src/HOL/BNF_Fixpoint_Base.thy
author haftmann
Mon Jun 05 15:59:41 2017 +0200 (2017-06-05)
changeset 66010 2f7d39285a1a
parent 63046 8053ef5a0174
child 67091 1393c2340eec
permissions -rw-r--r--
executable domain membership checks
blanchet@58128
     1
(*  Title:      HOL/BNF_Fixpoint_Base.thy
blanchet@53311
     2
    Author:     Lorenz Panny, TU Muenchen
blanchet@49308
     3
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@49308
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@57698
     5
    Author:     Martin Desharnais, TU Muenchen
blanchet@57698
     6
    Copyright   2012, 2013, 2014
blanchet@49308
     7
blanchet@58352
     8
Shared fixpoint operations on bounded natural functors.
blanchet@49308
     9
*)
blanchet@49308
    10
wenzelm@60758
    11
section \<open>Shared Fixpoint Operations on Bounded Natural Functors\<close>
blanchet@49308
    12
blanchet@58128
    13
theory BNF_Fixpoint_Base
blanchet@58128
    14
imports BNF_Composition Basic_BNFs
blanchet@49308
    15
begin
blanchet@49308
    16
desharna@57525
    17
lemma conj_imp_eq_imp_imp: "(P \<and> Q \<Longrightarrow> PROP R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> PROP R)"
wenzelm@61169
    18
  by standard simp_all
desharna@57525
    19
blanchet@62158
    20
lemma predicate2D_conj: "P \<le> Q \<and> R \<Longrightarrow> R \<and> (P x y \<longrightarrow> Q x y)"
blanchet@62158
    21
  by blast
desharna@57302
    22
blanchet@49591
    23
lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
blanchet@58159
    24
  by blast
blanchet@49585
    25
blanchet@55414
    26
lemma case_unit_Unity: "(case u of () \<Rightarrow> f) = f"
blanchet@58159
    27
  by (cases u) (hypsubst, rule unit.case)
blanchet@49312
    28
blanchet@55414
    29
lemma case_prod_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
blanchet@58159
    30
  by simp
blanchet@49539
    31
blanchet@49335
    32
lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
blanchet@58159
    33
  by simp
blanchet@49335
    34
blanchet@49683
    35
lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
blanchet@58159
    36
  unfolding comp_def fun_eq_iff by simp
blanchet@49312
    37
blanchet@49312
    38
lemma o_bij:
blanchet@49683
    39
  assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
blanchet@49312
    40
  shows "bij f"
blanchet@49312
    41
unfolding bij_def inj_on_def surj_def proof safe
blanchet@49312
    42
  fix a1 a2 assume "f a1 = f a2"
blanchet@49312
    43
  hence "g ( f a1) = g (f a2)" by simp
blanchet@49312
    44
  thus "a1 = a2" using gf unfolding fun_eq_iff by simp
blanchet@49312
    45
next
blanchet@49312
    46
  fix b
blanchet@49312
    47
  have "b = f (g b)"
blanchet@49312
    48
  using fg unfolding fun_eq_iff by simp
blanchet@49312
    49
  thus "EX a. b = f a" by blast
blanchet@49312
    50
qed
blanchet@49312
    51
blanchet@55414
    52
lemma case_sum_step:
blanchet@58159
    53
  "case_sum (case_sum f' g') g (Inl p) = case_sum f' g' p"
blanchet@58159
    54
  "case_sum f (case_sum f' g') (Inr p) = case_sum f' g' p"
blanchet@58159
    55
  by auto
blanchet@49312
    56
blanchet@49312
    57
lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
blanchet@58159
    58
  by blast
blanchet@49312
    59
traytel@55803
    60
lemma type_copy_obj_one_point_absE:
traytel@55811
    61
  assumes "type_definition Rep Abs UNIV" "\<forall>x. s = Abs x \<longrightarrow> P" shows P
traytel@55811
    62
  using type_definition.Rep_inverse[OF assms(1)]
traytel@55811
    63
  by (intro mp[OF spec[OF assms(2), of "Rep s"]]) simp
traytel@55803
    64
blanchet@49312
    65
lemma obj_sumE_f:
traytel@55811
    66
  assumes "\<forall>x. s = f (Inl x) \<longrightarrow> P" "\<forall>x. s = f (Inr x) \<longrightarrow> P"
traytel@55811
    67
  shows "\<forall>x. s = f x \<longrightarrow> P"
traytel@55811
    68
proof
traytel@55811
    69
  fix x from assms show "s = f x \<longrightarrow> P" by (cases x) auto
traytel@55811
    70
qed
blanchet@49312
    71
blanchet@55414
    72
lemma case_sum_if:
blanchet@58159
    73
  "case_sum f g (if p then Inl x else Inr y) = (if p then f x else g y)"
blanchet@58159
    74
  by simp
blanchet@49312
    75
traytel@62325
    76
lemma prod_set_simps[simp]:
blanchet@58159
    77
  "fsts (x, y) = {x}"
blanchet@58159
    78
  "snds (x, y) = {y}"
traytel@58916
    79
  unfolding prod_set_defs by simp+
blanchet@49429
    80
traytel@62325
    81
lemma sum_set_simps[simp]:
blanchet@58159
    82
  "setl (Inl x) = {x}"
blanchet@58159
    83
  "setl (Inr x) = {}"
blanchet@58159
    84
  "setr (Inl x) = {}"
blanchet@58159
    85
  "setr (Inr x) = {x}"
blanchet@58159
    86
  unfolding sum_set_defs by simp+
blanchet@49429
    87
desharna@57301
    88
lemma Inl_Inr_False: "(Inl x = Inr y) = False"
desharna@57301
    89
  by simp
desharna@57301
    90
desharna@57471
    91
lemma Inr_Inl_False: "(Inr x = Inl y) = False"
desharna@57471
    92
  by simp
desharna@57471
    93
traytel@52505
    94
lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
blanchet@58159
    95
  by blast
traytel@52505
    96
blanchet@56640
    97
lemma rewriteR_comp_comp: "\<lbrakk>g \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = f \<circ> r"
blanchet@55066
    98
  unfolding comp_def fun_eq_iff by auto
traytel@52913
    99
blanchet@56640
   100
lemma rewriteR_comp_comp2: "\<lbrakk>g \<circ> h = r1 \<circ> r2; f \<circ> r1 = l\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = l \<circ> r2"
blanchet@55066
   101
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   102
blanchet@56640
   103
lemma rewriteL_comp_comp: "\<lbrakk>f \<circ> g = l\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l \<circ> h"
blanchet@55066
   104
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   105
blanchet@56640
   106
lemma rewriteL_comp_comp2: "\<lbrakk>f \<circ> g = l1 \<circ> l2; l2 \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l1 \<circ> r"
blanchet@55066
   107
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   108
wenzelm@57641
   109
lemma convol_o: "\<langle>f, g\<rangle> \<circ> h = \<langle>f \<circ> h, g \<circ> h\<rangle>"
traytel@52913
   110
  unfolding convol_def by auto
traytel@52913
   111
wenzelm@57641
   112
lemma map_prod_o_convol: "map_prod h1 h2 \<circ> \<langle>f, g\<rangle> = \<langle>h1 \<circ> f, h2 \<circ> g\<rangle>"
traytel@52913
   113
  unfolding convol_def by auto
traytel@52913
   114
wenzelm@57641
   115
lemma map_prod_o_convol_id: "(map_prod f id \<circ> \<langle>id, g\<rangle>) x = \<langle>id \<circ> f, g\<rangle> x"
blanchet@55932
   116
  unfolding map_prod_o_convol id_comp comp_id ..
traytel@52913
   117
blanchet@56640
   118
lemma o_case_sum: "h \<circ> case_sum f g = case_sum (h \<circ> f) (h \<circ> g)"
blanchet@55066
   119
  unfolding comp_def by (auto split: sum.splits)
traytel@52913
   120
blanchet@56640
   121
lemma case_sum_o_map_sum: "case_sum f g \<circ> map_sum h1 h2 = case_sum (f \<circ> h1) (g \<circ> h2)"
blanchet@55066
   122
  unfolding comp_def by (auto split: sum.splits)
traytel@52913
   123
blanchet@56640
   124
lemma case_sum_o_map_sum_id: "(case_sum id g \<circ> map_sum f id) x = case_sum (f \<circ> id) g x"
blanchet@55931
   125
  unfolding case_sum_o_map_sum id_comp comp_id ..
traytel@52913
   126
blanchet@55945
   127
lemma rel_fun_def_butlast:
blanchet@55945
   128
  "rel_fun R (rel_fun S T) f g = (\<forall>x y. R x y \<longrightarrow> (rel_fun S T) (f x) (g y))"
blanchet@55945
   129
  unfolding rel_fun_def ..
traytel@52731
   130
traytel@53105
   131
lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
traytel@53105
   132
  by auto
traytel@53105
   133
traytel@53105
   134
lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
traytel@53105
   135
  by auto
traytel@53105
   136
blanchet@53308
   137
lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
blanchet@53308
   138
  unfolding Grp_def id_apply by blast
blanchet@53308
   139
blanchet@53308
   140
lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
blanchet@53308
   141
   (\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
blanchet@53308
   142
  unfolding Grp_def by rule auto
blanchet@53308
   143
traytel@55803
   144
lemma vimage2p_mono: "vimage2p f g R x y \<Longrightarrow> R \<le> S \<Longrightarrow> vimage2p f g S x y"
traytel@55803
   145
  unfolding vimage2p_def by blast
traytel@55803
   146
traytel@55803
   147
lemma vimage2p_refl: "(\<And>x. R x x) \<Longrightarrow> vimage2p f f R x x"
traytel@55803
   148
  unfolding vimage2p_def by auto
traytel@55803
   149
traytel@55803
   150
lemma
traytel@55803
   151
  assumes "type_definition Rep Abs UNIV"
blanchet@56640
   152
  shows type_copy_Rep_o_Abs: "Rep \<circ> Abs = id" and type_copy_Abs_o_Rep: "Abs \<circ> Rep = id"
traytel@55803
   153
  unfolding fun_eq_iff comp_apply id_apply
traytel@55803
   154
    type_definition.Abs_inverse[OF assms UNIV_I] type_definition.Rep_inverse[OF assms] by simp_all
traytel@55803
   155
traytel@55803
   156
lemma type_copy_map_comp0_undo:
traytel@55803
   157
  assumes "type_definition Rep Abs UNIV"
traytel@55803
   158
          "type_definition Rep' Abs' UNIV"
traytel@55803
   159
          "type_definition Rep'' Abs'' UNIV"
blanchet@56640
   160
  shows "Abs' \<circ> M \<circ> Rep'' = (Abs' \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> Rep'') \<Longrightarrow> M1 \<circ> M2 = M"
traytel@55803
   161
  by (rule sym) (auto simp: fun_eq_iff type_definition.Abs_inject[OF assms(2) UNIV_I UNIV_I]
traytel@55803
   162
    type_definition.Abs_inverse[OF assms(1) UNIV_I]
traytel@55803
   163
    type_definition.Abs_inverse[OF assms(3) UNIV_I] dest: spec[of _ "Abs'' x" for x])
traytel@55803
   164
blanchet@55854
   165
lemma vimage2p_id: "vimage2p id id R = R"
blanchet@55854
   166
  unfolding vimage2p_def by auto
blanchet@55854
   167
blanchet@56640
   168
lemma vimage2p_comp: "vimage2p (f1 \<circ> f2) (g1 \<circ> g2) = vimage2p f2 g2 \<circ> vimage2p f1 g1"
traytel@55803
   169
  unfolding fun_eq_iff vimage2p_def o_apply by simp
traytel@55803
   170
desharna@58446
   171
lemma vimage2p_rel_fun: "rel_fun (vimage2p f g R) R f g"
desharna@58446
   172
  unfolding rel_fun_def vimage2p_def by auto
desharna@58446
   173
blanchet@56650
   174
lemma fun_cong_unused_0: "f = (\<lambda>x. g) \<Longrightarrow> f (\<lambda>x. 0) = g"
blanchet@56650
   175
  by (erule arg_cong)
blanchet@56650
   176
blanchet@56684
   177
lemma inj_on_convol_ident: "inj_on (\<lambda>x. (x, f x)) X"
blanchet@56650
   178
  unfolding inj_on_def by simp
blanchet@56650
   179
desharna@58734
   180
lemma map_sum_if_distrib_then:
desharna@58734
   181
  "\<And>f g e x y. map_sum f g (if e then Inl x else y) = (if e then Inl (f x) else map_sum f g y)"
desharna@58734
   182
  "\<And>f g e x y. map_sum f g (if e then Inr x else y) = (if e then Inr (g x) else map_sum f g y)"
desharna@58734
   183
  by simp_all
desharna@58734
   184
desharna@58734
   185
lemma map_sum_if_distrib_else:
desharna@58734
   186
  "\<And>f g e x y. map_sum f g (if e then x else Inl y) = (if e then map_sum f g x else Inl (f y))"
desharna@58734
   187
  "\<And>f g e x y. map_sum f g (if e then x else Inr y) = (if e then map_sum f g x else Inr (g y))"
desharna@58734
   188
  by simp_all
desharna@58734
   189
blanchet@56650
   190
lemma case_prod_app: "case_prod f x y = case_prod (\<lambda>l r. f l r y) x"
blanchet@56650
   191
  by (case_tac x) simp
blanchet@56650
   192
blanchet@56650
   193
lemma case_sum_map_sum: "case_sum l r (map_sum f g x) = case_sum (l \<circ> f) (r \<circ> g) x"
blanchet@56650
   194
  by (case_tac x) simp+
blanchet@56650
   195
desharna@58446
   196
lemma case_sum_transfer:
desharna@58446
   197
  "rel_fun (rel_fun R T) (rel_fun (rel_fun S T) (rel_fun (rel_sum R S) T)) case_sum case_sum"
traytel@58916
   198
  unfolding rel_fun_def by (auto split: sum.splits)
desharna@58446
   199
blanchet@56650
   200
lemma case_prod_map_prod: "case_prod h (map_prod f g x) = case_prod (\<lambda>l r. h (f l) (g r)) x"
blanchet@56650
   201
  by (case_tac x) simp+
blanchet@56650
   202
desharna@58732
   203
lemma case_prod_o_map_prod: "case_prod f \<circ> map_prod g1 g2 = case_prod (\<lambda>l r. f (g1 l) (g2 r))"
desharna@58732
   204
  unfolding comp_def by auto
desharna@58732
   205
desharna@58446
   206
lemma case_prod_transfer:
desharna@58446
   207
  "(rel_fun (rel_fun A (rel_fun B C)) (rel_fun (rel_prod A B) C)) case_prod case_prod"
traytel@58916
   208
  unfolding rel_fun_def by simp
blanchet@56650
   209
desharna@57489
   210
lemma eq_ifI: "(P \<longrightarrow> t = u1) \<Longrightarrow> (\<not> P \<longrightarrow> t = u2) \<Longrightarrow> t = (if P then u1 else u2)"
desharna@57489
   211
  by simp
desharna@57489
   212
desharna@58446
   213
lemma comp_transfer:
desharna@58446
   214
  "rel_fun (rel_fun B C) (rel_fun (rel_fun A B) (rel_fun A C)) (op \<circ>) (op \<circ>)"
desharna@58446
   215
  unfolding rel_fun_def by simp
desharna@58446
   216
desharna@58448
   217
lemma If_transfer: "rel_fun (op =) (rel_fun A (rel_fun A A)) If If"
desharna@58448
   218
  unfolding rel_fun_def by simp
desharna@58448
   219
desharna@58448
   220
lemma Abs_transfer:
desharna@58448
   221
  assumes type_copy1: "type_definition Rep1 Abs1 UNIV"
desharna@58448
   222
  assumes type_copy2: "type_definition Rep2 Abs2 UNIV"
desharna@58448
   223
  shows "rel_fun R (vimage2p Rep1 Rep2 R) Abs1 Abs2"
desharna@58448
   224
  unfolding vimage2p_def rel_fun_def
desharna@58448
   225
    type_definition.Abs_inverse[OF type_copy1 UNIV_I]
desharna@58448
   226
    type_definition.Abs_inverse[OF type_copy2 UNIV_I] by simp
desharna@58448
   227
desharna@58448
   228
lemma Inl_transfer:
desharna@58448
   229
  "rel_fun S (rel_sum S T) Inl Inl"
desharna@58448
   230
  by auto
desharna@58448
   231
desharna@58448
   232
lemma Inr_transfer:
desharna@58448
   233
  "rel_fun T (rel_sum S T) Inr Inr"
desharna@58448
   234
  by auto
desharna@58448
   235
desharna@58448
   236
lemma Pair_transfer: "rel_fun A (rel_fun B (rel_prod A B)) Pair Pair"
traytel@58916
   237
  unfolding rel_fun_def by simp
desharna@58448
   238
blanchet@62335
   239
lemma eq_onp_live_step: "x = y \<Longrightarrow> eq_onp P a a \<and> x \<longleftrightarrow> P a \<and> y"
blanchet@62335
   240
  by (simp only: eq_onp_same_args)
blanchet@62335
   241
blanchet@62335
   242
lemma top_conj: "top x \<and> P \<longleftrightarrow> P" "P \<and> top x \<longleftrightarrow> P"
blanchet@62335
   243
  by blast+
blanchet@62335
   244
traytel@62905
   245
lemma fst_convol': "fst (\<langle>f, g\<rangle> x) = f x"
traytel@62905
   246
  using fst_convol unfolding convol_def by simp
traytel@62905
   247
traytel@62905
   248
lemma snd_convol': "snd (\<langle>f, g\<rangle> x) = g x"
traytel@62905
   249
  using snd_convol unfolding convol_def by simp
traytel@62905
   250
traytel@62905
   251
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> \<langle>g, snd o f\<rangle> = f"
traytel@62905
   252
  unfolding convol_def by auto
traytel@62905
   253
traytel@62905
   254
lemma convol_expand_snd':
traytel@62905
   255
  assumes "(fst o f = g)"
traytel@62905
   256
  shows "h = snd o f \<longleftrightarrow> \<langle>g, h\<rangle> = f"
traytel@62905
   257
proof -
traytel@62905
   258
  from assms have *: "\<langle>g, snd o f\<rangle> = f" by (rule convol_expand_snd)
traytel@62905
   259
  then have "h = snd o f \<longleftrightarrow> h = snd o \<langle>g, snd o f\<rangle>" by simp
traytel@62905
   260
  moreover have "\<dots> \<longleftrightarrow> h = snd o f" by (simp add: snd_convol)
traytel@62905
   261
  moreover have "\<dots> \<longleftrightarrow> \<langle>g, h\<rangle> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff)
traytel@62905
   262
  ultimately show ?thesis by simp
traytel@62905
   263
qed
traytel@62905
   264
traytel@62905
   265
lemma case_sum_expand_Inr_pointfree: "f o Inl = g \<Longrightarrow> case_sum g (f o Inr) = f"
traytel@62905
   266
  by (auto split: sum.splits)
traytel@62905
   267
traytel@62905
   268
lemma case_sum_expand_Inr': "f o Inl = g \<Longrightarrow> h = f o Inr \<longleftrightarrow> case_sum g h = f"
traytel@62905
   269
  by (rule iffI) (auto simp add: fun_eq_iff split: sum.splits)
traytel@62905
   270
traytel@62905
   271
lemma case_sum_expand_Inr: "f o Inl = g \<Longrightarrow> f x = case_sum g (f o Inr) x"
traytel@62905
   272
  by (auto split: sum.splits)
traytel@62905
   273
traytel@62905
   274
lemma id_transfer: "rel_fun A A id id"
traytel@62905
   275
  unfolding rel_fun_def by simp
traytel@62905
   276
traytel@62905
   277
lemma fst_transfer: "rel_fun (rel_prod A B) A fst fst"
traytel@62905
   278
  unfolding rel_fun_def by simp
traytel@62905
   279
traytel@62905
   280
lemma snd_transfer: "rel_fun (rel_prod A B) B snd snd"
traytel@62905
   281
  unfolding rel_fun_def by simp
traytel@62905
   282
traytel@62905
   283
lemma convol_transfer:
traytel@62905
   284
  "rel_fun (rel_fun R S) (rel_fun (rel_fun R T) (rel_fun R (rel_prod S T))) BNF_Def.convol BNF_Def.convol"
traytel@62905
   285
  unfolding rel_fun_def convol_def by auto
traytel@62905
   286
traytel@63046
   287
lemma Let_const: "Let x (\<lambda>_. c) = c"
traytel@63046
   288
  unfolding Let_def ..
traytel@63046
   289
traytel@62905
   290
ML_file "Tools/BNF/bnf_fp_util_tactics.ML"
blanchet@55062
   291
ML_file "Tools/BNF/bnf_fp_util.ML"
blanchet@55062
   292
ML_file "Tools/BNF/bnf_fp_def_sugar_tactics.ML"
blanchet@55062
   293
ML_file "Tools/BNF/bnf_fp_def_sugar.ML"
blanchet@55062
   294
ML_file "Tools/BNF/bnf_fp_n2m_tactics.ML"
blanchet@55062
   295
ML_file "Tools/BNF/bnf_fp_n2m.ML"
blanchet@55062
   296
ML_file "Tools/BNF/bnf_fp_n2m_sugar.ML"
blanchet@55702
   297
blanchet@49308
   298
end