src/HOL/NumberTheory/Residues.thy
author wenzelm
Wed May 17 01:23:41 2006 +0200 (2006-05-17)
changeset 19670 2e4a143c73c5
parent 18369 694ea14ab4f2
child 21404 eb85850d3eb7
permissions -rw-r--r--
prefer 'definition' over low-level defs;
tuned source/document;
paulson@13871
     1
(*  Title:      HOL/Quadratic_Reciprocity/Residues.thy
kleing@14981
     2
    ID:         $Id$
paulson@13871
     3
    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
paulson@13871
     4
*)
paulson@13871
     5
paulson@13871
     6
header {* Residue Sets *}
paulson@13871
     7
wenzelm@18369
     8
theory Residues imports Int2 begin
paulson@13871
     9
wenzelm@19670
    10
text {*
wenzelm@19670
    11
  \medskip Define the residue of a set, the standard residue,
wenzelm@19670
    12
  quadratic residues, and prove some basic properties. *}
paulson@13871
    13
wenzelm@19670
    14
definition
paulson@13871
    15
  ResSet      :: "int => int set => bool"
wenzelm@19670
    16
  "ResSet m X = (\<forall>y1 y2. (y1 \<in> X & y2 \<in> X & [y1 = y2] (mod m) --> y1 = y2))"
paulson@13871
    17
paulson@13871
    18
  StandardRes :: "int => int => int"
wenzelm@19670
    19
  "StandardRes m x = x mod m"
paulson@13871
    20
paulson@13871
    21
  QuadRes     :: "int => int => bool"
wenzelm@19670
    22
  "QuadRes m x = (\<exists>y. ([(y ^ 2) = x] (mod m)))"
paulson@13871
    23
paulson@13871
    24
  Legendre    :: "int => int => int"      
wenzelm@19670
    25
  "Legendre a p = (if ([a = 0] (mod p)) then 0
paulson@13871
    26
                     else if (QuadRes p a) then 1
paulson@13871
    27
                     else -1)"
paulson@13871
    28
paulson@13871
    29
  SR          :: "int => int set"
wenzelm@19670
    30
  "SR p = {x. (0 \<le> x) & (x < p)}"
paulson@13871
    31
paulson@13871
    32
  SRStar      :: "int => int set"
wenzelm@19670
    33
  "SRStar p = {x. (0 < x) & (x < p)}"
paulson@13871
    34
paulson@13871
    35
wenzelm@19670
    36
subsection {* Some useful properties of StandardRes *}
paulson@13871
    37
wenzelm@18369
    38
lemma StandardRes_prop1: "[x = StandardRes m x] (mod m)"
paulson@13871
    39
  by (auto simp add: StandardRes_def zcong_zmod)
paulson@13871
    40
paulson@13871
    41
lemma StandardRes_prop2: "0 < m ==> (StandardRes m x1 = StandardRes m x2)
wenzelm@18369
    42
      = ([x1 = x2] (mod m))"
paulson@13871
    43
  by (auto simp add: StandardRes_def zcong_zmod_eq)
paulson@13871
    44
wenzelm@18369
    45
lemma StandardRes_prop3: "(~[x = 0] (mod p)) = (~(StandardRes p x = 0))"
paulson@13871
    46
  by (auto simp add: StandardRes_def zcong_def zdvd_iff_zmod_eq_0)
paulson@13871
    47
paulson@13871
    48
lemma StandardRes_prop4: "2 < m 
wenzelm@18369
    49
     ==> [StandardRes m x * StandardRes m y = (x * y)] (mod m)"
paulson@13871
    50
  by (auto simp add: StandardRes_def zcong_zmod_eq 
paulson@13871
    51
                     zmod_zmult_distrib [of x y m])
paulson@13871
    52
wenzelm@18369
    53
lemma StandardRes_lbound: "0 < p ==> 0 \<le> StandardRes p x"
paulson@13871
    54
  by (auto simp add: StandardRes_def pos_mod_sign)
paulson@13871
    55
wenzelm@18369
    56
lemma StandardRes_ubound: "0 < p ==> StandardRes p x < p"
paulson@13871
    57
  by (auto simp add: StandardRes_def pos_mod_bound)
paulson@13871
    58
paulson@13871
    59
lemma StandardRes_eq_zcong: 
wenzelm@18369
    60
   "(StandardRes m x = 0) = ([x = 0](mod m))"
paulson@13871
    61
  by (auto simp add: StandardRes_def zcong_eq_zdvd_prop dvd_def) 
paulson@13871
    62
paulson@13871
    63
paulson@13871
    64
subsection {* Relations between StandardRes, SRStar, and SR *}
paulson@13871
    65
wenzelm@18369
    66
lemma SRStar_SR_prop: "x \<in> SRStar p ==> x \<in> SR p"
paulson@13871
    67
  by (auto simp add: SRStar_def SR_def)
paulson@13871
    68
wenzelm@18369
    69
lemma StandardRes_SR_prop: "x \<in> SR p ==> StandardRes p x = x"
paulson@13871
    70
  by (auto simp add: SR_def StandardRes_def mod_pos_pos_trivial)
paulson@13871
    71
paulson@13871
    72
lemma StandardRes_SRStar_prop1: "2 < p ==> (StandardRes p x \<in> SRStar p) 
wenzelm@18369
    73
     = (~[x = 0] (mod p))"
paulson@13871
    74
  apply (auto simp add: StandardRes_prop3 StandardRes_def
paulson@13871
    75
                        SRStar_def pos_mod_bound)
paulson@13871
    76
  apply (subgoal_tac "0 < p")
wenzelm@18369
    77
  apply (drule_tac a = x in pos_mod_sign, arith, simp)
wenzelm@18369
    78
  done
paulson@13871
    79
wenzelm@18369
    80
lemma StandardRes_SRStar_prop1a: "x \<in> SRStar p ==> ~([x = 0] (mod p))"
paulson@13871
    81
  by (auto simp add: SRStar_def zcong_def zdvd_not_zless)
paulson@13871
    82
nipkow@16663
    83
lemma StandardRes_SRStar_prop2: "[| 2 < p; zprime p; x \<in> SRStar p |] 
wenzelm@18369
    84
     ==> StandardRes p (MultInv p x) \<in> SRStar p"
wenzelm@18369
    85
  apply (frule_tac x = "(MultInv p x)" in StandardRes_SRStar_prop1, simp)
paulson@13871
    86
  apply (rule MultInv_prop3)
paulson@13871
    87
  apply (auto simp add: SRStar_def zcong_def zdvd_not_zless)
wenzelm@18369
    88
  done
paulson@13871
    89
wenzelm@18369
    90
lemma StandardRes_SRStar_prop3: "x \<in> SRStar p ==> StandardRes p x = x"
paulson@13871
    91
  by (auto simp add: SRStar_SR_prop StandardRes_SR_prop)
paulson@13871
    92
nipkow@16663
    93
lemma StandardRes_SRStar_prop4: "[| zprime p; 2 < p; x \<in> SRStar p |] 
wenzelm@18369
    94
     ==> StandardRes p x \<in> SRStar p"
paulson@13871
    95
  by (frule StandardRes_SRStar_prop3, auto)
paulson@13871
    96
nipkow@16663
    97
lemma SRStar_mult_prop1: "[| zprime p; 2 < p; x \<in> SRStar p; y \<in> SRStar p|] 
wenzelm@18369
    98
     ==> (StandardRes p (x * y)):SRStar p"
paulson@13871
    99
  apply (frule_tac x = x in StandardRes_SRStar_prop4, auto)
paulson@13871
   100
  apply (frule_tac x = y in StandardRes_SRStar_prop4, auto)
paulson@13871
   101
  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
wenzelm@18369
   102
  done
paulson@13871
   103
nipkow@16663
   104
lemma SRStar_mult_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)); 
paulson@13871
   105
     x \<in> SRStar p |] 
wenzelm@18369
   106
     ==> StandardRes p (a * MultInv p x) \<in> SRStar p"
paulson@13871
   107
  apply (frule_tac x = x in StandardRes_SRStar_prop2, auto)
paulson@13871
   108
  apply (frule_tac x = "MultInv p x" in StandardRes_SRStar_prop1)
paulson@13871
   109
  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
wenzelm@18369
   110
  done
paulson@13871
   111
wenzelm@18369
   112
lemma SRStar_card: "2 < p ==> int(card(SRStar p)) = p - 1"
paulson@13871
   113
  by (auto simp add: SRStar_def int_card_bdd_int_set_l_l)
paulson@13871
   114
wenzelm@18369
   115
lemma SRStar_finite: "2 < p ==> finite( SRStar p)"
paulson@13871
   116
  by (auto simp add: SRStar_def bdd_int_set_l_l_finite)
paulson@13871
   117
paulson@13871
   118
paulson@13871
   119
subsection {* Properties relating ResSets with StandardRes *}
paulson@13871
   120
wenzelm@18369
   121
lemma aux: "x mod m = y mod m ==> [x = y] (mod m)"
wenzelm@18369
   122
  apply (subgoal_tac "x = y ==> [x = y](mod m)")
wenzelm@18369
   123
  apply (subgoal_tac "[x mod m = y mod m] (mod m) ==> [x = y] (mod m)")
paulson@13871
   124
  apply (auto simp add: zcong_zmod [of x y m])
wenzelm@18369
   125
  done
paulson@13871
   126
wenzelm@18369
   127
lemma StandardRes_inj_on_ResSet: "ResSet m X ==> (inj_on (StandardRes m) X)"
paulson@13871
   128
  apply (auto simp add: ResSet_def StandardRes_def inj_on_def)
paulson@13871
   129
  apply (drule_tac m = m in aux, auto)
wenzelm@18369
   130
  done
paulson@13871
   131
paulson@13871
   132
lemma StandardRes_Sum: "[| finite X; 0 < m |] 
wenzelm@18369
   133
     ==> [setsum f X = setsum (StandardRes m o f) X](mod m)" 
paulson@13871
   134
  apply (rule_tac F = X in finite_induct)
paulson@13871
   135
  apply (auto intro!: zcong_zadd simp add: StandardRes_prop1)
wenzelm@18369
   136
  done
paulson@13871
   137
wenzelm@18369
   138
lemma SR_pos: "0 < m ==> (StandardRes m ` X) \<subseteq> {x. 0 \<le> x & x < m}"
paulson@13871
   139
  by (auto simp add: StandardRes_ubound StandardRes_lbound)
paulson@13871
   140
wenzelm@18369
   141
lemma ResSet_finite: "0 < m ==> ResSet m X ==> finite X"
paulson@13871
   142
  apply (rule_tac f = "StandardRes m" in finite_imageD) 
wenzelm@18369
   143
  apply (rule_tac B = "{x. (0 :: int) \<le> x & x < m}" in finite_subset)
wenzelm@18369
   144
  apply (auto simp add: StandardRes_inj_on_ResSet bdd_int_set_l_finite SR_pos)
wenzelm@18369
   145
  done
paulson@13871
   146
wenzelm@18369
   147
lemma mod_mod_is_mod: "[x = x mod m](mod m)"
paulson@13871
   148
  by (auto simp add: zcong_zmod)
paulson@13871
   149
paulson@13871
   150
lemma StandardRes_prod: "[| finite X; 0 < m |] 
wenzelm@18369
   151
     ==> [setprod f X = setprod (StandardRes m o f) X] (mod m)"
paulson@13871
   152
  apply (rule_tac F = X in finite_induct)
wenzelm@18369
   153
  apply (auto intro!: zcong_zmult simp add: StandardRes_prop1)
wenzelm@18369
   154
  done
paulson@13871
   155
wenzelm@19670
   156
lemma ResSet_image:
wenzelm@19670
   157
  "[| 0 < m; ResSet m A; \<forall>x \<in> A. \<forall>y \<in> A. ([f x = f y](mod m) --> x = y) |] ==>
wenzelm@19670
   158
    ResSet m (f ` A)"
paulson@13871
   159
  by (auto simp add: ResSet_def)
paulson@13871
   160
wenzelm@19670
   161
wenzelm@19670
   162
subsection {* Property for SRStar *}
paulson@13871
   163
wenzelm@18369
   164
lemma ResSet_SRStar_prop: "ResSet p (SRStar p)"
paulson@13871
   165
  by (auto simp add: SRStar_def ResSet_def zcong_zless_imp_eq)
paulson@13871
   166
wenzelm@18369
   167
end