src/ZF/WF.thy
author clasohm
Tue Feb 06 12:27:17 1996 +0100 (1996-02-06)
changeset 1478 2b8c2a7547ab
parent 1401 0c439768f45c
child 2469 b50b8c0eec01
permissions -rw-r--r--
expanded tabs
clasohm@1478
     1
(*  Title:      ZF/wf.thy
clasohm@0
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Tobias Nipkow and Lawrence C Paulson
lcp@435
     4
    Copyright   1994  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Well-founded Recursion
clasohm@0
     7
*)
clasohm@0
     8
lcp@435
     9
WF = Trancl + "mono" + "equalities" +
clasohm@0
    10
consts
clasohm@1401
    11
  wf           :: i=>o
clasohm@1478
    12
  wf_on        :: [i,i]=>o                      ("wf[_]'(_')")
lcp@435
    13
clasohm@1401
    14
  wftrec,wfrec :: [i, i, [i,i]=>i] =>i
clasohm@1478
    15
  wfrec_on     :: [i, i, i, [i,i]=>i] =>i       ("wfrec[_]'(_,_,_')")
clasohm@1401
    16
  is_recfun    :: [i, i, [i,i]=>i, i] =>o
clasohm@1401
    17
  the_recfun   :: [i, i, [i,i]=>i] =>i
clasohm@0
    18
lcp@930
    19
defs
clasohm@0
    20
  (*r is a well-founded relation*)
clasohm@1478
    21
  wf_def         "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
clasohm@0
    22
lcp@435
    23
  (*r is well-founded relation over A*)
lcp@435
    24
  wf_on_def      "wf_on(A,r) == wf(r Int A*A)"
lcp@435
    25
clasohm@1155
    26
  is_recfun_def  "is_recfun(r,a,H,f) == 
clasohm@1478
    27
                        (f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
clasohm@0
    28
clasohm@0
    29
  the_recfun_def "the_recfun(r,a,H) == (THE f.is_recfun(r,a,H,f))"
clasohm@0
    30
clasohm@1478
    31
  wftrec_def     "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
clasohm@0
    32
clasohm@0
    33
  (*public version.  Does not require r to be transitive*)
clasohm@0
    34
  wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
clasohm@0
    35
lcp@435
    36
  wfrec_on_def   "wfrec[A](r,a,H) == wfrec(r Int A*A, a, H)"
lcp@435
    37
clasohm@0
    38
end