src/HOL/RealVector.thy
author haftmann
Tue Apr 28 15:50:30 2009 +0200 (2009-04-28)
changeset 31017 2c227493ea56
parent 30729 461ee3e49ad3
child 31285 0a3f9ee4117c
permissions -rw-r--r--
stripped class recpower further
haftmann@29197
     1
(*  Title:      HOL/RealVector.thy
haftmann@27552
     2
    Author:     Brian Huffman
huffman@20504
     3
*)
huffman@20504
     4
huffman@20504
     5
header {* Vector Spaces and Algebras over the Reals *}
huffman@20504
     6
huffman@20504
     7
theory RealVector
haftmann@29197
     8
imports RealPow
huffman@20504
     9
begin
huffman@20504
    10
huffman@20504
    11
subsection {* Locale for additive functions *}
huffman@20504
    12
huffman@20504
    13
locale additive =
huffman@20504
    14
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
huffman@20504
    15
  assumes add: "f (x + y) = f x + f y"
huffman@27443
    16
begin
huffman@20504
    17
huffman@27443
    18
lemma zero: "f 0 = 0"
huffman@20504
    19
proof -
huffman@20504
    20
  have "f 0 = f (0 + 0)" by simp
huffman@20504
    21
  also have "\<dots> = f 0 + f 0" by (rule add)
huffman@20504
    22
  finally show "f 0 = 0" by simp
huffman@20504
    23
qed
huffman@20504
    24
huffman@27443
    25
lemma minus: "f (- x) = - f x"
huffman@20504
    26
proof -
huffman@20504
    27
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
huffman@20504
    28
  also have "\<dots> = - f x + f x" by (simp add: zero)
huffman@20504
    29
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
huffman@20504
    30
qed
huffman@20504
    31
huffman@27443
    32
lemma diff: "f (x - y) = f x - f y"
huffman@20504
    33
by (simp add: diff_def add minus)
huffman@20504
    34
huffman@27443
    35
lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
huffman@22942
    36
apply (cases "finite A")
huffman@22942
    37
apply (induct set: finite)
huffman@22942
    38
apply (simp add: zero)
huffman@22942
    39
apply (simp add: add)
huffman@22942
    40
apply (simp add: zero)
huffman@22942
    41
done
huffman@22942
    42
huffman@27443
    43
end
huffman@20504
    44
huffman@28029
    45
subsection {* Vector spaces *}
huffman@28029
    46
huffman@28029
    47
locale vector_space =
huffman@28029
    48
  fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
huffman@30070
    49
  assumes scale_right_distrib [algebra_simps]:
huffman@30070
    50
    "scale a (x + y) = scale a x + scale a y"
huffman@30070
    51
  and scale_left_distrib [algebra_simps]:
huffman@30070
    52
    "scale (a + b) x = scale a x + scale b x"
huffman@28029
    53
  and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
huffman@28029
    54
  and scale_one [simp]: "scale 1 x = x"
huffman@28029
    55
begin
huffman@28029
    56
huffman@28029
    57
lemma scale_left_commute:
huffman@28029
    58
  "scale a (scale b x) = scale b (scale a x)"
huffman@28029
    59
by (simp add: mult_commute)
huffman@28029
    60
huffman@28029
    61
lemma scale_zero_left [simp]: "scale 0 x = 0"
huffman@28029
    62
  and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
huffman@30070
    63
  and scale_left_diff_distrib [algebra_simps]:
huffman@30070
    64
        "scale (a - b) x = scale a x - scale b x"
huffman@28029
    65
proof -
ballarin@29229
    66
  interpret s: additive "\<lambda>a. scale a x"
haftmann@28823
    67
    proof qed (rule scale_left_distrib)
huffman@28029
    68
  show "scale 0 x = 0" by (rule s.zero)
huffman@28029
    69
  show "scale (- a) x = - (scale a x)" by (rule s.minus)
huffman@28029
    70
  show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
huffman@28029
    71
qed
huffman@28029
    72
huffman@28029
    73
lemma scale_zero_right [simp]: "scale a 0 = 0"
huffman@28029
    74
  and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
huffman@30070
    75
  and scale_right_diff_distrib [algebra_simps]:
huffman@30070
    76
        "scale a (x - y) = scale a x - scale a y"
huffman@28029
    77
proof -
ballarin@29229
    78
  interpret s: additive "\<lambda>x. scale a x"
haftmann@28823
    79
    proof qed (rule scale_right_distrib)
huffman@28029
    80
  show "scale a 0 = 0" by (rule s.zero)
huffman@28029
    81
  show "scale a (- x) = - (scale a x)" by (rule s.minus)
huffman@28029
    82
  show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
huffman@28029
    83
qed
huffman@28029
    84
huffman@28029
    85
lemma scale_eq_0_iff [simp]:
huffman@28029
    86
  "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
huffman@28029
    87
proof cases
huffman@28029
    88
  assume "a = 0" thus ?thesis by simp
huffman@28029
    89
next
huffman@28029
    90
  assume anz [simp]: "a \<noteq> 0"
huffman@28029
    91
  { assume "scale a x = 0"
huffman@28029
    92
    hence "scale (inverse a) (scale a x) = 0" by simp
huffman@28029
    93
    hence "x = 0" by simp }
huffman@28029
    94
  thus ?thesis by force
huffman@28029
    95
qed
huffman@28029
    96
huffman@28029
    97
lemma scale_left_imp_eq:
huffman@28029
    98
  "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
huffman@28029
    99
proof -
huffman@28029
   100
  assume nonzero: "a \<noteq> 0"
huffman@28029
   101
  assume "scale a x = scale a y"
huffman@28029
   102
  hence "scale a (x - y) = 0"
huffman@28029
   103
     by (simp add: scale_right_diff_distrib)
huffman@28029
   104
  hence "x - y = 0" by (simp add: nonzero)
huffman@28029
   105
  thus "x = y" by (simp only: right_minus_eq)
huffman@28029
   106
qed
huffman@28029
   107
huffman@28029
   108
lemma scale_right_imp_eq:
huffman@28029
   109
  "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
huffman@28029
   110
proof -
huffman@28029
   111
  assume nonzero: "x \<noteq> 0"
huffman@28029
   112
  assume "scale a x = scale b x"
huffman@28029
   113
  hence "scale (a - b) x = 0"
huffman@28029
   114
     by (simp add: scale_left_diff_distrib)
huffman@28029
   115
  hence "a - b = 0" by (simp add: nonzero)
huffman@28029
   116
  thus "a = b" by (simp only: right_minus_eq)
huffman@28029
   117
qed
huffman@28029
   118
huffman@28029
   119
lemma scale_cancel_left:
huffman@28029
   120
  "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
huffman@28029
   121
by (auto intro: scale_left_imp_eq)
huffman@28029
   122
huffman@28029
   123
lemma scale_cancel_right:
huffman@28029
   124
  "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
huffman@28029
   125
by (auto intro: scale_right_imp_eq)
huffman@28029
   126
huffman@28029
   127
end
huffman@28029
   128
huffman@20504
   129
subsection {* Real vector spaces *}
huffman@20504
   130
haftmann@29608
   131
class scaleR =
haftmann@25062
   132
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
haftmann@24748
   133
begin
huffman@20504
   134
huffman@20763
   135
abbreviation
haftmann@25062
   136
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
haftmann@24748
   137
where
haftmann@25062
   138
  "x /\<^sub>R r == scaleR (inverse r) x"
haftmann@24748
   139
haftmann@24748
   140
end
haftmann@24748
   141
haftmann@24588
   142
class real_vector = scaleR + ab_group_add +
haftmann@25062
   143
  assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
haftmann@25062
   144
  and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@30070
   145
  and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@30070
   146
  and scaleR_one: "scaleR 1 x = x"
huffman@20504
   147
wenzelm@30729
   148
interpretation real_vector:
ballarin@29229
   149
  vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
huffman@28009
   150
apply unfold_locales
huffman@28009
   151
apply (rule scaleR_right_distrib)
huffman@28009
   152
apply (rule scaleR_left_distrib)
huffman@28009
   153
apply (rule scaleR_scaleR)
huffman@28009
   154
apply (rule scaleR_one)
huffman@28009
   155
done
huffman@28009
   156
huffman@28009
   157
text {* Recover original theorem names *}
huffman@28009
   158
huffman@28009
   159
lemmas scaleR_left_commute = real_vector.scale_left_commute
huffman@28009
   160
lemmas scaleR_zero_left = real_vector.scale_zero_left
huffman@28009
   161
lemmas scaleR_minus_left = real_vector.scale_minus_left
huffman@28009
   162
lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib
huffman@28009
   163
lemmas scaleR_zero_right = real_vector.scale_zero_right
huffman@28009
   164
lemmas scaleR_minus_right = real_vector.scale_minus_right
huffman@28009
   165
lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib
huffman@28009
   166
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
huffman@28009
   167
lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
huffman@28009
   168
lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
huffman@28009
   169
lemmas scaleR_cancel_left = real_vector.scale_cancel_left
huffman@28009
   170
lemmas scaleR_cancel_right = real_vector.scale_cancel_right
huffman@28009
   171
haftmann@24588
   172
class real_algebra = real_vector + ring +
haftmann@25062
   173
  assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
haftmann@25062
   174
  and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
huffman@20504
   175
haftmann@24588
   176
class real_algebra_1 = real_algebra + ring_1
huffman@20554
   177
haftmann@24588
   178
class real_div_algebra = real_algebra_1 + division_ring
huffman@20584
   179
haftmann@24588
   180
class real_field = real_div_algebra + field
huffman@20584
   181
huffman@30069
   182
instantiation real :: real_field
huffman@30069
   183
begin
huffman@30069
   184
huffman@30069
   185
definition
huffman@30069
   186
  real_scaleR_def [simp]: "scaleR a x = a * x"
huffman@30069
   187
huffman@30070
   188
instance proof
huffman@30070
   189
qed (simp_all add: algebra_simps)
huffman@20554
   190
huffman@30069
   191
end
huffman@30069
   192
wenzelm@30729
   193
interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
haftmann@28823
   194
proof qed (rule scaleR_left_distrib)
huffman@20504
   195
wenzelm@30729
   196
interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
haftmann@28823
   197
proof qed (rule scaleR_right_distrib)
huffman@20504
   198
huffman@20584
   199
lemma nonzero_inverse_scaleR_distrib:
huffman@21809
   200
  fixes x :: "'a::real_div_algebra" shows
huffman@21809
   201
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20763
   202
by (rule inverse_unique, simp)
huffman@20584
   203
huffman@20584
   204
lemma inverse_scaleR_distrib:
huffman@20584
   205
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
huffman@21809
   206
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20584
   207
apply (case_tac "a = 0", simp)
huffman@20584
   208
apply (case_tac "x = 0", simp)
huffman@20584
   209
apply (erule (1) nonzero_inverse_scaleR_distrib)
huffman@20584
   210
done
huffman@20584
   211
huffman@20554
   212
huffman@20554
   213
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
huffman@20554
   214
@{term of_real} *}
huffman@20554
   215
huffman@20554
   216
definition
wenzelm@21404
   217
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
huffman@21809
   218
  "of_real r = scaleR r 1"
huffman@20554
   219
huffman@21809
   220
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
huffman@20763
   221
by (simp add: of_real_def)
huffman@20763
   222
huffman@20554
   223
lemma of_real_0 [simp]: "of_real 0 = 0"
huffman@20554
   224
by (simp add: of_real_def)
huffman@20554
   225
huffman@20554
   226
lemma of_real_1 [simp]: "of_real 1 = 1"
huffman@20554
   227
by (simp add: of_real_def)
huffman@20554
   228
huffman@20554
   229
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
huffman@20554
   230
by (simp add: of_real_def scaleR_left_distrib)
huffman@20554
   231
huffman@20554
   232
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
huffman@20554
   233
by (simp add: of_real_def)
huffman@20554
   234
huffman@20554
   235
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
huffman@20554
   236
by (simp add: of_real_def scaleR_left_diff_distrib)
huffman@20554
   237
huffman@20554
   238
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
huffman@20763
   239
by (simp add: of_real_def mult_commute)
huffman@20554
   240
huffman@20584
   241
lemma nonzero_of_real_inverse:
huffman@20584
   242
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
huffman@20584
   243
   inverse (of_real x :: 'a::real_div_algebra)"
huffman@20584
   244
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
huffman@20584
   245
huffman@20584
   246
lemma of_real_inverse [simp]:
huffman@20584
   247
  "of_real (inverse x) =
huffman@20584
   248
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
huffman@20584
   249
by (simp add: of_real_def inverse_scaleR_distrib)
huffman@20584
   250
huffman@20584
   251
lemma nonzero_of_real_divide:
huffman@20584
   252
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
huffman@20584
   253
   (of_real x / of_real y :: 'a::real_field)"
huffman@20584
   254
by (simp add: divide_inverse nonzero_of_real_inverse)
huffman@20722
   255
huffman@20722
   256
lemma of_real_divide [simp]:
huffman@20584
   257
  "of_real (x / y) =
huffman@20584
   258
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
huffman@20584
   259
by (simp add: divide_inverse)
huffman@20584
   260
huffman@20722
   261
lemma of_real_power [simp]:
haftmann@31017
   262
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
huffman@30273
   263
by (induct n) simp_all
huffman@20722
   264
huffman@20554
   265
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
huffman@20554
   266
by (simp add: of_real_def scaleR_cancel_right)
huffman@20554
   267
huffman@20584
   268
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
huffman@20554
   269
huffman@20554
   270
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
huffman@20554
   271
proof
huffman@20554
   272
  fix r
huffman@20554
   273
  show "of_real r = id r"
huffman@22973
   274
    by (simp add: of_real_def)
huffman@20554
   275
qed
huffman@20554
   276
huffman@20554
   277
text{*Collapse nested embeddings*}
huffman@20554
   278
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
wenzelm@20772
   279
by (induct n) auto
huffman@20554
   280
huffman@20554
   281
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
huffman@20554
   282
by (cases z rule: int_diff_cases, simp)
huffman@20554
   283
huffman@20554
   284
lemma of_real_number_of_eq:
huffman@20554
   285
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
huffman@20554
   286
by (simp add: number_of_eq)
huffman@20554
   287
huffman@22912
   288
text{*Every real algebra has characteristic zero*}
huffman@22912
   289
instance real_algebra_1 < ring_char_0
huffman@22912
   290
proof
huffman@23282
   291
  fix m n :: nat
huffman@23282
   292
  have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)"
huffman@23282
   293
    by (simp only: of_real_eq_iff of_nat_eq_iff)
huffman@23282
   294
  thus "(of_nat m = (of_nat n::'a)) = (m = n)"
huffman@23282
   295
    by (simp only: of_real_of_nat_eq)
huffman@22912
   296
qed
huffman@22912
   297
huffman@27553
   298
instance real_field < field_char_0 ..
huffman@27553
   299
huffman@20554
   300
huffman@20554
   301
subsection {* The Set of Real Numbers *}
huffman@20554
   302
wenzelm@20772
   303
definition
wenzelm@21404
   304
  Reals :: "'a::real_algebra_1 set" where
huffman@30070
   305
  [code del]: "Reals = range of_real"
huffman@20554
   306
wenzelm@21210
   307
notation (xsymbols)
huffman@20554
   308
  Reals  ("\<real>")
huffman@20554
   309
huffman@21809
   310
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
huffman@20554
   311
by (simp add: Reals_def)
huffman@20554
   312
huffman@21809
   313
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
huffman@21809
   314
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
huffman@20718
   315
huffman@21809
   316
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
huffman@21809
   317
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
huffman@21809
   318
huffman@21809
   319
lemma Reals_number_of [simp]:
huffman@21809
   320
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
huffman@21809
   321
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
huffman@20718
   322
huffman@20554
   323
lemma Reals_0 [simp]: "0 \<in> Reals"
huffman@20554
   324
apply (unfold Reals_def)
huffman@20554
   325
apply (rule range_eqI)
huffman@20554
   326
apply (rule of_real_0 [symmetric])
huffman@20554
   327
done
huffman@20554
   328
huffman@20554
   329
lemma Reals_1 [simp]: "1 \<in> Reals"
huffman@20554
   330
apply (unfold Reals_def)
huffman@20554
   331
apply (rule range_eqI)
huffman@20554
   332
apply (rule of_real_1 [symmetric])
huffman@20554
   333
done
huffman@20554
   334
huffman@20584
   335
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
huffman@20554
   336
apply (auto simp add: Reals_def)
huffman@20554
   337
apply (rule range_eqI)
huffman@20554
   338
apply (rule of_real_add [symmetric])
huffman@20554
   339
done
huffman@20554
   340
huffman@20584
   341
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
huffman@20584
   342
apply (auto simp add: Reals_def)
huffman@20584
   343
apply (rule range_eqI)
huffman@20584
   344
apply (rule of_real_minus [symmetric])
huffman@20584
   345
done
huffman@20584
   346
huffman@20584
   347
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
huffman@20584
   348
apply (auto simp add: Reals_def)
huffman@20584
   349
apply (rule range_eqI)
huffman@20584
   350
apply (rule of_real_diff [symmetric])
huffman@20584
   351
done
huffman@20584
   352
huffman@20584
   353
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
huffman@20554
   354
apply (auto simp add: Reals_def)
huffman@20554
   355
apply (rule range_eqI)
huffman@20554
   356
apply (rule of_real_mult [symmetric])
huffman@20554
   357
done
huffman@20554
   358
huffman@20584
   359
lemma nonzero_Reals_inverse:
huffman@20584
   360
  fixes a :: "'a::real_div_algebra"
huffman@20584
   361
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   362
apply (auto simp add: Reals_def)
huffman@20584
   363
apply (rule range_eqI)
huffman@20584
   364
apply (erule nonzero_of_real_inverse [symmetric])
huffman@20584
   365
done
huffman@20584
   366
huffman@20584
   367
lemma Reals_inverse [simp]:
huffman@20584
   368
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
huffman@20584
   369
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   370
apply (auto simp add: Reals_def)
huffman@20584
   371
apply (rule range_eqI)
huffman@20584
   372
apply (rule of_real_inverse [symmetric])
huffman@20584
   373
done
huffman@20584
   374
huffman@20584
   375
lemma nonzero_Reals_divide:
huffman@20584
   376
  fixes a b :: "'a::real_field"
huffman@20584
   377
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   378
apply (auto simp add: Reals_def)
huffman@20584
   379
apply (rule range_eqI)
huffman@20584
   380
apply (erule nonzero_of_real_divide [symmetric])
huffman@20584
   381
done
huffman@20584
   382
huffman@20584
   383
lemma Reals_divide [simp]:
huffman@20584
   384
  fixes a b :: "'a::{real_field,division_by_zero}"
huffman@20584
   385
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   386
apply (auto simp add: Reals_def)
huffman@20584
   387
apply (rule range_eqI)
huffman@20584
   388
apply (rule of_real_divide [symmetric])
huffman@20584
   389
done
huffman@20584
   390
huffman@20722
   391
lemma Reals_power [simp]:
haftmann@31017
   392
  fixes a :: "'a::{real_algebra_1}"
huffman@20722
   393
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
huffman@20722
   394
apply (auto simp add: Reals_def)
huffman@20722
   395
apply (rule range_eqI)
huffman@20722
   396
apply (rule of_real_power [symmetric])
huffman@20722
   397
done
huffman@20722
   398
huffman@20554
   399
lemma Reals_cases [cases set: Reals]:
huffman@20554
   400
  assumes "q \<in> \<real>"
huffman@20554
   401
  obtains (of_real) r where "q = of_real r"
huffman@20554
   402
  unfolding Reals_def
huffman@20554
   403
proof -
huffman@20554
   404
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
huffman@20554
   405
  then obtain r where "q = of_real r" ..
huffman@20554
   406
  then show thesis ..
huffman@20554
   407
qed
huffman@20554
   408
huffman@20554
   409
lemma Reals_induct [case_names of_real, induct set: Reals]:
huffman@20554
   410
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
huffman@20554
   411
  by (rule Reals_cases) auto
huffman@20554
   412
huffman@20504
   413
huffman@20504
   414
subsection {* Real normed vector spaces *}
huffman@20504
   415
haftmann@29608
   416
class norm =
huffman@22636
   417
  fixes norm :: "'a \<Rightarrow> real"
huffman@20504
   418
huffman@24520
   419
class sgn_div_norm = scaleR + norm + sgn +
haftmann@25062
   420
  assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
nipkow@24506
   421
haftmann@24588
   422
class real_normed_vector = real_vector + sgn_div_norm +
haftmann@24588
   423
  assumes norm_ge_zero [simp]: "0 \<le> norm x"
haftmann@25062
   424
  and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
haftmann@25062
   425
  and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
haftmann@24588
   426
  and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
huffman@20504
   427
haftmann@24588
   428
class real_normed_algebra = real_algebra + real_normed_vector +
haftmann@25062
   429
  assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
huffman@20504
   430
haftmann@24588
   431
class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
haftmann@25062
   432
  assumes norm_one [simp]: "norm 1 = 1"
huffman@22852
   433
haftmann@24588
   434
class real_normed_div_algebra = real_div_algebra + real_normed_vector +
haftmann@25062
   435
  assumes norm_mult: "norm (x * y) = norm x * norm y"
huffman@20504
   436
haftmann@24588
   437
class real_normed_field = real_field + real_normed_div_algebra
huffman@20584
   438
huffman@22852
   439
instance real_normed_div_algebra < real_normed_algebra_1
huffman@20554
   440
proof
huffman@20554
   441
  fix x y :: 'a
huffman@20554
   442
  show "norm (x * y) \<le> norm x * norm y"
huffman@20554
   443
    by (simp add: norm_mult)
huffman@22852
   444
next
huffman@22852
   445
  have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
huffman@22852
   446
    by (rule norm_mult)
huffman@22852
   447
  thus "norm (1::'a) = 1" by simp
huffman@20554
   448
qed
huffman@20554
   449
huffman@30069
   450
instantiation real :: real_normed_field
huffman@30069
   451
begin
huffman@30069
   452
huffman@30069
   453
definition
huffman@30069
   454
  real_norm_def [simp]: "norm r = \<bar>r\<bar>"
huffman@30069
   455
huffman@30069
   456
instance
huffman@22852
   457
apply (intro_classes, unfold real_norm_def real_scaleR_def)
nipkow@24506
   458
apply (simp add: real_sgn_def)
huffman@20554
   459
apply (rule abs_ge_zero)
huffman@20554
   460
apply (rule abs_eq_0)
huffman@20554
   461
apply (rule abs_triangle_ineq)
huffman@22852
   462
apply (rule abs_mult)
huffman@20554
   463
apply (rule abs_mult)
huffman@20554
   464
done
huffman@20504
   465
huffman@30069
   466
end
huffman@30069
   467
huffman@22852
   468
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
huffman@20504
   469
by simp
huffman@20504
   470
huffman@22852
   471
lemma zero_less_norm_iff [simp]:
huffman@22852
   472
  fixes x :: "'a::real_normed_vector"
huffman@22852
   473
  shows "(0 < norm x) = (x \<noteq> 0)"
huffman@20504
   474
by (simp add: order_less_le)
huffman@20504
   475
huffman@22852
   476
lemma norm_not_less_zero [simp]:
huffman@22852
   477
  fixes x :: "'a::real_normed_vector"
huffman@22852
   478
  shows "\<not> norm x < 0"
huffman@20828
   479
by (simp add: linorder_not_less)
huffman@20828
   480
huffman@22852
   481
lemma norm_le_zero_iff [simp]:
huffman@22852
   482
  fixes x :: "'a::real_normed_vector"
huffman@22852
   483
  shows "(norm x \<le> 0) = (x = 0)"
huffman@20828
   484
by (simp add: order_le_less)
huffman@20828
   485
huffman@20504
   486
lemma norm_minus_cancel [simp]:
huffman@20584
   487
  fixes x :: "'a::real_normed_vector"
huffman@20584
   488
  shows "norm (- x) = norm x"
huffman@20504
   489
proof -
huffman@21809
   490
  have "norm (- x) = norm (scaleR (- 1) x)"
huffman@20504
   491
    by (simp only: scaleR_minus_left scaleR_one)
huffman@20533
   492
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
huffman@20504
   493
    by (rule norm_scaleR)
huffman@20504
   494
  finally show ?thesis by simp
huffman@20504
   495
qed
huffman@20504
   496
huffman@20504
   497
lemma norm_minus_commute:
huffman@20584
   498
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   499
  shows "norm (a - b) = norm (b - a)"
huffman@20504
   500
proof -
huffman@22898
   501
  have "norm (- (b - a)) = norm (b - a)"
huffman@22898
   502
    by (rule norm_minus_cancel)
huffman@22898
   503
  thus ?thesis by simp
huffman@20504
   504
qed
huffman@20504
   505
huffman@20504
   506
lemma norm_triangle_ineq2:
huffman@20584
   507
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   508
  shows "norm a - norm b \<le> norm (a - b)"
huffman@20504
   509
proof -
huffman@20533
   510
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
huffman@20504
   511
    by (rule norm_triangle_ineq)
huffman@22898
   512
  thus ?thesis by simp
huffman@20504
   513
qed
huffman@20504
   514
huffman@20584
   515
lemma norm_triangle_ineq3:
huffman@20584
   516
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   517
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
huffman@20584
   518
apply (subst abs_le_iff)
huffman@20584
   519
apply auto
huffman@20584
   520
apply (rule norm_triangle_ineq2)
huffman@20584
   521
apply (subst norm_minus_commute)
huffman@20584
   522
apply (rule norm_triangle_ineq2)
huffman@20584
   523
done
huffman@20584
   524
huffman@20504
   525
lemma norm_triangle_ineq4:
huffman@20584
   526
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   527
  shows "norm (a - b) \<le> norm a + norm b"
huffman@20504
   528
proof -
huffman@22898
   529
  have "norm (a + - b) \<le> norm a + norm (- b)"
huffman@20504
   530
    by (rule norm_triangle_ineq)
huffman@22898
   531
  thus ?thesis
huffman@22898
   532
    by (simp only: diff_minus norm_minus_cancel)
huffman@22898
   533
qed
huffman@22898
   534
huffman@22898
   535
lemma norm_diff_ineq:
huffman@22898
   536
  fixes a b :: "'a::real_normed_vector"
huffman@22898
   537
  shows "norm a - norm b \<le> norm (a + b)"
huffman@22898
   538
proof -
huffman@22898
   539
  have "norm a - norm (- b) \<le> norm (a - - b)"
huffman@22898
   540
    by (rule norm_triangle_ineq2)
huffman@22898
   541
  thus ?thesis by simp
huffman@20504
   542
qed
huffman@20504
   543
huffman@20551
   544
lemma norm_diff_triangle_ineq:
huffman@20551
   545
  fixes a b c d :: "'a::real_normed_vector"
huffman@20551
   546
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
huffman@20551
   547
proof -
huffman@20551
   548
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
huffman@20551
   549
    by (simp add: diff_minus add_ac)
huffman@20551
   550
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
huffman@20551
   551
    by (rule norm_triangle_ineq)
huffman@20551
   552
  finally show ?thesis .
huffman@20551
   553
qed
huffman@20551
   554
huffman@22857
   555
lemma abs_norm_cancel [simp]:
huffman@22857
   556
  fixes a :: "'a::real_normed_vector"
huffman@22857
   557
  shows "\<bar>norm a\<bar> = norm a"
huffman@22857
   558
by (rule abs_of_nonneg [OF norm_ge_zero])
huffman@22857
   559
huffman@22880
   560
lemma norm_add_less:
huffman@22880
   561
  fixes x y :: "'a::real_normed_vector"
huffman@22880
   562
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
huffman@22880
   563
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
huffman@22880
   564
huffman@22880
   565
lemma norm_mult_less:
huffman@22880
   566
  fixes x y :: "'a::real_normed_algebra"
huffman@22880
   567
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
huffman@22880
   568
apply (rule order_le_less_trans [OF norm_mult_ineq])
huffman@22880
   569
apply (simp add: mult_strict_mono')
huffman@22880
   570
done
huffman@22880
   571
huffman@22857
   572
lemma norm_of_real [simp]:
huffman@22857
   573
  "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
huffman@22852
   574
unfolding of_real_def by (simp add: norm_scaleR)
huffman@20560
   575
huffman@22876
   576
lemma norm_number_of [simp]:
huffman@22876
   577
  "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
huffman@22876
   578
    = \<bar>number_of w\<bar>"
huffman@22876
   579
by (subst of_real_number_of_eq [symmetric], rule norm_of_real)
huffman@22876
   580
huffman@22876
   581
lemma norm_of_int [simp]:
huffman@22876
   582
  "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
huffman@22876
   583
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
huffman@22876
   584
huffman@22876
   585
lemma norm_of_nat [simp]:
huffman@22876
   586
  "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
huffman@22876
   587
apply (subst of_real_of_nat_eq [symmetric])
huffman@22876
   588
apply (subst norm_of_real, simp)
huffman@22876
   589
done
huffman@22876
   590
huffman@20504
   591
lemma nonzero_norm_inverse:
huffman@20504
   592
  fixes a :: "'a::real_normed_div_algebra"
huffman@20533
   593
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
huffman@20504
   594
apply (rule inverse_unique [symmetric])
huffman@20504
   595
apply (simp add: norm_mult [symmetric])
huffman@20504
   596
done
huffman@20504
   597
huffman@20504
   598
lemma norm_inverse:
huffman@20504
   599
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
huffman@20533
   600
  shows "norm (inverse a) = inverse (norm a)"
huffman@20504
   601
apply (case_tac "a = 0", simp)
huffman@20504
   602
apply (erule nonzero_norm_inverse)
huffman@20504
   603
done
huffman@20504
   604
huffman@20584
   605
lemma nonzero_norm_divide:
huffman@20584
   606
  fixes a b :: "'a::real_normed_field"
huffman@20584
   607
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
huffman@20584
   608
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
huffman@20584
   609
huffman@20584
   610
lemma norm_divide:
huffman@20584
   611
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
huffman@20584
   612
  shows "norm (a / b) = norm a / norm b"
huffman@20584
   613
by (simp add: divide_inverse norm_mult norm_inverse)
huffman@20584
   614
huffman@22852
   615
lemma norm_power_ineq:
haftmann@31017
   616
  fixes x :: "'a::{real_normed_algebra_1}"
huffman@22852
   617
  shows "norm (x ^ n) \<le> norm x ^ n"
huffman@22852
   618
proof (induct n)
huffman@22852
   619
  case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
huffman@22852
   620
next
huffman@22852
   621
  case (Suc n)
huffman@22852
   622
  have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
huffman@22852
   623
    by (rule norm_mult_ineq)
huffman@22852
   624
  also from Suc have "\<dots> \<le> norm x * norm x ^ n"
huffman@22852
   625
    using norm_ge_zero by (rule mult_left_mono)
huffman@22852
   626
  finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
huffman@30273
   627
    by simp
huffman@22852
   628
qed
huffman@22852
   629
huffman@20684
   630
lemma norm_power:
haftmann@31017
   631
  fixes x :: "'a::{real_normed_div_algebra}"
huffman@20684
   632
  shows "norm (x ^ n) = norm x ^ n"
huffman@30273
   633
by (induct n) (simp_all add: norm_mult)
huffman@20684
   634
huffman@22442
   635
huffman@22972
   636
subsection {* Sign function *}
huffman@22972
   637
nipkow@24506
   638
lemma norm_sgn:
nipkow@24506
   639
  "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
nipkow@24506
   640
by (simp add: sgn_div_norm norm_scaleR)
huffman@22972
   641
nipkow@24506
   642
lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
nipkow@24506
   643
by (simp add: sgn_div_norm)
huffman@22972
   644
nipkow@24506
   645
lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
nipkow@24506
   646
by (simp add: sgn_div_norm)
huffman@22972
   647
nipkow@24506
   648
lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
nipkow@24506
   649
by (simp add: sgn_div_norm)
huffman@22972
   650
nipkow@24506
   651
lemma sgn_scaleR:
nipkow@24506
   652
  "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
nipkow@24506
   653
by (simp add: sgn_div_norm norm_scaleR mult_ac)
huffman@22973
   654
huffman@22972
   655
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
nipkow@24506
   656
by (simp add: sgn_div_norm)
huffman@22972
   657
huffman@22972
   658
lemma sgn_of_real:
huffman@22972
   659
  "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
huffman@22972
   660
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
huffman@22972
   661
huffman@22973
   662
lemma sgn_mult:
huffman@22973
   663
  fixes x y :: "'a::real_normed_div_algebra"
huffman@22973
   664
  shows "sgn (x * y) = sgn x * sgn y"
nipkow@24506
   665
by (simp add: sgn_div_norm norm_mult mult_commute)
huffman@22973
   666
huffman@22972
   667
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
nipkow@24506
   668
by (simp add: sgn_div_norm divide_inverse)
huffman@22972
   669
huffman@22972
   670
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
huffman@22972
   671
unfolding real_sgn_eq by simp
huffman@22972
   672
huffman@22972
   673
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
huffman@22972
   674
unfolding real_sgn_eq by simp
huffman@22972
   675
huffman@22972
   676
huffman@22442
   677
subsection {* Bounded Linear and Bilinear Operators *}
huffman@22442
   678
huffman@22442
   679
locale bounded_linear = additive +
huffman@22442
   680
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@22442
   681
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
huffman@22442
   682
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
huffman@27443
   683
begin
huffman@22442
   684
huffman@27443
   685
lemma pos_bounded:
huffman@22442
   686
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   687
proof -
huffman@22442
   688
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
huffman@22442
   689
    using bounded by fast
huffman@22442
   690
  show ?thesis
huffman@22442
   691
  proof (intro exI impI conjI allI)
huffman@22442
   692
    show "0 < max 1 K"
huffman@22442
   693
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   694
  next
huffman@22442
   695
    fix x
huffman@22442
   696
    have "norm (f x) \<le> norm x * K" using K .
huffman@22442
   697
    also have "\<dots> \<le> norm x * max 1 K"
huffman@22442
   698
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
huffman@22442
   699
    finally show "norm (f x) \<le> norm x * max 1 K" .
huffman@22442
   700
  qed
huffman@22442
   701
qed
huffman@22442
   702
huffman@27443
   703
lemma nonneg_bounded:
huffman@22442
   704
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   705
proof -
huffman@22442
   706
  from pos_bounded
huffman@22442
   707
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   708
qed
huffman@22442
   709
huffman@27443
   710
end
huffman@27443
   711
huffman@22442
   712
locale bounded_bilinear =
huffman@22442
   713
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
huffman@22442
   714
                 \<Rightarrow> 'c::real_normed_vector"
huffman@22442
   715
    (infixl "**" 70)
huffman@22442
   716
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
huffman@22442
   717
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
huffman@22442
   718
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
huffman@22442
   719
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
huffman@22442
   720
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
huffman@27443
   721
begin
huffman@22442
   722
huffman@27443
   723
lemma pos_bounded:
huffman@22442
   724
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   725
apply (cut_tac bounded, erule exE)
huffman@22442
   726
apply (rule_tac x="max 1 K" in exI, safe)
huffman@22442
   727
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   728
apply (drule spec, drule spec, erule order_trans)
huffman@22442
   729
apply (rule mult_left_mono [OF le_maxI2])
huffman@22442
   730
apply (intro mult_nonneg_nonneg norm_ge_zero)
huffman@22442
   731
done
huffman@22442
   732
huffman@27443
   733
lemma nonneg_bounded:
huffman@22442
   734
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   735
proof -
huffman@22442
   736
  from pos_bounded
huffman@22442
   737
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   738
qed
huffman@22442
   739
huffman@27443
   740
lemma additive_right: "additive (\<lambda>b. prod a b)"
huffman@22442
   741
by (rule additive.intro, rule add_right)
huffman@22442
   742
huffman@27443
   743
lemma additive_left: "additive (\<lambda>a. prod a b)"
huffman@22442
   744
by (rule additive.intro, rule add_left)
huffman@22442
   745
huffman@27443
   746
lemma zero_left: "prod 0 b = 0"
huffman@22442
   747
by (rule additive.zero [OF additive_left])
huffman@22442
   748
huffman@27443
   749
lemma zero_right: "prod a 0 = 0"
huffman@22442
   750
by (rule additive.zero [OF additive_right])
huffman@22442
   751
huffman@27443
   752
lemma minus_left: "prod (- a) b = - prod a b"
huffman@22442
   753
by (rule additive.minus [OF additive_left])
huffman@22442
   754
huffman@27443
   755
lemma minus_right: "prod a (- b) = - prod a b"
huffman@22442
   756
by (rule additive.minus [OF additive_right])
huffman@22442
   757
huffman@27443
   758
lemma diff_left:
huffman@22442
   759
  "prod (a - a') b = prod a b - prod a' b"
huffman@22442
   760
by (rule additive.diff [OF additive_left])
huffman@22442
   761
huffman@27443
   762
lemma diff_right:
huffman@22442
   763
  "prod a (b - b') = prod a b - prod a b'"
huffman@22442
   764
by (rule additive.diff [OF additive_right])
huffman@22442
   765
huffman@27443
   766
lemma bounded_linear_left:
huffman@22442
   767
  "bounded_linear (\<lambda>a. a ** b)"
huffman@22442
   768
apply (unfold_locales)
huffman@22442
   769
apply (rule add_left)
huffman@22442
   770
apply (rule scaleR_left)
huffman@22442
   771
apply (cut_tac bounded, safe)
huffman@22442
   772
apply (rule_tac x="norm b * K" in exI)
huffman@22442
   773
apply (simp add: mult_ac)
huffman@22442
   774
done
huffman@22442
   775
huffman@27443
   776
lemma bounded_linear_right:
huffman@22442
   777
  "bounded_linear (\<lambda>b. a ** b)"
huffman@22442
   778
apply (unfold_locales)
huffman@22442
   779
apply (rule add_right)
huffman@22442
   780
apply (rule scaleR_right)
huffman@22442
   781
apply (cut_tac bounded, safe)
huffman@22442
   782
apply (rule_tac x="norm a * K" in exI)
huffman@22442
   783
apply (simp add: mult_ac)
huffman@22442
   784
done
huffman@22442
   785
huffman@27443
   786
lemma prod_diff_prod:
huffman@22442
   787
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
huffman@22442
   788
by (simp add: diff_left diff_right)
huffman@22442
   789
huffman@27443
   790
end
huffman@27443
   791
wenzelm@30729
   792
interpretation mult:
ballarin@29229
   793
  bounded_bilinear "op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"
huffman@22442
   794
apply (rule bounded_bilinear.intro)
huffman@22442
   795
apply (rule left_distrib)
huffman@22442
   796
apply (rule right_distrib)
huffman@22442
   797
apply (rule mult_scaleR_left)
huffman@22442
   798
apply (rule mult_scaleR_right)
huffman@22442
   799
apply (rule_tac x="1" in exI)
huffman@22442
   800
apply (simp add: norm_mult_ineq)
huffman@22442
   801
done
huffman@22442
   802
wenzelm@30729
   803
interpretation mult_left:
ballarin@29229
   804
  bounded_linear "(\<lambda>x::'a::real_normed_algebra. x * y)"
huffman@23127
   805
by (rule mult.bounded_linear_left)
huffman@22442
   806
wenzelm@30729
   807
interpretation mult_right:
ballarin@29229
   808
  bounded_linear "(\<lambda>y::'a::real_normed_algebra. x * y)"
huffman@23127
   809
by (rule mult.bounded_linear_right)
huffman@23127
   810
wenzelm@30729
   811
interpretation divide:
ballarin@29229
   812
  bounded_linear "(\<lambda>x::'a::real_normed_field. x / y)"
huffman@23127
   813
unfolding divide_inverse by (rule mult.bounded_linear_left)
huffman@23120
   814
wenzelm@30729
   815
interpretation scaleR: bounded_bilinear "scaleR"
huffman@22442
   816
apply (rule bounded_bilinear.intro)
huffman@22442
   817
apply (rule scaleR_left_distrib)
huffman@22442
   818
apply (rule scaleR_right_distrib)
huffman@22973
   819
apply simp
huffman@22442
   820
apply (rule scaleR_left_commute)
huffman@22442
   821
apply (rule_tac x="1" in exI)
huffman@22442
   822
apply (simp add: norm_scaleR)
huffman@22442
   823
done
huffman@22442
   824
wenzelm@30729
   825
interpretation scaleR_left: bounded_linear "\<lambda>r. scaleR r x"
huffman@23127
   826
by (rule scaleR.bounded_linear_left)
huffman@23127
   827
wenzelm@30729
   828
interpretation scaleR_right: bounded_linear "\<lambda>x. scaleR r x"
huffman@23127
   829
by (rule scaleR.bounded_linear_right)
huffman@23127
   830
wenzelm@30729
   831
interpretation of_real: bounded_linear "\<lambda>r. of_real r"
huffman@23127
   832
unfolding of_real_def by (rule scaleR.bounded_linear_left)
huffman@22625
   833
huffman@20504
   834
end