src/HOL/Algebra/Lattice.thy
author ballarin
Tue Apr 13 09:42:40 2004 +0200 (2004-04-13)
changeset 14551 2cb6ff394bfb
child 14577 dbb95b825244
permissions -rw-r--r--
Various changes to HOL-Algebra;
Locale instantiation.
ballarin@14551
     1
(*
ballarin@14551
     2
  Title:     Orders and Lattices
ballarin@14551
     3
  Id:        $Id$
ballarin@14551
     4
  Author:    Clemens Ballarin, started 7 November 2003
ballarin@14551
     5
  Copyright: Clemens Ballarin
ballarin@14551
     6
*)
ballarin@14551
     7
ballarin@14551
     8
theory Lattice = Group:
ballarin@14551
     9
ballarin@14551
    10
section {* Order and Lattices *}
ballarin@14551
    11
ballarin@14551
    12
subsection {* Partial Orders *}
ballarin@14551
    13
ballarin@14551
    14
record 'a order = "'a partial_object" +
ballarin@14551
    15
  le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>\<index>" 50)
ballarin@14551
    16
ballarin@14551
    17
locale order_syntax = struct L
ballarin@14551
    18
ballarin@14551
    19
locale partial_order = order_syntax +
ballarin@14551
    20
  assumes refl [intro, simp]:
ballarin@14551
    21
                  "x \<in> carrier L ==> x \<sqsubseteq> x"
ballarin@14551
    22
    and anti_sym [intro]:
ballarin@14551
    23
                  "[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x = y"
ballarin@14551
    24
    and trans [trans]:
ballarin@14551
    25
                  "[| x \<sqsubseteq> y; y \<sqsubseteq> z;
ballarin@14551
    26
                   x \<in> carrier L; y \<in> carrier L; z \<in> carrier L |] ==> x \<sqsubseteq> z"
ballarin@14551
    27
ballarin@14551
    28
constdefs
ballarin@14551
    29
  less :: "[('a, 'm) order_scheme, 'a, 'a] => bool" (infixl "\<sqsubset>\<index>" 50)
ballarin@14551
    30
  "less L x y == le L x y & x ~= y"
ballarin@14551
    31
ballarin@14551
    32
  (* Upper and lower bounds of a set. *)
ballarin@14551
    33
  Upper :: "[('a, 'm) order_scheme, 'a set] => 'a set"
ballarin@14551
    34
  "Upper L A == {u. (ALL x. x \<in> A \<inter> carrier L --> le L x u)} \<inter>
ballarin@14551
    35
                carrier L"
ballarin@14551
    36
ballarin@14551
    37
  Lower :: "[('a, 'm) order_scheme, 'a set] => 'a set"
ballarin@14551
    38
  "Lower L A == {l. (ALL x. x \<in> A \<inter> carrier L --> le L l x)} \<inter>
ballarin@14551
    39
                carrier L"
ballarin@14551
    40
ballarin@14551
    41
  (* Least and greatest, as predicate. *)
ballarin@14551
    42
  least :: "[('a, 'm) order_scheme, 'a, 'a set] => bool"
ballarin@14551
    43
  "least L l A == A \<subseteq> carrier L & l \<in> A & (ALL x : A. le L l x)"
ballarin@14551
    44
ballarin@14551
    45
  greatest :: "[('a, 'm) order_scheme, 'a, 'a set] => bool"
ballarin@14551
    46
  "greatest L g A == A \<subseteq> carrier L & g \<in> A & (ALL x : A. le L x g)"
ballarin@14551
    47
ballarin@14551
    48
  (* Supremum and infimum *)
ballarin@14551
    49
  sup :: "[('a, 'm) order_scheme, 'a set] => 'a" ("\<Squnion>\<index>_" [90] 90)
ballarin@14551
    50
  "sup L A == THE x. least L x (Upper L A)"
ballarin@14551
    51
ballarin@14551
    52
  inf :: "[('a, 'm) order_scheme, 'a set] => 'a" ("\<Sqinter>\<index>_" [90] 90)
ballarin@14551
    53
  "inf L A == THE x. greatest L x (Lower L A)"
ballarin@14551
    54
ballarin@14551
    55
  join :: "[('a, 'm) order_scheme, 'a, 'a] => 'a" (infixl "\<squnion>\<index>" 65)
ballarin@14551
    56
  "join L x y == sup L {x, y}"
ballarin@14551
    57
ballarin@14551
    58
  meet :: "[('a, 'm) order_scheme, 'a, 'a] => 'a" (infixl "\<sqinter>\<index>" 65)
ballarin@14551
    59
  "meet L x y == inf L {x, y}"
ballarin@14551
    60
ballarin@14551
    61
(* Upper *)
ballarin@14551
    62
ballarin@14551
    63
lemma Upper_closed [intro, simp]:
ballarin@14551
    64
  "Upper L A \<subseteq> carrier L"
ballarin@14551
    65
  by (unfold Upper_def) clarify
ballarin@14551
    66
ballarin@14551
    67
lemma UpperD [dest]:
ballarin@14551
    68
  includes order_syntax
ballarin@14551
    69
  shows "[| u \<in> Upper L A; x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> u"
ballarin@14551
    70
  by (unfold Upper_def) blast 
ballarin@14551
    71
ballarin@14551
    72
lemma Upper_memI:
ballarin@14551
    73
  includes order_syntax
ballarin@14551
    74
  shows "[| !! y. y \<in> A ==> y \<sqsubseteq> x; x \<in> carrier L |] ==> x \<in> Upper L A"
ballarin@14551
    75
  by (unfold Upper_def) blast 
ballarin@14551
    76
ballarin@14551
    77
lemma Upper_antimono:
ballarin@14551
    78
  "A \<subseteq> B ==> Upper L B \<subseteq> Upper L A"
ballarin@14551
    79
  by (unfold Upper_def) blast
ballarin@14551
    80
ballarin@14551
    81
(* Lower *)
ballarin@14551
    82
ballarin@14551
    83
lemma Lower_closed [intro, simp]:
ballarin@14551
    84
  "Lower L A \<subseteq> carrier L"
ballarin@14551
    85
  by (unfold Lower_def) clarify
ballarin@14551
    86
ballarin@14551
    87
lemma LowerD [dest]:
ballarin@14551
    88
  includes order_syntax
ballarin@14551
    89
  shows "[| l \<in> Lower L A; x \<in> A; A \<subseteq> carrier L |] ==> l \<sqsubseteq> x"
ballarin@14551
    90
  by (unfold Lower_def) blast 
ballarin@14551
    91
ballarin@14551
    92
lemma Lower_memI:
ballarin@14551
    93
  includes order_syntax
ballarin@14551
    94
  shows "[| !! y. y \<in> A ==> x \<sqsubseteq> y; x \<in> carrier L |] ==> x \<in> Lower L A"
ballarin@14551
    95
  by (unfold Lower_def) blast 
ballarin@14551
    96
ballarin@14551
    97
lemma Lower_antimono:
ballarin@14551
    98
  "A \<subseteq> B ==> Lower L B \<subseteq> Lower L A"
ballarin@14551
    99
  by (unfold Lower_def) blast
ballarin@14551
   100
ballarin@14551
   101
(* least *)
ballarin@14551
   102
ballarin@14551
   103
lemma least_carrier [intro, simp]:
ballarin@14551
   104
  shows "least L l A ==> l \<in> carrier L"
ballarin@14551
   105
  by (unfold least_def) fast
ballarin@14551
   106
ballarin@14551
   107
lemma least_mem:
ballarin@14551
   108
  "least L l A ==> l \<in> A"
ballarin@14551
   109
  by (unfold least_def) fast
ballarin@14551
   110
ballarin@14551
   111
lemma (in partial_order) least_unique:
ballarin@14551
   112
  "[| least L x A; least L y A |] ==> x = y"
ballarin@14551
   113
  by (unfold least_def) blast
ballarin@14551
   114
ballarin@14551
   115
lemma least_le:
ballarin@14551
   116
  includes order_syntax
ballarin@14551
   117
  shows "[| least L x A; a \<in> A |] ==> x \<sqsubseteq> a"
ballarin@14551
   118
  by (unfold least_def) fast
ballarin@14551
   119
ballarin@14551
   120
lemma least_UpperI:
ballarin@14551
   121
  includes order_syntax
ballarin@14551
   122
  assumes above: "!! x. x \<in> A ==> x \<sqsubseteq> s"
ballarin@14551
   123
    and below: "!! y. y \<in> Upper L A ==> s \<sqsubseteq> y"
ballarin@14551
   124
    and L: "A \<subseteq> carrier L" "s \<in> carrier L"
ballarin@14551
   125
  shows "least L s (Upper L A)"
ballarin@14551
   126
proof (unfold least_def, intro conjI)
ballarin@14551
   127
  show "Upper L A \<subseteq> carrier L" by simp
ballarin@14551
   128
next
ballarin@14551
   129
  from above L show "s \<in> Upper L A" by (simp add: Upper_def)
ballarin@14551
   130
next
ballarin@14551
   131
  from below show "ALL x : Upper L A. s \<sqsubseteq> x" by fast
ballarin@14551
   132
qed
ballarin@14551
   133
ballarin@14551
   134
(* greatest *)
ballarin@14551
   135
ballarin@14551
   136
lemma greatest_carrier [intro, simp]:
ballarin@14551
   137
  shows "greatest L l A ==> l \<in> carrier L"
ballarin@14551
   138
  by (unfold greatest_def) fast
ballarin@14551
   139
ballarin@14551
   140
lemma greatest_mem:
ballarin@14551
   141
  "greatest L l A ==> l \<in> A"
ballarin@14551
   142
  by (unfold greatest_def) fast
ballarin@14551
   143
ballarin@14551
   144
lemma (in partial_order) greatest_unique:
ballarin@14551
   145
  "[| greatest L x A; greatest L y A |] ==> x = y"
ballarin@14551
   146
  by (unfold greatest_def) blast
ballarin@14551
   147
ballarin@14551
   148
lemma greatest_le:
ballarin@14551
   149
  includes order_syntax
ballarin@14551
   150
  shows "[| greatest L x A; a \<in> A |] ==> a \<sqsubseteq> x"
ballarin@14551
   151
  by (unfold greatest_def) fast
ballarin@14551
   152
ballarin@14551
   153
lemma greatest_LowerI:
ballarin@14551
   154
  includes order_syntax
ballarin@14551
   155
  assumes below: "!! x. x \<in> A ==> i \<sqsubseteq> x"
ballarin@14551
   156
    and above: "!! y. y \<in> Lower L A ==> y \<sqsubseteq> i"
ballarin@14551
   157
    and L: "A \<subseteq> carrier L" "i \<in> carrier L"
ballarin@14551
   158
  shows "greatest L i (Lower L A)"
ballarin@14551
   159
proof (unfold greatest_def, intro conjI)
ballarin@14551
   160
  show "Lower L A \<subseteq> carrier L" by simp
ballarin@14551
   161
next
ballarin@14551
   162
  from below L show "i \<in> Lower L A" by (simp add: Lower_def)
ballarin@14551
   163
next
ballarin@14551
   164
  from above show "ALL x : Lower L A. x \<sqsubseteq> i" by fast
ballarin@14551
   165
qed
ballarin@14551
   166
ballarin@14551
   167
subsection {* Lattices *}
ballarin@14551
   168
ballarin@14551
   169
locale lattice = partial_order +
ballarin@14551
   170
  assumes sup_of_two_exists:
ballarin@14551
   171
    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
ballarin@14551
   172
    and inf_of_two_exists:
ballarin@14551
   173
    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
ballarin@14551
   174
ballarin@14551
   175
lemma least_Upper_above:
ballarin@14551
   176
  includes order_syntax
ballarin@14551
   177
  shows "[| least L s (Upper L A); x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> s"
ballarin@14551
   178
  by (unfold least_def) blast
ballarin@14551
   179
ballarin@14551
   180
lemma greatest_Lower_above:
ballarin@14551
   181
  includes order_syntax
ballarin@14551
   182
  shows "[| greatest L i (Lower L A); x \<in> A; A \<subseteq> carrier L |] ==> i \<sqsubseteq> x"
ballarin@14551
   183
  by (unfold greatest_def) blast
ballarin@14551
   184
ballarin@14551
   185
subsubsection {* Supremum *}
ballarin@14551
   186
ballarin@14551
   187
lemma (in lattice) joinI:
ballarin@14551
   188
  "[| !!l. least L l (Upper L {x, y}) ==> P l; x \<in> carrier L; y \<in> carrier L |]
ballarin@14551
   189
  ==> P (x \<squnion> y)"
ballarin@14551
   190
proof (unfold join_def sup_def)
ballarin@14551
   191
  assume L: "x \<in> carrier L" "y \<in> carrier L"
ballarin@14551
   192
    and P: "!!l. least L l (Upper L {x, y}) ==> P l"
ballarin@14551
   193
  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
ballarin@14551
   194
  with L show "P (THE l. least L l (Upper L {x, y}))"
ballarin@14551
   195
  by (fast intro: theI2 least_unique P)
ballarin@14551
   196
qed
ballarin@14551
   197
ballarin@14551
   198
lemma (in lattice) join_closed [simp]:
ballarin@14551
   199
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<squnion> y \<in> carrier L"
ballarin@14551
   200
  by (rule joinI) (rule least_carrier)
ballarin@14551
   201
ballarin@14551
   202
lemma (in partial_order) sup_of_singletonI:
ballarin@14551
   203
  (* only reflexivity needed ? *)
ballarin@14551
   204
  "x \<in> carrier L ==> least L x (Upper L {x})"
ballarin@14551
   205
  by (rule least_UpperI) fast+
ballarin@14551
   206
ballarin@14551
   207
lemma (in partial_order) sup_of_singleton [simp]:
ballarin@14551
   208
  includes order_syntax
ballarin@14551
   209
  shows "x \<in> carrier L ==> \<Squnion> {x} = x"
ballarin@14551
   210
  by (unfold sup_def) (blast intro: least_unique least_UpperI sup_of_singletonI)
ballarin@14551
   211
ballarin@14551
   212
text {* Condition on A: supremum exists. *}
ballarin@14551
   213
ballarin@14551
   214
lemma (in lattice) sup_insertI:
ballarin@14551
   215
  "[| !!s. least L s (Upper L (insert x A)) ==> P s;
ballarin@14551
   216
  least L a (Upper L A); x \<in> carrier L; A \<subseteq> carrier L |]
ballarin@14551
   217
  ==> P (\<Squnion> (insert x A))"
ballarin@14551
   218
proof (unfold sup_def)
ballarin@14551
   219
  assume L: "x \<in> carrier L" "A \<subseteq> carrier L"
ballarin@14551
   220
    and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
ballarin@14551
   221
    and least_a: "least L a (Upper L A)"
ballarin@14551
   222
  from L least_a have La: "a \<in> carrier L" by simp
ballarin@14551
   223
  from L sup_of_two_exists least_a
ballarin@14551
   224
  obtain s where least_s: "least L s (Upper L {a, x})" by blast
ballarin@14551
   225
  show "P (THE l. least L l (Upper L (insert x A)))"
ballarin@14551
   226
  proof (rule theI2 [where a = s])
ballarin@14551
   227
    show "least L s (Upper L (insert x A))"
ballarin@14551
   228
    proof (rule least_UpperI)
ballarin@14551
   229
      fix z
ballarin@14551
   230
      assume xA: "z \<in> insert x A"
ballarin@14551
   231
      show "z \<sqsubseteq> s"
ballarin@14551
   232
      proof -
ballarin@14551
   233
	{
ballarin@14551
   234
	  assume "z = x" then have ?thesis
ballarin@14551
   235
	    by (simp add: least_Upper_above [OF least_s] L La)
ballarin@14551
   236
        }
ballarin@14551
   237
	moreover
ballarin@14551
   238
        {
ballarin@14551
   239
	  assume "z \<in> A"
ballarin@14551
   240
          with L least_s least_a have ?thesis
ballarin@14551
   241
	    by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
ballarin@14551
   242
        }
ballarin@14551
   243
      moreover note xA
ballarin@14551
   244
      ultimately show ?thesis by blast
ballarin@14551
   245
    qed
ballarin@14551
   246
  next
ballarin@14551
   247
    fix y
ballarin@14551
   248
    assume y: "y \<in> Upper L (insert x A)"
ballarin@14551
   249
    show "s \<sqsubseteq> y"
ballarin@14551
   250
    proof (rule least_le [OF least_s], rule Upper_memI)
ballarin@14551
   251
      fix z
ballarin@14551
   252
      assume z: "z \<in> {a, x}"
ballarin@14551
   253
      show "z \<sqsubseteq> y"
ballarin@14551
   254
      proof -
ballarin@14551
   255
	{
ballarin@14551
   256
          have y': "y \<in> Upper L A"
ballarin@14551
   257
	    apply (rule subsetD [where A = "Upper L (insert x A)"])
ballarin@14551
   258
	    apply (rule Upper_antimono) apply clarify apply assumption
ballarin@14551
   259
	    done
ballarin@14551
   260
	  assume "z = a"
ballarin@14551
   261
	  with y' least_a have ?thesis by (fast dest: least_le)
ballarin@14551
   262
        }
ballarin@14551
   263
	moreover
ballarin@14551
   264
	{
ballarin@14551
   265
           assume "z = x"
ballarin@14551
   266
           with y L have ?thesis by blast
ballarin@14551
   267
        }
ballarin@14551
   268
        moreover note z
ballarin@14551
   269
        ultimately show ?thesis by blast
ballarin@14551
   270
      qed
ballarin@14551
   271
    qed (rule Upper_closed [THEN subsetD])
ballarin@14551
   272
  next
ballarin@14551
   273
    from L show "insert x A \<subseteq> carrier L" by simp
ballarin@14551
   274
  next
ballarin@14551
   275
    from least_s show "s \<in> carrier L" by simp
ballarin@14551
   276
  qed
ballarin@14551
   277
next
ballarin@14551
   278
    fix l
ballarin@14551
   279
    assume least_l: "least L l (Upper L (insert x A))"
ballarin@14551
   280
    show "l = s"
ballarin@14551
   281
    proof (rule least_unique)
ballarin@14551
   282
      show "least L s (Upper L (insert x A))"
ballarin@14551
   283
      proof (rule least_UpperI)
ballarin@14551
   284
	fix z
ballarin@14551
   285
	assume xA: "z \<in> insert x A"
ballarin@14551
   286
	show "z \<sqsubseteq> s"
ballarin@14551
   287
      proof -
ballarin@14551
   288
	{
ballarin@14551
   289
	  assume "z = x" then have ?thesis
ballarin@14551
   290
	    by (simp add: least_Upper_above [OF least_s] L La)
ballarin@14551
   291
        }
ballarin@14551
   292
	moreover
ballarin@14551
   293
        {
ballarin@14551
   294
	  assume "z \<in> A"
ballarin@14551
   295
          with L least_s least_a have ?thesis
ballarin@14551
   296
	    by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
ballarin@14551
   297
        }
ballarin@14551
   298
	  moreover note xA
ballarin@14551
   299
	  ultimately show ?thesis by blast
ballarin@14551
   300
	qed
ballarin@14551
   301
      next
ballarin@14551
   302
	fix y
ballarin@14551
   303
	assume y: "y \<in> Upper L (insert x A)"
ballarin@14551
   304
	show "s \<sqsubseteq> y"
ballarin@14551
   305
	proof (rule least_le [OF least_s], rule Upper_memI)
ballarin@14551
   306
	  fix z
ballarin@14551
   307
	  assume z: "z \<in> {a, x}"
ballarin@14551
   308
	  show "z \<sqsubseteq> y"
ballarin@14551
   309
	  proof -
ballarin@14551
   310
	    {
ballarin@14551
   311
          have y': "y \<in> Upper L A"
ballarin@14551
   312
	    apply (rule subsetD [where A = "Upper L (insert x A)"])
ballarin@14551
   313
	    apply (rule Upper_antimono) apply clarify apply assumption
ballarin@14551
   314
	    done
ballarin@14551
   315
	  assume "z = a"
ballarin@14551
   316
	  with y' least_a have ?thesis by (fast dest: least_le)
ballarin@14551
   317
        }
ballarin@14551
   318
	moreover
ballarin@14551
   319
	{
ballarin@14551
   320
           assume "z = x"
ballarin@14551
   321
           with y L have ?thesis by blast
ballarin@14551
   322
            }
ballarin@14551
   323
            moreover note z
ballarin@14551
   324
            ultimately show ?thesis by blast
ballarin@14551
   325
	  qed
ballarin@14551
   326
	qed (rule Upper_closed [THEN subsetD])
ballarin@14551
   327
      next
ballarin@14551
   328
	from L show "insert x A \<subseteq> carrier L" by simp
ballarin@14551
   329
      next
ballarin@14551
   330
	from least_s show "s \<in> carrier L" by simp
ballarin@14551
   331
      qed
ballarin@14551
   332
    qed
ballarin@14551
   333
  qed
ballarin@14551
   334
qed
ballarin@14551
   335
ballarin@14551
   336
lemma (in lattice) finite_sup_least:
ballarin@14551
   337
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> least L (\<Squnion> A) (Upper L A)"
ballarin@14551
   338
proof (induct set: Finites)
ballarin@14551
   339
  case empty then show ?case by simp
ballarin@14551
   340
next
ballarin@14551
   341
  case (insert A x)
ballarin@14551
   342
  show ?case
ballarin@14551
   343
  proof (cases "A = {}")
ballarin@14551
   344
    case True
ballarin@14551
   345
    with insert show ?thesis by (simp add: sup_of_singletonI)
ballarin@14551
   346
  next
ballarin@14551
   347
    case False
ballarin@14551
   348
    from insert show ?thesis
ballarin@14551
   349
    proof (rule_tac sup_insertI)
ballarin@14551
   350
      from False insert show "least L (\<Squnion> A) (Upper L A)" by simp
ballarin@14551
   351
    qed simp_all
ballarin@14551
   352
  qed
ballarin@14551
   353
qed
ballarin@14551
   354
ballarin@14551
   355
lemma (in lattice) finite_sup_insertI:
ballarin@14551
   356
  assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
ballarin@14551
   357
    and xA: "finite A" "x \<in> carrier L" "A \<subseteq> carrier L"
ballarin@14551
   358
  shows "P (\<Squnion> (insert x A))"
ballarin@14551
   359
proof (cases "A = {}")
ballarin@14551
   360
  case True with P and xA show ?thesis
ballarin@14551
   361
    by (simp add: sup_of_singletonI)
ballarin@14551
   362
next
ballarin@14551
   363
  case False with P and xA show ?thesis
ballarin@14551
   364
    by (simp add: sup_insertI finite_sup_least)
ballarin@14551
   365
qed
ballarin@14551
   366
ballarin@14551
   367
lemma (in lattice) finite_sup_closed:
ballarin@14551
   368
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Squnion> A \<in> carrier L"
ballarin@14551
   369
proof (induct set: Finites)
ballarin@14551
   370
  case empty then show ?case by simp
ballarin@14551
   371
next
ballarin@14551
   372
  case (insert A x) then show ?case
ballarin@14551
   373
    by (rule_tac finite_sup_insertI) (simp_all)
ballarin@14551
   374
qed
ballarin@14551
   375
ballarin@14551
   376
lemma (in lattice) join_left:
ballarin@14551
   377
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> x \<squnion> y"
ballarin@14551
   378
  by (rule joinI [folded join_def]) (blast dest: least_mem )
ballarin@14551
   379
ballarin@14551
   380
lemma (in lattice) join_right:
ballarin@14551
   381
  "[| x \<in> carrier L; y \<in> carrier L |] ==> y \<sqsubseteq> x \<squnion> y"
ballarin@14551
   382
  by (rule joinI [folded join_def]) (blast dest: least_mem )
ballarin@14551
   383
ballarin@14551
   384
lemma (in lattice) sup_of_two_least:
ballarin@14551
   385
  "[| x \<in> carrier L; y \<in> carrier L |] ==> least L (\<Squnion> {x, y}) (Upper L {x, y})"
ballarin@14551
   386
proof (unfold sup_def)
ballarin@14551
   387
  assume L: "x \<in> carrier L" "y \<in> carrier L"
ballarin@14551
   388
  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
ballarin@14551
   389
  with L show "least L (THE xa. least L xa (Upper L {x, y})) (Upper L {x, y})"
ballarin@14551
   390
  by (fast intro: theI2 least_unique)  (* blast fails *)
ballarin@14551
   391
qed
ballarin@14551
   392
ballarin@14551
   393
lemma (in lattice) join_le:
ballarin@14551
   394
  assumes sub: "x \<sqsubseteq> z" "y \<sqsubseteq> z"
ballarin@14551
   395
    and L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
ballarin@14551
   396
  shows "x \<squnion> y \<sqsubseteq> z"
ballarin@14551
   397
proof (rule joinI)
ballarin@14551
   398
  fix s
ballarin@14551
   399
  assume "least L s (Upper L {x, y})"
ballarin@14551
   400
  with sub L show "s \<sqsubseteq> z" by (fast elim: least_le intro: Upper_memI)
ballarin@14551
   401
qed
ballarin@14551
   402
  
ballarin@14551
   403
lemma (in lattice) join_assoc_lemma:
ballarin@14551
   404
  assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
ballarin@14551
   405
  shows "x \<squnion> (y \<squnion> z) = \<Squnion> {x, y, z}"
ballarin@14551
   406
proof (rule finite_sup_insertI)
ballarin@14551
   407
  (* The textbook argument in Jacobson I, p 457 *)
ballarin@14551
   408
  fix s
ballarin@14551
   409
  assume sup: "least L s (Upper L {x, y, z})"
ballarin@14551
   410
  show "x \<squnion> (y \<squnion> z) = s"
ballarin@14551
   411
  proof (rule anti_sym)
ballarin@14551
   412
    from sup L show "x \<squnion> (y \<squnion> z) \<sqsubseteq> s"
ballarin@14551
   413
      by (fastsimp intro!: join_le elim: least_Upper_above)
ballarin@14551
   414
  next
ballarin@14551
   415
    from sup L show "s \<sqsubseteq> x \<squnion> (y \<squnion> z)"
ballarin@14551
   416
    by (erule_tac least_le)
ballarin@14551
   417
      (blast intro!: Upper_memI intro: trans join_left join_right join_closed)
ballarin@14551
   418
  qed (simp_all add: L least_carrier [OF sup])
ballarin@14551
   419
qed (simp_all add: L)
ballarin@14551
   420
ballarin@14551
   421
lemma join_comm:
ballarin@14551
   422
  includes order_syntax
ballarin@14551
   423
  shows "x \<squnion> y = y \<squnion> x"
ballarin@14551
   424
  by (unfold join_def) (simp add: insert_commute)
ballarin@14551
   425
ballarin@14551
   426
lemma (in lattice) join_assoc:
ballarin@14551
   427
  assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
ballarin@14551
   428
  shows "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
ballarin@14551
   429
proof -
ballarin@14551
   430
  have "(x \<squnion> y) \<squnion> z = z \<squnion> (x \<squnion> y)" by (simp only: join_comm)
ballarin@14551
   431
  also from L have "... = \<Squnion> {z, x, y}" by (simp add: join_assoc_lemma)
ballarin@14551
   432
  also from L have "... = \<Squnion> {x, y, z}" by (simp add: insert_commute)
ballarin@14551
   433
  also from L have "... = x \<squnion> (y \<squnion> z)" by (simp add: join_assoc_lemma)
ballarin@14551
   434
  finally show ?thesis .
ballarin@14551
   435
qed
ballarin@14551
   436
ballarin@14551
   437
subsubsection {* Infimum *}
ballarin@14551
   438
ballarin@14551
   439
lemma (in lattice) meetI:
ballarin@14551
   440
  "[| !!i. greatest L i (Lower L {x, y}) ==> P i;
ballarin@14551
   441
  x \<in> carrier L; y \<in> carrier L |]
ballarin@14551
   442
  ==> P (x \<sqinter> y)"
ballarin@14551
   443
proof (unfold meet_def inf_def)
ballarin@14551
   444
  assume L: "x \<in> carrier L" "y \<in> carrier L"
ballarin@14551
   445
    and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
ballarin@14551
   446
  with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})" by fast
ballarin@14551
   447
  with L show "P (THE g. greatest L g (Lower L {x, y}))"
ballarin@14551
   448
  by (fast intro: theI2 greatest_unique P)
ballarin@14551
   449
qed
ballarin@14551
   450
ballarin@14551
   451
lemma (in lattice) meet_closed [simp]:
ballarin@14551
   452
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<in> carrier L"
ballarin@14551
   453
  by (rule meetI) (rule greatest_carrier)
ballarin@14551
   454
ballarin@14551
   455
lemma (in partial_order) inf_of_singletonI:
ballarin@14551
   456
  (* only reflexivity needed ? *)
ballarin@14551
   457
  "x \<in> carrier L ==> greatest L x (Lower L {x})"
ballarin@14551
   458
  by (rule greatest_LowerI) fast+
ballarin@14551
   459
ballarin@14551
   460
lemma (in partial_order) inf_of_singleton [simp]:
ballarin@14551
   461
  includes order_syntax
ballarin@14551
   462
  shows "x \<in> carrier L ==> \<Sqinter> {x} = x"
ballarin@14551
   463
  by (unfold inf_def) (blast intro: greatest_unique greatest_LowerI inf_of_singletonI)
ballarin@14551
   464
ballarin@14551
   465
text {* Condition on A: infimum exists. *}
ballarin@14551
   466
ballarin@14551
   467
lemma (in lattice) inf_insertI:
ballarin@14551
   468
  "[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
ballarin@14551
   469
  greatest L a (Lower L A); x \<in> carrier L; A \<subseteq> carrier L |]
ballarin@14551
   470
  ==> P (\<Sqinter> (insert x A))"
ballarin@14551
   471
proof (unfold inf_def)
ballarin@14551
   472
  assume L: "x \<in> carrier L" "A \<subseteq> carrier L"
ballarin@14551
   473
    and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
ballarin@14551
   474
    and greatest_a: "greatest L a (Lower L A)"
ballarin@14551
   475
  from L greatest_a have La: "a \<in> carrier L" by simp
ballarin@14551
   476
  from L inf_of_two_exists greatest_a
ballarin@14551
   477
  obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
ballarin@14551
   478
  show "P (THE g. greatest L g (Lower L (insert x A)))"
ballarin@14551
   479
  proof (rule theI2 [where a = i])
ballarin@14551
   480
    show "greatest L i (Lower L (insert x A))"
ballarin@14551
   481
    proof (rule greatest_LowerI)
ballarin@14551
   482
      fix z
ballarin@14551
   483
      assume xA: "z \<in> insert x A"
ballarin@14551
   484
      show "i \<sqsubseteq> z"
ballarin@14551
   485
      proof -
ballarin@14551
   486
	{
ballarin@14551
   487
	  assume "z = x" then have ?thesis
ballarin@14551
   488
	    by (simp add: greatest_Lower_above [OF greatest_i] L La)
ballarin@14551
   489
        }
ballarin@14551
   490
	moreover
ballarin@14551
   491
        {
ballarin@14551
   492
	  assume "z \<in> A"
ballarin@14551
   493
          with L greatest_i greatest_a have ?thesis
ballarin@14551
   494
	    by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
ballarin@14551
   495
        }
ballarin@14551
   496
      moreover note xA
ballarin@14551
   497
      ultimately show ?thesis by blast
ballarin@14551
   498
    qed
ballarin@14551
   499
  next
ballarin@14551
   500
    fix y
ballarin@14551
   501
    assume y: "y \<in> Lower L (insert x A)"
ballarin@14551
   502
    show "y \<sqsubseteq> i"
ballarin@14551
   503
    proof (rule greatest_le [OF greatest_i], rule Lower_memI)
ballarin@14551
   504
      fix z
ballarin@14551
   505
      assume z: "z \<in> {a, x}"
ballarin@14551
   506
      show "y \<sqsubseteq> z"
ballarin@14551
   507
      proof -
ballarin@14551
   508
	{
ballarin@14551
   509
          have y': "y \<in> Lower L A"
ballarin@14551
   510
	    apply (rule subsetD [where A = "Lower L (insert x A)"])
ballarin@14551
   511
	    apply (rule Lower_antimono) apply clarify apply assumption
ballarin@14551
   512
	    done
ballarin@14551
   513
	  assume "z = a"
ballarin@14551
   514
	  with y' greatest_a have ?thesis by (fast dest: greatest_le)
ballarin@14551
   515
        }
ballarin@14551
   516
	moreover
ballarin@14551
   517
	{
ballarin@14551
   518
           assume "z = x"
ballarin@14551
   519
           with y L have ?thesis by blast
ballarin@14551
   520
        }
ballarin@14551
   521
        moreover note z
ballarin@14551
   522
        ultimately show ?thesis by blast
ballarin@14551
   523
      qed
ballarin@14551
   524
    qed (rule Lower_closed [THEN subsetD])
ballarin@14551
   525
  next
ballarin@14551
   526
    from L show "insert x A \<subseteq> carrier L" by simp
ballarin@14551
   527
  next
ballarin@14551
   528
    from greatest_i show "i \<in> carrier L" by simp
ballarin@14551
   529
  qed
ballarin@14551
   530
next
ballarin@14551
   531
    fix g
ballarin@14551
   532
    assume greatest_g: "greatest L g (Lower L (insert x A))"
ballarin@14551
   533
    show "g = i"
ballarin@14551
   534
    proof (rule greatest_unique)
ballarin@14551
   535
      show "greatest L i (Lower L (insert x A))"
ballarin@14551
   536
      proof (rule greatest_LowerI)
ballarin@14551
   537
	fix z
ballarin@14551
   538
	assume xA: "z \<in> insert x A"
ballarin@14551
   539
	show "i \<sqsubseteq> z"
ballarin@14551
   540
      proof -
ballarin@14551
   541
	{
ballarin@14551
   542
	  assume "z = x" then have ?thesis
ballarin@14551
   543
	    by (simp add: greatest_Lower_above [OF greatest_i] L La)
ballarin@14551
   544
        }
ballarin@14551
   545
	moreover
ballarin@14551
   546
        {
ballarin@14551
   547
	  assume "z \<in> A"
ballarin@14551
   548
          with L greatest_i greatest_a have ?thesis
ballarin@14551
   549
	    by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
ballarin@14551
   550
        }
ballarin@14551
   551
	  moreover note xA
ballarin@14551
   552
	  ultimately show ?thesis by blast
ballarin@14551
   553
	qed
ballarin@14551
   554
      next
ballarin@14551
   555
	fix y
ballarin@14551
   556
	assume y: "y \<in> Lower L (insert x A)"
ballarin@14551
   557
	show "y \<sqsubseteq> i"
ballarin@14551
   558
	proof (rule greatest_le [OF greatest_i], rule Lower_memI)
ballarin@14551
   559
	  fix z
ballarin@14551
   560
	  assume z: "z \<in> {a, x}"
ballarin@14551
   561
	  show "y \<sqsubseteq> z"
ballarin@14551
   562
	  proof -
ballarin@14551
   563
	    {
ballarin@14551
   564
          have y': "y \<in> Lower L A"
ballarin@14551
   565
	    apply (rule subsetD [where A = "Lower L (insert x A)"])
ballarin@14551
   566
	    apply (rule Lower_antimono) apply clarify apply assumption
ballarin@14551
   567
	    done
ballarin@14551
   568
	  assume "z = a"
ballarin@14551
   569
	  with y' greatest_a have ?thesis by (fast dest: greatest_le)
ballarin@14551
   570
        }
ballarin@14551
   571
	moreover
ballarin@14551
   572
	{
ballarin@14551
   573
           assume "z = x"
ballarin@14551
   574
           with y L have ?thesis by blast
ballarin@14551
   575
            }
ballarin@14551
   576
            moreover note z
ballarin@14551
   577
            ultimately show ?thesis by blast
ballarin@14551
   578
	  qed
ballarin@14551
   579
	qed (rule Lower_closed [THEN subsetD])
ballarin@14551
   580
      next
ballarin@14551
   581
	from L show "insert x A \<subseteq> carrier L" by simp
ballarin@14551
   582
      next
ballarin@14551
   583
	from greatest_i show "i \<in> carrier L" by simp
ballarin@14551
   584
      qed
ballarin@14551
   585
    qed
ballarin@14551
   586
  qed
ballarin@14551
   587
qed
ballarin@14551
   588
ballarin@14551
   589
lemma (in lattice) finite_inf_greatest:
ballarin@14551
   590
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> greatest L (\<Sqinter> A) (Lower L A)"
ballarin@14551
   591
proof (induct set: Finites)
ballarin@14551
   592
  case empty then show ?case by simp
ballarin@14551
   593
next
ballarin@14551
   594
  case (insert A x)
ballarin@14551
   595
  show ?case
ballarin@14551
   596
  proof (cases "A = {}")
ballarin@14551
   597
    case True
ballarin@14551
   598
    with insert show ?thesis by (simp add: inf_of_singletonI)
ballarin@14551
   599
  next
ballarin@14551
   600
    case False
ballarin@14551
   601
    from insert show ?thesis
ballarin@14551
   602
    proof (rule_tac inf_insertI)
ballarin@14551
   603
      from False insert show "greatest L (\<Sqinter> A) (Lower L A)" by simp
ballarin@14551
   604
    qed simp_all
ballarin@14551
   605
  qed
ballarin@14551
   606
qed
ballarin@14551
   607
ballarin@14551
   608
lemma (in lattice) finite_inf_insertI:
ballarin@14551
   609
  assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
ballarin@14551
   610
    and xA: "finite A" "x \<in> carrier L" "A \<subseteq> carrier L"
ballarin@14551
   611
  shows "P (\<Sqinter> (insert x A))"
ballarin@14551
   612
proof (cases "A = {}")
ballarin@14551
   613
  case True with P and xA show ?thesis
ballarin@14551
   614
    by (simp add: inf_of_singletonI)
ballarin@14551
   615
next
ballarin@14551
   616
  case False with P and xA show ?thesis
ballarin@14551
   617
    by (simp add: inf_insertI finite_inf_greatest)
ballarin@14551
   618
qed
ballarin@14551
   619
ballarin@14551
   620
lemma (in lattice) finite_inf_closed:
ballarin@14551
   621
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Sqinter> A \<in> carrier L"
ballarin@14551
   622
proof (induct set: Finites)
ballarin@14551
   623
  case empty then show ?case by simp
ballarin@14551
   624
next
ballarin@14551
   625
  case (insert A x) then show ?case
ballarin@14551
   626
    by (rule_tac finite_inf_insertI) (simp_all)
ballarin@14551
   627
qed
ballarin@14551
   628
ballarin@14551
   629
lemma (in lattice) meet_left:
ballarin@14551
   630
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> x"
ballarin@14551
   631
  by (rule meetI [folded meet_def]) (blast dest: greatest_mem )
ballarin@14551
   632
ballarin@14551
   633
lemma (in lattice) meet_right:
ballarin@14551
   634
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> y"
ballarin@14551
   635
  by (rule meetI [folded meet_def]) (blast dest: greatest_mem )
ballarin@14551
   636
ballarin@14551
   637
lemma (in lattice) inf_of_two_greatest:
ballarin@14551
   638
  "[| x \<in> carrier L; y \<in> carrier L |] ==>
ballarin@14551
   639
  greatest L (\<Sqinter> {x, y}) (Lower L {x, y})"
ballarin@14551
   640
proof (unfold inf_def)
ballarin@14551
   641
  assume L: "x \<in> carrier L" "y \<in> carrier L"
ballarin@14551
   642
  with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})" by fast
ballarin@14551
   643
  with L
ballarin@14551
   644
  show "greatest L (THE xa. greatest L xa (Lower L {x, y})) (Lower L {x, y})"
ballarin@14551
   645
  by (fast intro: theI2 greatest_unique)  (* blast fails *)
ballarin@14551
   646
qed
ballarin@14551
   647
ballarin@14551
   648
lemma (in lattice) meet_le:
ballarin@14551
   649
  assumes sub: "z \<sqsubseteq> x" "z \<sqsubseteq> y"
ballarin@14551
   650
    and L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
ballarin@14551
   651
  shows "z \<sqsubseteq> x \<sqinter> y"
ballarin@14551
   652
proof (rule meetI)
ballarin@14551
   653
  fix i
ballarin@14551
   654
  assume "greatest L i (Lower L {x, y})"
ballarin@14551
   655
  with sub L show "z \<sqsubseteq> i" by (fast elim: greatest_le intro: Lower_memI)
ballarin@14551
   656
qed
ballarin@14551
   657
  
ballarin@14551
   658
lemma (in lattice) meet_assoc_lemma:
ballarin@14551
   659
  assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
ballarin@14551
   660
  shows "x \<sqinter> (y \<sqinter> z) = \<Sqinter> {x, y, z}"
ballarin@14551
   661
proof (rule finite_inf_insertI)
ballarin@14551
   662
  txt {* The textbook argument in Jacobson I, p 457 *}
ballarin@14551
   663
  fix i
ballarin@14551
   664
  assume inf: "greatest L i (Lower L {x, y, z})"
ballarin@14551
   665
  show "x \<sqinter> (y \<sqinter> z) = i"
ballarin@14551
   666
  proof (rule anti_sym)
ballarin@14551
   667
    from inf L show "i \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
ballarin@14551
   668
      by (fastsimp intro!: meet_le elim: greatest_Lower_above)
ballarin@14551
   669
  next
ballarin@14551
   670
    from inf L show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> i"
ballarin@14551
   671
    by (erule_tac greatest_le)
ballarin@14551
   672
      (blast intro!: Lower_memI intro: trans meet_left meet_right meet_closed)
ballarin@14551
   673
  qed (simp_all add: L greatest_carrier [OF inf])
ballarin@14551
   674
qed (simp_all add: L)
ballarin@14551
   675
ballarin@14551
   676
lemma meet_comm:
ballarin@14551
   677
  includes order_syntax
ballarin@14551
   678
  shows "x \<sqinter> y = y \<sqinter> x"
ballarin@14551
   679
  by (unfold meet_def) (simp add: insert_commute)
ballarin@14551
   680
ballarin@14551
   681
lemma (in lattice) meet_assoc:
ballarin@14551
   682
  assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
ballarin@14551
   683
  shows "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
ballarin@14551
   684
proof -
ballarin@14551
   685
  have "(x \<sqinter> y) \<sqinter> z = z \<sqinter> (x \<sqinter> y)" by (simp only: meet_comm)
ballarin@14551
   686
  also from L have "... = \<Sqinter> {z, x, y}" by (simp add: meet_assoc_lemma)
ballarin@14551
   687
  also from L have "... = \<Sqinter> {x, y, z}" by (simp add: insert_commute)
ballarin@14551
   688
  also from L have "... = x \<sqinter> (y \<sqinter> z)" by (simp add: meet_assoc_lemma)
ballarin@14551
   689
  finally show ?thesis .
ballarin@14551
   690
qed
ballarin@14551
   691
ballarin@14551
   692
subsection {* Total Orders *}
ballarin@14551
   693
ballarin@14551
   694
locale total_order = lattice +
ballarin@14551
   695
  assumes total: "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
ballarin@14551
   696
ballarin@14551
   697
text {* Introduction rule: the usual definition of total order *}
ballarin@14551
   698
ballarin@14551
   699
lemma (in partial_order) total_orderI:
ballarin@14551
   700
  assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
ballarin@14551
   701
  shows "total_order L"
ballarin@14551
   702
proof (rule total_order.intro)
ballarin@14551
   703
  show "lattice_axioms L"
ballarin@14551
   704
  proof (rule lattice_axioms.intro)
ballarin@14551
   705
    fix x y
ballarin@14551
   706
    assume L: "x \<in> carrier L" "y \<in> carrier L"
ballarin@14551
   707
    show "EX s. least L s (Upper L {x, y})"
ballarin@14551
   708
    proof -
ballarin@14551
   709
      note total L
ballarin@14551
   710
      moreover
ballarin@14551
   711
      {
ballarin@14551
   712
	assume "x \<sqsubseteq> y"
ballarin@14551
   713
        with L have "least L y (Upper L {x, y})"
ballarin@14551
   714
	  by (rule_tac least_UpperI) auto
ballarin@14551
   715
      }
ballarin@14551
   716
      moreover
ballarin@14551
   717
      {
ballarin@14551
   718
	assume "y \<sqsubseteq> x"
ballarin@14551
   719
        with L have "least L x (Upper L {x, y})"
ballarin@14551
   720
	  by (rule_tac least_UpperI) auto
ballarin@14551
   721
      }
ballarin@14551
   722
      ultimately show ?thesis by blast
ballarin@14551
   723
    qed
ballarin@14551
   724
  next
ballarin@14551
   725
    fix x y
ballarin@14551
   726
    assume L: "x \<in> carrier L" "y \<in> carrier L"
ballarin@14551
   727
    show "EX i. greatest L i (Lower L {x, y})"
ballarin@14551
   728
    proof -
ballarin@14551
   729
      note total L
ballarin@14551
   730
      moreover
ballarin@14551
   731
      {
ballarin@14551
   732
	assume "y \<sqsubseteq> x"
ballarin@14551
   733
        with L have "greatest L y (Lower L {x, y})"
ballarin@14551
   734
	  by (rule_tac greatest_LowerI) auto
ballarin@14551
   735
      }
ballarin@14551
   736
      moreover
ballarin@14551
   737
      {
ballarin@14551
   738
	assume "x \<sqsubseteq> y"
ballarin@14551
   739
        with L have "greatest L x (Lower L {x, y})"
ballarin@14551
   740
	  by (rule_tac greatest_LowerI) auto
ballarin@14551
   741
      }
ballarin@14551
   742
      ultimately show ?thesis by blast
ballarin@14551
   743
    qed
ballarin@14551
   744
  qed
ballarin@14551
   745
qed (assumption | rule total_order_axioms.intro)+
ballarin@14551
   746
ballarin@14551
   747
subsection {* Complete lattices *}
ballarin@14551
   748
ballarin@14551
   749
locale complete_lattice = lattice +
ballarin@14551
   750
  assumes sup_exists:
ballarin@14551
   751
    "[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
ballarin@14551
   752
    and inf_exists:
ballarin@14551
   753
    "[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
ballarin@14551
   754
ballarin@14551
   755
text {* Introduction rule: the usual definition of complete lattice *}
ballarin@14551
   756
ballarin@14551
   757
lemma (in partial_order) complete_latticeI:
ballarin@14551
   758
  assumes sup_exists:
ballarin@14551
   759
    "!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
ballarin@14551
   760
    and inf_exists:
ballarin@14551
   761
    "!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
ballarin@14551
   762
  shows "complete_lattice L"
ballarin@14551
   763
proof (rule complete_lattice.intro)
ballarin@14551
   764
  show "lattice_axioms L"
ballarin@14551
   765
  by (rule lattice_axioms.intro) (blast intro: sup_exists inf_exists)+
ballarin@14551
   766
qed (assumption | rule complete_lattice_axioms.intro)+
ballarin@14551
   767
ballarin@14551
   768
constdefs
ballarin@14551
   769
  top :: "('a, 'm) order_scheme => 'a" ("\<top>\<index>")
ballarin@14551
   770
  "top L == sup L (carrier L)"
ballarin@14551
   771
ballarin@14551
   772
  bottom :: "('a, 'm) order_scheme => 'a" ("\<bottom>\<index>")
ballarin@14551
   773
  "bottom L == inf L (carrier L)"
ballarin@14551
   774
ballarin@14551
   775
ballarin@14551
   776
lemma (in complete_lattice) supI:
ballarin@14551
   777
  "[| !!l. least L l (Upper L A) ==> P l; A \<subseteq> carrier L |]
ballarin@14551
   778
  ==> P (\<Squnion> A)"
ballarin@14551
   779
proof (unfold sup_def)
ballarin@14551
   780
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   781
    and P: "!!l. least L l (Upper L A) ==> P l"
ballarin@14551
   782
  with sup_exists obtain s where "least L s (Upper L A)" by blast
ballarin@14551
   783
  with L show "P (THE l. least L l (Upper L A))"
ballarin@14551
   784
  by (fast intro: theI2 least_unique P)
ballarin@14551
   785
qed
ballarin@14551
   786
ballarin@14551
   787
lemma (in complete_lattice) sup_closed [simp]:
ballarin@14551
   788
  "A \<subseteq> carrier L ==> \<Squnion> A \<in> carrier L"
ballarin@14551
   789
  by (rule supI) simp_all
ballarin@14551
   790
ballarin@14551
   791
lemma (in complete_lattice) top_closed [simp, intro]:
ballarin@14551
   792
  "\<top> \<in> carrier L"
ballarin@14551
   793
  by (unfold top_def) simp
ballarin@14551
   794
ballarin@14551
   795
lemma (in complete_lattice) infI:
ballarin@14551
   796
  "[| !!i. greatest L i (Lower L A) ==> P i; A \<subseteq> carrier L |]
ballarin@14551
   797
  ==> P (\<Sqinter> A)"
ballarin@14551
   798
proof (unfold inf_def)
ballarin@14551
   799
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   800
    and P: "!!l. greatest L l (Lower L A) ==> P l"
ballarin@14551
   801
  with inf_exists obtain s where "greatest L s (Lower L A)" by blast
ballarin@14551
   802
  with L show "P (THE l. greatest L l (Lower L A))"
ballarin@14551
   803
  by (fast intro: theI2 greatest_unique P)
ballarin@14551
   804
qed
ballarin@14551
   805
ballarin@14551
   806
lemma (in complete_lattice) inf_closed [simp]:
ballarin@14551
   807
  "A \<subseteq> carrier L ==> \<Sqinter> A \<in> carrier L"
ballarin@14551
   808
  by (rule infI) simp_all
ballarin@14551
   809
ballarin@14551
   810
lemma (in complete_lattice) bottom_closed [simp, intro]:
ballarin@14551
   811
  "\<bottom> \<in> carrier L"
ballarin@14551
   812
  by (unfold bottom_def) simp
ballarin@14551
   813
ballarin@14551
   814
text {* Jacobson: Theorem 8.1 *}
ballarin@14551
   815
ballarin@14551
   816
lemma Lower_empty [simp]:
ballarin@14551
   817
  "Lower L {} = carrier L"
ballarin@14551
   818
  by (unfold Lower_def) simp
ballarin@14551
   819
ballarin@14551
   820
lemma Upper_empty [simp]:
ballarin@14551
   821
  "Upper L {} = carrier L"
ballarin@14551
   822
  by (unfold Upper_def) simp
ballarin@14551
   823
ballarin@14551
   824
theorem (in partial_order) complete_lattice_criterion1:
ballarin@14551
   825
  assumes top_exists: "EX g. greatest L g (carrier L)"
ballarin@14551
   826
    and inf_exists:
ballarin@14551
   827
      "!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
ballarin@14551
   828
  shows "complete_lattice L"
ballarin@14551
   829
proof (rule complete_latticeI)
ballarin@14551
   830
  from top_exists obtain top where top: "greatest L top (carrier L)" ..
ballarin@14551
   831
  fix A
ballarin@14551
   832
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   833
  let ?B = "Upper L A"
ballarin@14551
   834
  from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
ballarin@14551
   835
  then have B_non_empty: "?B ~= {}" by fast
ballarin@14551
   836
  have B_L: "?B \<subseteq> carrier L" by simp
ballarin@14551
   837
  from inf_exists [OF B_L B_non_empty]
ballarin@14551
   838
  obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
ballarin@14551
   839
  have "least L b (Upper L A)"
ballarin@14551
   840
apply (rule least_UpperI)
ballarin@14551
   841
   apply (rule greatest_le [where A = "Lower L ?B"]) 
ballarin@14551
   842
    apply (rule b_inf_B)
ballarin@14551
   843
   apply (rule Lower_memI)
ballarin@14551
   844
    apply (erule UpperD)
ballarin@14551
   845
     apply assumption
ballarin@14551
   846
    apply (rule L)
ballarin@14551
   847
   apply (fast intro: L [THEN subsetD])
ballarin@14551
   848
  apply (erule greatest_Lower_above [OF b_inf_B])
ballarin@14551
   849
  apply simp
ballarin@14551
   850
 apply (rule L)
ballarin@14551
   851
apply (rule greatest_carrier [OF b_inf_B]) (* rename rule: _closed *)
ballarin@14551
   852
done
ballarin@14551
   853
  then show "EX s. least L s (Upper L A)" ..
ballarin@14551
   854
next
ballarin@14551
   855
  fix A
ballarin@14551
   856
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   857
  show "EX i. greatest L i (Lower L A)"
ballarin@14551
   858
  proof (cases "A = {}")
ballarin@14551
   859
    case True then show ?thesis
ballarin@14551
   860
      by (simp add: top_exists)
ballarin@14551
   861
  next
ballarin@14551
   862
    case False with L show ?thesis
ballarin@14551
   863
      by (rule inf_exists)
ballarin@14551
   864
  qed
ballarin@14551
   865
qed
ballarin@14551
   866
ballarin@14551
   867
(* TODO: prove dual version *)
ballarin@14551
   868
ballarin@14551
   869
subsection {* Examples *}
ballarin@14551
   870
ballarin@14551
   871
subsubsection {* Powerset of a set is a complete lattice *}
ballarin@14551
   872
ballarin@14551
   873
theorem powerset_is_complete_lattice:
ballarin@14551
   874
  "complete_lattice (| carrier = Pow A, le = op \<subseteq> |)"
ballarin@14551
   875
  (is "complete_lattice ?L")
ballarin@14551
   876
proof (rule partial_order.complete_latticeI)
ballarin@14551
   877
  show "partial_order ?L"
ballarin@14551
   878
    by (rule partial_order.intro) auto
ballarin@14551
   879
next
ballarin@14551
   880
  fix B
ballarin@14551
   881
  assume "B \<subseteq> carrier ?L"
ballarin@14551
   882
  then have "least ?L (\<Union> B) (Upper ?L B)"
ballarin@14551
   883
    by (fastsimp intro!: least_UpperI simp: Upper_def)
ballarin@14551
   884
  then show "EX s. least ?L s (Upper ?L B)" ..
ballarin@14551
   885
next
ballarin@14551
   886
  fix B
ballarin@14551
   887
  assume "B \<subseteq> carrier ?L"
ballarin@14551
   888
  then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
ballarin@14551
   889
    txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
ballarin@14551
   890
      @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
ballarin@14551
   891
    by (fastsimp intro!: greatest_LowerI simp: Lower_def)
ballarin@14551
   892
  then show "EX i. greatest ?L i (Lower ?L B)" ..
ballarin@14551
   893
qed
ballarin@14551
   894
ballarin@14551
   895
subsubsection {* Lattice of subgroups of a group *}
ballarin@14551
   896
ballarin@14551
   897
theorem (in group) subgroups_partial_order:
ballarin@14551
   898
  "partial_order (| carrier = {H. subgroup H G}, le = op \<subseteq> |)"
ballarin@14551
   899
  by (rule partial_order.intro) simp_all
ballarin@14551
   900
ballarin@14551
   901
lemma (in group) subgroup_self:
ballarin@14551
   902
  "subgroup (carrier G) G"
ballarin@14551
   903
  by (rule subgroupI) auto
ballarin@14551
   904
ballarin@14551
   905
lemma (in group) subgroup_imp_group:
ballarin@14551
   906
  "subgroup H G ==> group (G(| carrier := H |))"
ballarin@14551
   907
  using subgroup.groupI [OF _ group.intro] .
ballarin@14551
   908
ballarin@14551
   909
lemma (in group) is_monoid [intro, simp]:
ballarin@14551
   910
  "monoid G"
ballarin@14551
   911
  by (rule monoid.intro)
ballarin@14551
   912
ballarin@14551
   913
lemma (in group) subgroup_inv_equality:
ballarin@14551
   914
  "[| subgroup H G; x \<in> H |] ==> m_inv (G (| carrier := H |)) x = inv x"
ballarin@14551
   915
apply (rule_tac inv_equality [THEN sym])
ballarin@14551
   916
  apply (rule group.l_inv [OF subgroup_imp_group, simplified])
ballarin@14551
   917
   apply assumption+
ballarin@14551
   918
 apply (rule subsetD [OF subgroup.subset])
ballarin@14551
   919
  apply assumption+
ballarin@14551
   920
apply (rule subsetD [OF subgroup.subset])
ballarin@14551
   921
 apply assumption
ballarin@14551
   922
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified])
ballarin@14551
   923
  apply assumption+
ballarin@14551
   924
done
ballarin@14551
   925
ballarin@14551
   926
theorem (in group) subgroups_Inter:
ballarin@14551
   927
  assumes subgr: "(!!H. H \<in> A ==> subgroup H G)"
ballarin@14551
   928
    and not_empty: "A ~= {}"
ballarin@14551
   929
  shows "subgroup (\<Inter>A) G"
ballarin@14551
   930
proof (rule subgroupI)
ballarin@14551
   931
  from subgr [THEN subgroup.subset] and not_empty
ballarin@14551
   932
  show "\<Inter>A \<subseteq> carrier G" by blast
ballarin@14551
   933
next
ballarin@14551
   934
  from subgr [THEN subgroup.one_closed]
ballarin@14551
   935
  show "\<Inter>A ~= {}" by blast
ballarin@14551
   936
next
ballarin@14551
   937
  fix x assume "x \<in> \<Inter>A"
ballarin@14551
   938
  with subgr [THEN subgroup.m_inv_closed]
ballarin@14551
   939
  show "inv x \<in> \<Inter>A" by blast
ballarin@14551
   940
next
ballarin@14551
   941
  fix x y assume "x \<in> \<Inter>A" "y \<in> \<Inter>A"
ballarin@14551
   942
  with subgr [THEN subgroup.m_closed]
ballarin@14551
   943
  show "x \<otimes> y \<in> \<Inter>A" by blast
ballarin@14551
   944
qed
ballarin@14551
   945
ballarin@14551
   946
theorem (in group) subgroups_complete_lattice:
ballarin@14551
   947
  "complete_lattice (| carrier = {H. subgroup H G}, le = op \<subseteq> |)"
ballarin@14551
   948
    (is "complete_lattice ?L")
ballarin@14551
   949
proof (rule partial_order.complete_lattice_criterion1)
ballarin@14551
   950
  show "partial_order ?L" by (rule subgroups_partial_order)
ballarin@14551
   951
next
ballarin@14551
   952
  have "greatest ?L (carrier G) (carrier ?L)"
ballarin@14551
   953
    by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
ballarin@14551
   954
  then show "EX G. greatest ?L G (carrier ?L)" ..
ballarin@14551
   955
next
ballarin@14551
   956
  fix A
ballarin@14551
   957
  assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
ballarin@14551
   958
  then have Int_subgroup: "subgroup (\<Inter>A) G"
ballarin@14551
   959
    by (fastsimp intro: subgroups_Inter)
ballarin@14551
   960
  have "greatest ?L (\<Inter>A) (Lower ?L A)"
ballarin@14551
   961
    (is "greatest ?L ?Int _")
ballarin@14551
   962
  proof (rule greatest_LowerI)
ballarin@14551
   963
    fix H
ballarin@14551
   964
    assume H: "H \<in> A"
ballarin@14551
   965
    with L have subgroupH: "subgroup H G" by auto
ballarin@14551
   966
    from subgroupH have submagmaH: "submagma H G" by (rule subgroup.axioms)
ballarin@14551
   967
    from subgroupH have groupH: "group (G (| carrier := H |))" (is "group ?H")
ballarin@14551
   968
      by (rule subgroup_imp_group)
ballarin@14551
   969
    from groupH have monoidH: "monoid ?H"
ballarin@14551
   970
      by (rule group.is_monoid)
ballarin@14551
   971
    from H have Int_subset: "?Int \<subseteq> H" by fastsimp
ballarin@14551
   972
    then show "le ?L ?Int H" by simp
ballarin@14551
   973
  next
ballarin@14551
   974
    fix H
ballarin@14551
   975
    assume H: "H \<in> Lower ?L A"
ballarin@14551
   976
    with L Int_subgroup show "le ?L H ?Int" by (fastsimp intro: Inter_greatest)
ballarin@14551
   977
  next
ballarin@14551
   978
    show "A \<subseteq> carrier ?L" by (rule L)
ballarin@14551
   979
  next
ballarin@14551
   980
    show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
ballarin@14551
   981
  qed
ballarin@14551
   982
  then show "EX I. greatest ?L I (Lower ?L A)" ..
ballarin@14551
   983
qed
ballarin@14551
   984
ballarin@14551
   985
end