src/Pure/net.ML
author nipkow
Thu Apr 29 18:33:31 1999 +0200 (1999-04-29)
changeset 6539 2e7d2fba9f6c
parent 3560 7db9a44dfa06
child 7943 e31a3c0c2c1e
permissions -rw-r--r--
Eta contraction is now performed all the time during rewriting.
wenzelm@3549
     1
(*  Title: 	Pure/net.ML
clasohm@0
     2
    ID:         $Id$
clasohm@1460
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Discrimination nets: a data structure for indexing items
clasohm@0
     7
clasohm@0
     8
From the book 
clasohm@0
     9
    E. Charniak, C. K. Riesbeck, D. V. McDermott. 
clasohm@0
    10
    Artificial Intelligence Programming.
clasohm@0
    11
    (Lawrence Erlbaum Associates, 1980).  [Chapter 14]
nipkow@225
    12
nipkow@228
    13
match_term no longer treats abstractions as wildcards; instead they match 
nipkow@228
    14
only wildcards in patterns.  Requires operands to be beta-eta-normal.
clasohm@0
    15
*)
clasohm@0
    16
clasohm@0
    17
signature NET = 
clasohm@0
    18
  sig
clasohm@0
    19
  type key
clasohm@0
    20
  type 'a net
clasohm@0
    21
  exception DELETE and INSERT
clasohm@0
    22
  val delete: (key list * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    23
  val delete_term:   (term * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    24
  val empty: 'a net
clasohm@0
    25
  val insert: (key list * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    26
  val insert_term:   (term * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    27
  val lookup: 'a net * key list -> 'a list
clasohm@0
    28
  val match_term: 'a net -> term -> 'a list
clasohm@0
    29
  val key_of_term: term -> key list
clasohm@0
    30
  val unify_term: 'a net -> term -> 'a list
wenzelm@3548
    31
  val dest: 'a net -> (key list * 'a) list
wenzelm@3548
    32
  val merge: 'a net * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    33
  end;
clasohm@0
    34
clasohm@0
    35
paulson@1500
    36
structure Net : NET = 
clasohm@0
    37
struct
clasohm@0
    38
clasohm@0
    39
datatype key = CombK | VarK | AtomK of string;
clasohm@0
    40
nipkow@225
    41
(*Bound variables*)
clasohm@0
    42
fun string_of_bound i = "*B*" ^ chr i;
clasohm@0
    43
nipkow@228
    44
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms.
nipkow@225
    45
  Any term whose head is a Var is regarded entirely as a Var.
nipkow@228
    46
  Abstractions are also regarded as Vars;  this covers eta-conversion
nipkow@228
    47
    and "near" eta-conversions such as %x.?P(?f(x)).
clasohm@0
    48
*)
clasohm@0
    49
fun add_key_of_terms (t, cs) = 
clasohm@0
    50
  let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs))
clasohm@1460
    51
	| rands (Const(c,_), cs) = AtomK c :: cs
clasohm@1460
    52
	| rands (Free(c,_),  cs) = AtomK c :: cs
clasohm@1460
    53
	| rands (Bound i,  cs)   = AtomK (string_of_bound i) :: cs
clasohm@0
    54
  in case (head_of t) of
nipkow@225
    55
      Var _ => VarK :: cs
nipkow@228
    56
    | Abs _ => VarK :: cs
nipkow@225
    57
    | _     => rands(t,cs)
clasohm@0
    58
  end;
clasohm@0
    59
nipkow@225
    60
(*convert a term to a list of keys*)
clasohm@0
    61
fun key_of_term t = add_key_of_terms (t, []);
clasohm@0
    62
clasohm@0
    63
clasohm@0
    64
(*Trees indexed by key lists: each arc is labelled by a key.
clasohm@0
    65
  Each node contains a list of items, and arcs to children.
clasohm@0
    66
  Keys in the association list (alist) are stored in ascending order.
clasohm@0
    67
  The empty key addresses the entire net.
clasohm@0
    68
  Lookup functions preserve order in items stored at same level.
clasohm@0
    69
*)
clasohm@0
    70
datatype 'a net = Leaf of 'a list
clasohm@1460
    71
		| Net of {comb: 'a net, 
clasohm@1460
    72
			  var: 'a net,
clasohm@1460
    73
			  alist: (string * 'a net) list};
clasohm@0
    74
clasohm@0
    75
val empty = Leaf[];
clasohm@0
    76
val emptynet = Net{comb=empty, var=empty, alist=[]};
clasohm@0
    77
clasohm@0
    78
clasohm@0
    79
(*** Insertion into a discrimination net ***)
clasohm@0
    80
clasohm@1460
    81
exception INSERT;	(*duplicate item in the net*)
clasohm@0
    82
clasohm@0
    83
clasohm@0
    84
(*Adds item x to the list at the node addressed by the keys.
clasohm@0
    85
  Creates node if not already present.
clasohm@0
    86
  eq is the equality test for items. 
clasohm@0
    87
  The empty list of keys generates a Leaf node, others a Net node.
clasohm@0
    88
*)
clasohm@0
    89
fun insert ((keys,x), net, eq) =
clasohm@0
    90
  let fun ins1 ([], Leaf xs) = 
clasohm@0
    91
            if gen_mem eq (x,xs) then  raise INSERT  else Leaf(x::xs)
clasohm@0
    92
        | ins1 (keys, Leaf[]) = ins1 (keys, emptynet)   (*expand empty...*)
clasohm@0
    93
        | ins1 (CombK :: keys, Net{comb,var,alist}) =
clasohm@1460
    94
	    Net{comb=ins1(keys,comb), var=var, alist=alist}
clasohm@1460
    95
	| ins1 (VarK :: keys, Net{comb,var,alist}) =
clasohm@1460
    96
	    Net{comb=comb, var=ins1(keys,var), alist=alist}
clasohm@1460
    97
	| ins1 (AtomK a :: keys, Net{comb,var,alist}) =
clasohm@1460
    98
	    let fun newpair net = (a, ins1(keys,net)) 
clasohm@1460
    99
		fun inslist [] = [newpair empty]
clasohm@1460
   100
		  | inslist((b: string, netb) :: alist) =
clasohm@1460
   101
		      if a=b then newpair netb :: alist
clasohm@1460
   102
		      else if a<b then (*absent, ins1ert in alist*)
clasohm@1460
   103
			  newpair empty :: (b,netb) :: alist
clasohm@1460
   104
		      else (*a>b*) (b,netb) :: inslist alist
clasohm@1460
   105
	    in  Net{comb=comb, var=var, alist= inslist alist}  end
clasohm@0
   106
  in  ins1 (keys,net)  end;
clasohm@0
   107
clasohm@0
   108
fun insert_term ((t,x), net, eq) = insert((key_of_term t, x), net, eq);
clasohm@0
   109
clasohm@0
   110
(*** Deletion from a discrimination net ***)
clasohm@0
   111
clasohm@1460
   112
exception DELETE;	(*missing item in the net*)
clasohm@0
   113
clasohm@0
   114
(*Create a new Net node if it would be nonempty*)
clasohm@0
   115
fun newnet {comb=Leaf[], var=Leaf[], alist=[]} = empty
clasohm@0
   116
  | newnet {comb,var,alist} = Net{comb=comb, var=var, alist=alist};
clasohm@0
   117
clasohm@0
   118
(*add new (b,net) pair to the alist provided net is nonempty*)
clasohm@0
   119
fun conspair((b, Leaf[]), alist) = alist
clasohm@0
   120
  | conspair((b, net), alist)    = (b, net) :: alist;
clasohm@0
   121
clasohm@0
   122
(*Deletes item x from the list at the node addressed by the keys.
clasohm@0
   123
  Raises DELETE if absent.  Collapses the net if possible.
clasohm@0
   124
  eq is the equality test for items. *)
clasohm@0
   125
fun delete ((keys, x), net, eq) = 
clasohm@0
   126
  let fun del1 ([], Leaf xs) =
clasohm@0
   127
            if gen_mem eq (x,xs) then Leaf (gen_rem eq (xs,x))
clasohm@0
   128
            else raise DELETE
clasohm@1460
   129
	| del1 (keys, Leaf[]) = raise DELETE
clasohm@1460
   130
	| del1 (CombK :: keys, Net{comb,var,alist}) =
clasohm@1460
   131
	    newnet{comb=del1(keys,comb), var=var, alist=alist}
clasohm@1460
   132
	| del1 (VarK :: keys, Net{comb,var,alist}) =
clasohm@1460
   133
	    newnet{comb=comb, var=del1(keys,var), alist=alist}
clasohm@1460
   134
	| del1 (AtomK a :: keys, Net{comb,var,alist}) =
clasohm@1460
   135
	    let fun newpair net = (a, del1(keys,net)) 
clasohm@1460
   136
		fun dellist [] = raise DELETE
clasohm@1460
   137
		  | dellist((b: string, netb) :: alist) =
clasohm@1460
   138
		      if a=b then conspair(newpair netb, alist)
clasohm@1460
   139
		      else if a<b then (*absent*) raise DELETE
clasohm@1460
   140
		      else (*a>b*)  (b,netb) :: dellist alist
clasohm@1460
   141
	    in  newnet{comb=comb, var=var, alist= dellist alist}  end
clasohm@0
   142
  in  del1 (keys,net)  end;
clasohm@0
   143
clasohm@0
   144
fun delete_term ((t,x), net, eq) = delete((key_of_term t, x), net, eq);
clasohm@0
   145
clasohm@0
   146
(*** Retrieval functions for discrimination nets ***)
clasohm@0
   147
clasohm@0
   148
exception OASSOC;
clasohm@0
   149
clasohm@0
   150
(*Ordered association list lookup*)
clasohm@0
   151
fun oassoc ([], a: string) = raise OASSOC
clasohm@0
   152
  | oassoc ((b,x)::pairs, a) =
clasohm@0
   153
      if b<a then oassoc(pairs,a)
clasohm@0
   154
      else if a=b then x
clasohm@0
   155
      else raise OASSOC;
clasohm@0
   156
clasohm@0
   157
(*Return the list of items at the given node, [] if no such node*)
clasohm@0
   158
fun lookup (Leaf(xs), []) = xs
clasohm@1460
   159
  | lookup (Leaf _, _::_) = []	(*non-empty keys and empty net*)
clasohm@0
   160
  | lookup (Net{comb,var,alist}, CombK :: keys) = lookup(comb,keys)
clasohm@0
   161
  | lookup (Net{comb,var,alist}, VarK :: keys) = lookup(var,keys)
clasohm@0
   162
  | lookup (Net{comb,var,alist}, AtomK a :: keys) = 
clasohm@0
   163
      lookup(oassoc(alist,a),keys)  handle  OASSOC => [];
clasohm@0
   164
clasohm@0
   165
clasohm@0
   166
(*Skipping a term in a net.  Recursively skip 2 levels if a combination*)
clasohm@0
   167
fun net_skip (Leaf _, nets) = nets
clasohm@0
   168
  | net_skip (Net{comb,var,alist}, nets) = 
clasohm@0
   169
    foldr net_skip 
clasohm@0
   170
          (net_skip (comb,[]), 
clasohm@1460
   171
	   foldr (fn ((_,net), nets) => net::nets) (alist, var::nets));
clasohm@0
   172
clasohm@0
   173
(** Matching and Unification**)
clasohm@0
   174
clasohm@0
   175
(*conses the linked net, if present, to nets*)
clasohm@0
   176
fun look1 (alist, a) nets =
clasohm@0
   177
       oassoc(alist,a) :: nets  handle  OASSOC => nets;
clasohm@0
   178
clasohm@0
   179
(*Return the nodes accessible from the term (cons them before nets) 
clasohm@0
   180
  "unif" signifies retrieval for unification rather than matching.
clasohm@0
   181
  Var in net matches any term.
nipkow@225
   182
  Abs or Var in object: if "unif", regarded as wildcard, 
nipkow@225
   183
                                   else matches only a variable in net.
nipkow@225
   184
*)
clasohm@0
   185
fun matching unif t (net,nets) =
clasohm@0
   186
  let fun rands _ (Leaf _, nets) = nets
clasohm@1460
   187
	| rands t (Net{comb,alist,...}, nets) =
clasohm@1460
   188
	    case t of 
clasohm@1460
   189
		f$t => foldr (matching unif t) (rands f (comb,[]), nets)
clasohm@1460
   190
	      | Const(c,_) => look1 (alist, c) nets
clasohm@1460
   191
	      | Free(c,_)  => look1 (alist, c) nets
clasohm@1460
   192
	      | Bound i    => look1 (alist, string_of_bound i) nets
clasohm@1460
   193
	      | _      	   => nets
clasohm@0
   194
  in 
clasohm@0
   195
     case net of
clasohm@1460
   196
	 Leaf _ => nets
clasohm@0
   197
       | Net{var,...} =>
nipkow@6539
   198
	     case head_of t of
paulson@2836
   199
		 Var _ => if unif then net_skip (net,nets)
paulson@2836
   200
			  else var::nets	   (*only matches Var in net*)
paulson@2836
   201
  (*If "unif" then a var instantiation in the abstraction could allow
paulson@2836
   202
    an eta-reduction, so regard the abstraction as a wildcard.*)
paulson@2836
   203
	       | Abs _ => if unif then net_skip (net,nets)
paulson@2836
   204
			  else var::nets	   (*only a Var can match*)
nipkow@6539
   205
	       | _ => rands t (net, var::nets)  (*var could match also*)
clasohm@0
   206
  end;
clasohm@0
   207
paulson@2672
   208
fun extract_leaves l = List.concat (map (fn Leaf(xs) => xs) l);
clasohm@0
   209
nipkow@225
   210
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*)
clasohm@0
   211
fun match_term net t = 
clasohm@0
   212
    extract_leaves (matching false t (net,[]));
clasohm@0
   213
clasohm@0
   214
(*return items whose key could unify with t*)
clasohm@0
   215
fun unify_term net t = 
clasohm@0
   216
    extract_leaves (matching true t (net,[]));
clasohm@0
   217
wenzelm@3548
   218
wenzelm@3548
   219
(** dest **)
wenzelm@3548
   220
wenzelm@3548
   221
fun cons_fst x (xs, y) = (x :: xs, y);
wenzelm@3548
   222
wenzelm@3548
   223
fun dest (Leaf xs) = map (pair []) xs
wenzelm@3548
   224
  | dest (Net {comb, var, alist}) =
wenzelm@3560
   225
      map (cons_fst CombK) (dest comb) @
wenzelm@3560
   226
      map (cons_fst VarK) (dest var) @
wenzelm@3560
   227
      flat (map (fn (a, net) => map (cons_fst (AtomK a)) (dest net)) alist);
wenzelm@3548
   228
wenzelm@3548
   229
wenzelm@3548
   230
(** merge **)
wenzelm@3548
   231
wenzelm@3548
   232
fun add eq (net, keys_x) =
wenzelm@3548
   233
  insert (keys_x, net, eq) handle INSERT => net;
wenzelm@3548
   234
wenzelm@3548
   235
fun merge (net1, net2, eq) =
wenzelm@3548
   236
  foldl (add eq) (net1, dest net2);
wenzelm@3548
   237
wenzelm@3548
   238
clasohm@0
   239
end;