less_trans)
nipkow@13438
   898
done
nipkow@13438
   899
nipkow@13438
   900
lemmas max_ac = max_assoc max_commute
nipkow@13438
   901
                mk_left_commute[of max,OF max_assoc max_commute]
nipkow@13438
   902
nipkow@13438
   903
lemma min_assoc: "!!x::'a::linorder. min (min x y) z = min x (min y z)"
nipkow@13438
   904
apply(simp add:min_def)
nipkow@13438
   905
apply(rule conjI)
nipkow@13438
   906
apply(blast intro:order_trans)
nipkow@13438
   907
apply(simp add:linorder_not_le)
nipkow@13438
   908
apply(blast dest: order_less_trans order_le_less_trans)
nipkow@13438
   909
done
nipkow@13438
   910
nipkow@13438
   911
lemma min_commute: "!!x::'a::linorder. min x y = min y x"
nipkow@13438
   912
apply(simp add:min_def)
nipkow@13438
   913
apply(rule conjI)
nipkow@13438
   914
apply(blast intro:order_antisym)
nipkow@13438
   915
apply(simp add:linorder_not_le)
nipkow@13438
   916
apply(blast dest: order_less_trans)
nipkow@13438
   917
done
nipkow@13438
   918
nipkow@13438
   919
lemmas min_ac = min_assoc min_commute
nipkow@13438
   920
                mk_left_commute[of min,OF min_assoc min_commute]
nipkow@13438
   921
wenzelm@11750
   922
lemma split_min:
wenzelm@11750
   923
    "P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"
wenzelm@11750
   924
  by (simp add: min_def)
wenzelm@11750
   925
wenzelm@11750
   926
lemma split_max:
wenzelm@11750
   927
    "P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"
wenzelm@11750
   928
  by (simp add: max_def)
wenzelm@11750
   929
wenzelm@11750
   930
wenzelm@11750
   931
subsubsection "Bounded quantifiers"
wenzelm@11750
   932
wenzelm@11750
   933
syntax
wenzelm@11750
   934
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   935
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   936
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   937
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   938
wenzelm@12114
   939
syntax (xsymbols)
wenzelm@11750
   940
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   941
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   942
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@11750
   943
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@11750
   944
wenzelm@11750
   945
syntax (HOL)
wenzelm@11750
   946
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   947
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   948
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   949
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   950
wenzelm@11750
   951
translations
wenzelm@11750
   952
 "ALL x<y. P"   =>  "ALL x. x < y --> P"
wenzelm@11750
   953
 "EX x<y. P"    =>  "EX x. x < y  & P"
wenzelm@11750
   954
 "ALL x<=y. P"  =>  "ALL x. x <= y --> P"
wenzelm@11750
   955
 "EX x<=y. P"   =>  "EX x. x <= y & P"
wenzelm@11750
   956
clasohm@923
   957
end