src/HOL/Library/Quotient_List.thy
author huffman
Sat Apr 21 07:33:47 2012 +0200 (2012-04-21)
changeset 47641 2cddc27a881f
parent 47634 091bcd569441
child 47649 df687f0797fb
permissions -rw-r--r--
new transfer package rules and lifting setup for lists
wenzelm@47455
     1
(*  Title:      HOL/Library/Quotient_List.thy
huffman@47641
     2
    Author:     Cezary Kaliszyk, Christian Urban and Brian Huffman
kaliszyk@35222
     3
*)
wenzelm@35788
     4
wenzelm@35788
     5
header {* Quotient infrastructure for the list type *}
wenzelm@35788
     6
kaliszyk@35222
     7
theory Quotient_List
kaliszyk@35222
     8
imports Main Quotient_Syntax
kaliszyk@35222
     9
begin
kaliszyk@35222
    10
huffman@47641
    11
subsection {* Relator for list type *}
huffman@47641
    12
haftmann@40820
    13
lemma map_id [id_simps]:
haftmann@40820
    14
  "map id = id"
haftmann@46663
    15
  by (fact List.map.id)
kaliszyk@35222
    16
huffman@47641
    17
lemma list_all2_eq [id_simps, relator_eq]:
haftmann@40820
    18
  "list_all2 (op =) = (op =)"
haftmann@40820
    19
proof (rule ext)+
haftmann@40820
    20
  fix xs ys
haftmann@40820
    21
  show "list_all2 (op =) xs ys \<longleftrightarrow> xs = ys"
haftmann@40820
    22
    by (induct xs ys rule: list_induct2') simp_all
haftmann@40820
    23
qed
kaliszyk@35222
    24
haftmann@40820
    25
lemma list_reflp:
haftmann@40820
    26
  assumes "reflp R"
haftmann@40820
    27
  shows "reflp (list_all2 R)"
haftmann@40820
    28
proof (rule reflpI)
haftmann@40820
    29
  from assms have *: "\<And>xs. R xs xs" by (rule reflpE)
haftmann@40820
    30
  fix xs
haftmann@40820
    31
  show "list_all2 R xs xs"
haftmann@40820
    32
    by (induct xs) (simp_all add: *)
haftmann@40820
    33
qed
kaliszyk@35222
    34
haftmann@40820
    35
lemma list_symp:
haftmann@40820
    36
  assumes "symp R"
haftmann@40820
    37
  shows "symp (list_all2 R)"
haftmann@40820
    38
proof (rule sympI)
haftmann@40820
    39
  from assms have *: "\<And>xs ys. R xs ys \<Longrightarrow> R ys xs" by (rule sympE)
haftmann@40820
    40
  fix xs ys
haftmann@40820
    41
  assume "list_all2 R xs ys"
haftmann@40820
    42
  then show "list_all2 R ys xs"
haftmann@40820
    43
    by (induct xs ys rule: list_induct2') (simp_all add: *)
haftmann@40820
    44
qed
kaliszyk@35222
    45
haftmann@40820
    46
lemma list_transp:
haftmann@40820
    47
  assumes "transp R"
haftmann@40820
    48
  shows "transp (list_all2 R)"
haftmann@40820
    49
proof (rule transpI)
haftmann@40820
    50
  from assms have *: "\<And>xs ys zs. R xs ys \<Longrightarrow> R ys zs \<Longrightarrow> R xs zs" by (rule transpE)
haftmann@40820
    51
  fix xs ys zs
huffman@45803
    52
  assume "list_all2 R xs ys" and "list_all2 R ys zs"
huffman@45803
    53
  then show "list_all2 R xs zs"
huffman@45803
    54
    by (induct arbitrary: zs) (auto simp: list_all2_Cons1 intro: *)
haftmann@40820
    55
qed
kaliszyk@35222
    56
haftmann@40820
    57
lemma list_equivp [quot_equiv]:
haftmann@40820
    58
  "equivp R \<Longrightarrow> equivp (list_all2 R)"
haftmann@40820
    59
  by (blast intro: equivpI list_reflp list_symp list_transp elim: equivpE)
kaliszyk@35222
    60
huffman@47641
    61
lemma right_total_list_all2 [transfer_rule]:
huffman@47641
    62
  "right_total R \<Longrightarrow> right_total (list_all2 R)"
huffman@47641
    63
  unfolding right_total_def
huffman@47641
    64
  by (rule allI, induct_tac y, simp, simp add: list_all2_Cons2)
huffman@47641
    65
huffman@47641
    66
lemma right_unique_list_all2 [transfer_rule]:
huffman@47641
    67
  "right_unique R \<Longrightarrow> right_unique (list_all2 R)"
huffman@47641
    68
  unfolding right_unique_def
huffman@47641
    69
  apply (rule allI, rename_tac xs, induct_tac xs)
huffman@47641
    70
  apply (auto simp add: list_all2_Cons1)
huffman@47641
    71
  done
huffman@47641
    72
huffman@47641
    73
lemma bi_total_list_all2 [transfer_rule]:
huffman@47641
    74
  "bi_total A \<Longrightarrow> bi_total (list_all2 A)"
huffman@47641
    75
  unfolding bi_total_def
huffman@47641
    76
  apply safe
huffman@47641
    77
  apply (rename_tac xs, induct_tac xs, simp, simp add: list_all2_Cons1)
huffman@47641
    78
  apply (rename_tac ys, induct_tac ys, simp, simp add: list_all2_Cons2)
huffman@47641
    79
  done
huffman@47641
    80
huffman@47641
    81
lemma bi_unique_list_all2 [transfer_rule]:
huffman@47641
    82
  "bi_unique A \<Longrightarrow> bi_unique (list_all2 A)"
huffman@47641
    83
  unfolding bi_unique_def
huffman@47641
    84
  apply (rule conjI)
huffman@47641
    85
  apply (rule allI, rename_tac xs, induct_tac xs)
huffman@47641
    86
  apply (simp, force simp add: list_all2_Cons1)
huffman@47641
    87
  apply (subst (2) all_comm, subst (1) all_comm)
huffman@47641
    88
  apply (rule allI, rename_tac xs, induct_tac xs)
huffman@47641
    89
  apply (simp, force simp add: list_all2_Cons2)
huffman@47641
    90
  done
huffman@47641
    91
huffman@47641
    92
subsection {* Transfer rules for transfer package *}
huffman@47641
    93
huffman@47641
    94
lemma Nil_transfer [transfer_rule]: "(list_all2 A) [] []"
huffman@47641
    95
  by simp
huffman@47641
    96
huffman@47641
    97
lemma Cons_transfer [transfer_rule]:
huffman@47641
    98
  "(A ===> list_all2 A ===> list_all2 A) Cons Cons"
huffman@47641
    99
  unfolding fun_rel_def by simp
huffman@47641
   100
huffman@47641
   101
lemma list_case_transfer [transfer_rule]:
huffman@47641
   102
  "(B ===> (A ===> list_all2 A ===> B) ===> list_all2 A ===> B)
huffman@47641
   103
    list_case list_case"
huffman@47641
   104
  unfolding fun_rel_def by (simp split: list.split)
huffman@47641
   105
huffman@47641
   106
lemma list_rec_transfer [transfer_rule]:
huffman@47641
   107
  "(B ===> (A ===> list_all2 A ===> B ===> B) ===> list_all2 A ===> B)
huffman@47641
   108
    list_rec list_rec"
huffman@47641
   109
  unfolding fun_rel_def by (clarify, erule list_all2_induct, simp_all)
huffman@47641
   110
huffman@47641
   111
lemma map_transfer [transfer_rule]:
huffman@47641
   112
  "((A ===> B) ===> list_all2 A ===> list_all2 B) map map"
huffman@47641
   113
  unfolding List.map_def by transfer_prover
huffman@47641
   114
huffman@47641
   115
lemma append_transfer [transfer_rule]:
huffman@47641
   116
  "(list_all2 A ===> list_all2 A ===> list_all2 A) append append"
huffman@47641
   117
  unfolding List.append_def by transfer_prover
huffman@47641
   118
huffman@47641
   119
lemma filter_transfer [transfer_rule]:
huffman@47641
   120
  "((A ===> op =) ===> list_all2 A ===> list_all2 A) filter filter"
huffman@47641
   121
  unfolding List.filter_def by transfer_prover
huffman@47641
   122
huffman@47641
   123
lemma id_transfer [transfer_rule]: "(A ===> A) id id"
huffman@47641
   124
  unfolding fun_rel_def by simp
huffman@47641
   125
huffman@47641
   126
lemma foldr_transfer [transfer_rule]:
huffman@47641
   127
  "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) foldr foldr"
huffman@47641
   128
  unfolding List.foldr_def by transfer_prover
huffman@47641
   129
huffman@47641
   130
lemma foldl_transfer [transfer_rule]:
huffman@47641
   131
  "((B ===> A ===> B) ===> B ===> list_all2 A ===> B) foldl foldl"
huffman@47641
   132
  unfolding List.foldl_def by transfer_prover
huffman@47641
   133
huffman@47641
   134
lemma concat_transfer [transfer_rule]:
huffman@47641
   135
  "(list_all2 (list_all2 A) ===> list_all2 A) concat concat"
huffman@47641
   136
  unfolding List.concat_def by transfer_prover
huffman@47641
   137
huffman@47641
   138
lemma drop_transfer [transfer_rule]:
huffman@47641
   139
  "(op = ===> list_all2 A ===> list_all2 A) drop drop"
huffman@47641
   140
  unfolding List.drop_def by transfer_prover
huffman@47641
   141
huffman@47641
   142
lemma take_transfer [transfer_rule]:
huffman@47641
   143
  "(op = ===> list_all2 A ===> list_all2 A) take take"
huffman@47641
   144
  unfolding List.take_def by transfer_prover
huffman@47641
   145
huffman@47641
   146
lemma length_transfer [transfer_rule]:
huffman@47641
   147
  "(list_all2 A ===> op =) length length"
huffman@47641
   148
  unfolding list_size_overloaded_def by transfer_prover
huffman@47641
   149
huffman@47641
   150
lemma list_all_transfer [transfer_rule]:
huffman@47641
   151
  "((A ===> op =) ===> list_all2 A ===> op =) list_all list_all"
huffman@47641
   152
  unfolding fun_rel_def by (clarify, erule list_all2_induct, simp_all)
huffman@47641
   153
huffman@47641
   154
lemma list_all2_transfer [transfer_rule]:
huffman@47641
   155
  "((A ===> B ===> op =) ===> list_all2 A ===> list_all2 B ===> op =)
huffman@47641
   156
    list_all2 list_all2"
huffman@47641
   157
  apply (rule fun_relI, rule fun_relI, erule list_all2_induct)
huffman@47641
   158
  apply (rule fun_relI, erule list_all2_induct, simp, simp)
huffman@47641
   159
  apply (rule fun_relI, erule list_all2_induct [of B])
huffman@47641
   160
  apply (simp, simp add: fun_rel_def)
huffman@47641
   161
  done
huffman@47641
   162
huffman@47641
   163
subsection {* Setup for lifting package *}
huffman@47641
   164
huffman@47641
   165
lemma Quotient_list:
huffman@47641
   166
  assumes "Quotient R Abs Rep T"
huffman@47641
   167
  shows "Quotient (list_all2 R) (map Abs) (map Rep) (list_all2 T)"
huffman@47641
   168
proof (unfold Quotient_alt_def, intro conjI allI impI)
huffman@47641
   169
  from assms have 1: "\<And>x y. T x y \<Longrightarrow> Abs x = y"
huffman@47641
   170
    unfolding Quotient_alt_def by simp
huffman@47641
   171
  fix xs ys assume "list_all2 T xs ys" thus "map Abs xs = ys"
huffman@47641
   172
    by (induct, simp, simp add: 1)
huffman@47641
   173
next
huffman@47641
   174
  from assms have 2: "\<And>x. T (Rep x) x"
huffman@47641
   175
    unfolding Quotient_alt_def by simp
huffman@47641
   176
  fix xs show "list_all2 T (map Rep xs) xs"
huffman@47641
   177
    by (induct xs, simp, simp add: 2)
huffman@47641
   178
next
huffman@47641
   179
  from assms have 3: "\<And>x y. R x y \<longleftrightarrow> T x (Abs x) \<and> T y (Abs y) \<and> Abs x = Abs y"
huffman@47641
   180
    unfolding Quotient_alt_def by simp
huffman@47641
   181
  fix xs ys show "list_all2 R xs ys \<longleftrightarrow> list_all2 T xs (map Abs xs) \<and>
huffman@47641
   182
    list_all2 T ys (map Abs ys) \<and> map Abs xs = map Abs ys"
huffman@47641
   183
    by (induct xs ys rule: list_induct2', simp_all, metis 3)
huffman@47641
   184
qed
huffman@47641
   185
huffman@47641
   186
declare [[map list = (list_all2, Quotient_list)]]
huffman@47641
   187
huffman@47641
   188
lemma list_invariant_commute [invariant_commute]:
huffman@47641
   189
  "list_all2 (Lifting.invariant P) = Lifting.invariant (list_all P)"
huffman@47641
   190
  apply (simp add: fun_eq_iff list_all2_def list_all_iff Lifting.invariant_def Ball_def) 
huffman@47641
   191
  apply (intro allI) 
huffman@47641
   192
  apply (induct_tac rule: list_induct2') 
huffman@47641
   193
  apply simp_all 
huffman@47641
   194
  apply metis
huffman@47641
   195
done
huffman@47641
   196
huffman@47641
   197
subsection {* Rules for quotient package *}
huffman@47641
   198
kuncar@47308
   199
lemma list_quotient3 [quot_thm]:
kuncar@47308
   200
  assumes "Quotient3 R Abs Rep"
kuncar@47308
   201
  shows "Quotient3 (list_all2 R) (map Abs) (map Rep)"
kuncar@47308
   202
proof (rule Quotient3I)
kuncar@47308
   203
  from assms have "\<And>x. Abs (Rep x) = x" by (rule Quotient3_abs_rep)
haftmann@40820
   204
  then show "\<And>xs. map Abs (map Rep xs) = xs" by (simp add: comp_def)
haftmann@40820
   205
next
kuncar@47308
   206
  from assms have "\<And>x y. R (Rep x) (Rep y) \<longleftrightarrow> x = y" by (rule Quotient3_rel_rep)
haftmann@40820
   207
  then show "\<And>xs. list_all2 R (map Rep xs) (map Rep xs)"
haftmann@40820
   208
    by (simp add: list_all2_map1 list_all2_map2 list_all2_eq)
haftmann@40820
   209
next
haftmann@40820
   210
  fix xs ys
kuncar@47308
   211
  from assms have "\<And>x y. R x x \<and> R y y \<and> Abs x = Abs y \<longleftrightarrow> R x y" by (rule Quotient3_rel)
haftmann@40820
   212
  then show "list_all2 R xs ys \<longleftrightarrow> list_all2 R xs xs \<and> list_all2 R ys ys \<and> map Abs xs = map Abs ys"
haftmann@40820
   213
    by (induct xs ys rule: list_induct2') auto
haftmann@40820
   214
qed
kaliszyk@35222
   215
kuncar@47308
   216
declare [[mapQ3 list = (list_all2, list_quotient3)]]
kuncar@47094
   217
haftmann@40820
   218
lemma cons_prs [quot_preserve]:
kuncar@47308
   219
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@35222
   220
  shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
kuncar@47308
   221
  by (auto simp add: fun_eq_iff comp_def Quotient3_abs_rep [OF q])
kaliszyk@35222
   222
haftmann@40820
   223
lemma cons_rsp [quot_respect]:
kuncar@47308
   224
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@37492
   225
  shows "(R ===> list_all2 R ===> list_all2 R) (op #) (op #)"
haftmann@40463
   226
  by auto
kaliszyk@35222
   227
haftmann@40820
   228
lemma nil_prs [quot_preserve]:
kuncar@47308
   229
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@35222
   230
  shows "map Abs [] = []"
kaliszyk@35222
   231
  by simp
kaliszyk@35222
   232
haftmann@40820
   233
lemma nil_rsp [quot_respect]:
kuncar@47308
   234
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@37492
   235
  shows "list_all2 R [] []"
kaliszyk@35222
   236
  by simp
kaliszyk@35222
   237
kaliszyk@35222
   238
lemma map_prs_aux:
kuncar@47308
   239
  assumes a: "Quotient3 R1 abs1 rep1"
kuncar@47308
   240
  and     b: "Quotient3 R2 abs2 rep2"
kaliszyk@35222
   241
  shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
kaliszyk@35222
   242
  by (induct l)
kuncar@47308
   243
     (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b])
kaliszyk@35222
   244
haftmann@40820
   245
lemma map_prs [quot_preserve]:
kuncar@47308
   246
  assumes a: "Quotient3 R1 abs1 rep1"
kuncar@47308
   247
  and     b: "Quotient3 R2 abs2 rep2"
kaliszyk@35222
   248
  shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
kaliszyk@36216
   249
  and   "((abs1 ---> id) ---> map rep1 ---> id) map = map"
haftmann@40463
   250
  by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def)
kuncar@47308
   251
    (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b])
haftmann@40463
   252
haftmann@40820
   253
lemma map_rsp [quot_respect]:
kuncar@47308
   254
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   255
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@37492
   256
  shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map"
kaliszyk@37492
   257
  and   "((R1 ===> op =) ===> (list_all2 R1) ===> op =) map map"
huffman@47641
   258
  unfolding list_all2_eq [symmetric] by (rule map_transfer)+
kaliszyk@35222
   259
kaliszyk@35222
   260
lemma foldr_prs_aux:
kuncar@47308
   261
  assumes a: "Quotient3 R1 abs1 rep1"
kuncar@47308
   262
  and     b: "Quotient3 R2 abs2 rep2"
kaliszyk@35222
   263
  shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
kuncar@47308
   264
  by (induct l) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b])
kaliszyk@35222
   265
haftmann@40820
   266
lemma foldr_prs [quot_preserve]:
kuncar@47308
   267
  assumes a: "Quotient3 R1 abs1 rep1"
kuncar@47308
   268
  and     b: "Quotient3 R2 abs2 rep2"
kaliszyk@35222
   269
  shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
haftmann@40463
   270
  apply (simp add: fun_eq_iff)
haftmann@40463
   271
  by (simp only: fun_eq_iff foldr_prs_aux[OF a b])
kaliszyk@35222
   272
     (simp)
kaliszyk@35222
   273
kaliszyk@35222
   274
lemma foldl_prs_aux:
kuncar@47308
   275
  assumes a: "Quotient3 R1 abs1 rep1"
kuncar@47308
   276
  and     b: "Quotient3 R2 abs2 rep2"
kaliszyk@35222
   277
  shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
kuncar@47308
   278
  by (induct l arbitrary:e) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b])
kaliszyk@35222
   279
haftmann@40820
   280
lemma foldl_prs [quot_preserve]:
kuncar@47308
   281
  assumes a: "Quotient3 R1 abs1 rep1"
kuncar@47308
   282
  and     b: "Quotient3 R2 abs2 rep2"
kaliszyk@35222
   283
  shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
haftmann@40463
   284
  by (simp add: fun_eq_iff foldl_prs_aux [OF a b])
kaliszyk@35222
   285
kaliszyk@35222
   286
(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)
kaliszyk@35222
   287
lemma foldl_rsp[quot_respect]:
kuncar@47308
   288
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   289
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@37492
   290
  shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_all2 R2 ===> R1) foldl foldl"
huffman@47641
   291
  by (rule foldl_transfer)
kaliszyk@35222
   292
kaliszyk@35222
   293
lemma foldr_rsp[quot_respect]:
kuncar@47308
   294
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   295
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@37492
   296
  shows "((R1 ===> R2 ===> R2) ===> list_all2 R1 ===> R2 ===> R2) foldr foldr"
huffman@47641
   297
  by (rule foldr_transfer)
kaliszyk@35222
   298
kaliszyk@37492
   299
lemma list_all2_rsp:
kaliszyk@36154
   300
  assumes r: "\<forall>x y. R x y \<longrightarrow> (\<forall>a b. R a b \<longrightarrow> S x a = T y b)"
kaliszyk@37492
   301
  and l1: "list_all2 R x y"
kaliszyk@37492
   302
  and l2: "list_all2 R a b"
kaliszyk@37492
   303
  shows "list_all2 S x a = list_all2 T y b"
huffman@45803
   304
  using l1 l2
huffman@45803
   305
  by (induct arbitrary: a b rule: list_all2_induct,
huffman@45803
   306
    auto simp: list_all2_Cons1 list_all2_Cons2 r)
kaliszyk@36154
   307
haftmann@40820
   308
lemma [quot_respect]:
kaliszyk@37492
   309
  "((R ===> R ===> op =) ===> list_all2 R ===> list_all2 R ===> op =) list_all2 list_all2"
huffman@47641
   310
  by (rule list_all2_transfer)
kaliszyk@36154
   311
haftmann@40820
   312
lemma [quot_preserve]:
kuncar@47308
   313
  assumes a: "Quotient3 R abs1 rep1"
kaliszyk@37492
   314
  shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2"
nipkow@39302
   315
  apply (simp add: fun_eq_iff)
kaliszyk@36154
   316
  apply clarify
kaliszyk@36154
   317
  apply (induct_tac xa xb rule: list_induct2')
kuncar@47308
   318
  apply (simp_all add: Quotient3_abs_rep[OF a])
kaliszyk@36154
   319
  done
kaliszyk@36154
   320
haftmann@40820
   321
lemma [quot_preserve]:
kuncar@47308
   322
  assumes a: "Quotient3 R abs1 rep1"
kaliszyk@37492
   323
  shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)"
kuncar@47308
   324
  by (induct l m rule: list_induct2') (simp_all add: Quotient3_rel_rep[OF a])
kaliszyk@36154
   325
kaliszyk@37492
   326
lemma list_all2_find_element:
kaliszyk@36276
   327
  assumes a: "x \<in> set a"
kaliszyk@37492
   328
  and b: "list_all2 R a b"
kaliszyk@36276
   329
  shows "\<exists>y. (y \<in> set b \<and> R x y)"
huffman@45803
   330
  using b a by induct auto
kaliszyk@36276
   331
kaliszyk@37492
   332
lemma list_all2_refl:
kaliszyk@35222
   333
  assumes a: "\<And>x y. R x y = (R x = R y)"
kaliszyk@37492
   334
  shows "list_all2 R x x"
kaliszyk@35222
   335
  by (induct x) (auto simp add: a)
kaliszyk@35222
   336
kaliszyk@35222
   337
end