src/HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy
author haftmann
Mon Jun 05 15:59:41 2017 +0200 (2017-06-05)
changeset 66010 2f7d39285a1a
parent 65486 d801126a14cb
child 66447 a1f5c5c26fa6
permissions -rw-r--r--
executable domain membership checks
wenzelm@65435
     1
(*  Title:      HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy
wenzelm@65435
     2
    Author:     Amine Chaieb, TU Muenchen
wenzelm@65435
     3
*)
chaieb@26123
     4
wenzelm@60424
     5
section \<open>Fundamental Theorem of Algebra\<close>
chaieb@26123
     6
chaieb@26123
     7
theory Fundamental_Theorem_Algebra
wenzelm@51537
     8
imports Polynomial Complex_Main
chaieb@26123
     9
begin
chaieb@26123
    10
wenzelm@60424
    11
subsection \<open>More lemmas about module of complex numbers\<close>
chaieb@26123
    12
wenzelm@60424
    13
text \<open>The triangle inequality for cmod\<close>
wenzelm@60424
    14
chaieb@26123
    15
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
chaieb@26123
    16
  using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
chaieb@26123
    17
wenzelm@60424
    18
wenzelm@60424
    19
subsection \<open>Basic lemmas about polynomials\<close>
chaieb@26123
    20
chaieb@26123
    21
lemma poly_bound_exists:
wenzelm@56778
    22
  fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
wenzelm@56778
    23
  shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)"
wenzelm@56778
    24
proof (induct p)
wenzelm@56778
    25
  case 0
wenzelm@56778
    26
  then show ?case by (rule exI[where x=1]) simp
chaieb@26123
    27
next
huffman@29464
    28
  case (pCons c cs)
lp15@55735
    29
  from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m"
chaieb@26123
    30
    by blast
lp15@55735
    31
  let ?k = " 1 + norm c + \<bar>r * m\<bar>"
wenzelm@56795
    32
  have kp: "?k > 0"
wenzelm@56795
    33
    using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith
wenzelm@60424
    34
  have "norm (poly (pCons c cs) z) \<le> ?k" if H: "norm z \<le> r" for z
wenzelm@60424
    35
  proof -
wenzelm@56778
    36
    from m H have th: "norm (poly cs z) \<le> m"
wenzelm@56778
    37
      by blast
wenzelm@56795
    38
    from H have rp: "r \<ge> 0"
wenzelm@56795
    39
      using norm_ge_zero[of z] by arith
wenzelm@56795
    40
    have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)"
huffman@27514
    41
      using norm_triangle_ineq[of c "z* poly cs z"] by simp
wenzelm@56778
    42
    also have "\<dots> \<le> norm c + r * m"
wenzelm@56778
    43
      using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]]
lp15@55735
    44
      by (simp add: norm_mult)
wenzelm@56778
    45
    also have "\<dots> \<le> ?k"
wenzelm@56778
    46
      by simp
wenzelm@60424
    47
    finally show ?thesis .
wenzelm@60424
    48
  qed
chaieb@26123
    49
  with kp show ?case by blast
chaieb@26123
    50
qed
chaieb@26123
    51
chaieb@26123
    52
wenzelm@60424
    53
text \<open>Offsetting the variable in a polynomial gives another of same degree\<close>
huffman@29464
    54
haftmann@52380
    55
definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
wenzelm@56778
    56
  where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0"
huffman@29464
    57
huffman@29464
    58
lemma offset_poly_0: "offset_poly 0 h = 0"
haftmann@52380
    59
  by (simp add: offset_poly_def)
huffman@29464
    60
huffman@29464
    61
lemma offset_poly_pCons:
huffman@29464
    62
  "offset_poly (pCons a p) h =
huffman@29464
    63
    smult h (offset_poly p h) + pCons a (offset_poly p h)"
haftmann@52380
    64
  by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)
huffman@29464
    65
huffman@29464
    66
lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
wenzelm@56778
    67
  by (simp add: offset_poly_pCons offset_poly_0)
huffman@29464
    68
huffman@29464
    69
lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
wenzelm@56778
    70
  apply (induct p)
wenzelm@56778
    71
  apply (simp add: offset_poly_0)
wenzelm@56778
    72
  apply (simp add: offset_poly_pCons algebra_simps)
wenzelm@56778
    73
  done
huffman@29464
    74
huffman@29464
    75
lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
wenzelm@56778
    76
  by (induct p arbitrary: a) (simp, force)
chaieb@26123
    77
huffman@29464
    78
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
wenzelm@56778
    79
  apply (safe intro!: offset_poly_0)
wenzelm@56795
    80
  apply (induct p)
wenzelm@56795
    81
  apply simp
wenzelm@56778
    82
  apply (simp add: offset_poly_pCons)
wenzelm@56778
    83
  apply (frule offset_poly_eq_0_lemma, simp)
wenzelm@56778
    84
  done
huffman@29464
    85
huffman@29464
    86
lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
wenzelm@56778
    87
  apply (induct p)
wenzelm@56778
    88
  apply (simp add: offset_poly_0)
wenzelm@56778
    89
  apply (case_tac "p = 0")
wenzelm@56778
    90
  apply (simp add: offset_poly_0 offset_poly_pCons)
wenzelm@56778
    91
  apply (simp add: offset_poly_pCons)
wenzelm@56778
    92
  apply (subst degree_add_eq_right)
wenzelm@56778
    93
  apply (rule le_less_trans [OF degree_smult_le])
wenzelm@56778
    94
  apply (simp add: offset_poly_eq_0_iff)
wenzelm@56778
    95
  apply (simp add: offset_poly_eq_0_iff)
wenzelm@56778
    96
  done
huffman@29464
    97
wenzelm@56778
    98
definition "psize p = (if p = 0 then 0 else Suc (degree p))"
huffman@29464
    99
huffman@29538
   100
lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"
huffman@29538
   101
  unfolding psize_def by simp
huffman@29464
   102
wenzelm@56778
   103
lemma poly_offset:
wenzelm@56778
   104
  fixes p :: "'a::comm_ring_1 poly"
wenzelm@56778
   105
  shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))"
huffman@29464
   106
proof (intro exI conjI)
huffman@29538
   107
  show "psize (offset_poly p a) = psize p"
huffman@29538
   108
    unfolding psize_def
huffman@29464
   109
    by (simp add: offset_poly_eq_0_iff degree_offset_poly)
huffman@29464
   110
  show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
huffman@29464
   111
    by (simp add: poly_offset_poly)
chaieb@26123
   112
qed
chaieb@26123
   113
wenzelm@60424
   114
text \<open>An alternative useful formulation of completeness of the reals\<close>
wenzelm@56778
   115
lemma real_sup_exists:
wenzelm@56778
   116
  assumes ex: "\<exists>x. P x"
wenzelm@56778
   117
    and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
wenzelm@56778
   118
  shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
hoelzl@54263
   119
proof
hoelzl@54263
   120
  from bz have "bdd_above (Collect P)"
hoelzl@54263
   121
    by (force intro: less_imp_le)
hoelzl@54263
   122
  then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)"
hoelzl@54263
   123
    using ex bz by (subst less_cSup_iff) auto
chaieb@26123
   124
qed
chaieb@26123
   125
wenzelm@60424
   126
wenzelm@60424
   127
subsection \<open>Fundamental theorem of algebra\<close>
wenzelm@60424
   128
wenzelm@60424
   129
lemma unimodular_reduce_norm:
chaieb@26123
   130
  assumes md: "cmod z = 1"
wenzelm@63589
   131
  shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + \<i>) < 1 \<or> cmod (z - \<i>) < 1"
wenzelm@56778
   132
proof -
wenzelm@56778
   133
  obtain x y where z: "z = Complex x y "
wenzelm@56778
   134
    by (cases z) auto
wenzelm@56778
   135
  from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1"
wenzelm@56778
   136
    by (simp add: cmod_def)
wenzelm@63589
   137
  have False if "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + \<i>) \<ge> 1" "cmod (z - \<i>) \<ge> 1"
wenzelm@60557
   138
  proof -
wenzelm@60557
   139
    from that z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1"
nipkow@29667
   140
      by (simp_all add: cmod_def power2_eq_square algebra_simps)
wenzelm@61945
   141
    then have "\<bar>2 * x\<bar> \<le> 1" "\<bar>2 * y\<bar> \<le> 1"
wenzelm@56778
   142
      by simp_all
wenzelm@61945
   143
    then have "\<bar>2 * x\<bar>\<^sup>2 \<le> 1\<^sup>2" "\<bar>2 * y\<bar>\<^sup>2 \<le> 1\<^sup>2"
chaieb@26123
   144
      by - (rule power_mono, simp, simp)+
wenzelm@56778
   145
    then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1"
wenzelm@51541
   146
      by (simp_all add: power_mult_distrib)
wenzelm@60557
   147
    from add_mono[OF th0] xy show ?thesis
wenzelm@60557
   148
      by simp
wenzelm@60557
   149
  qed
wenzelm@56778
   150
  then show ?thesis
wenzelm@56778
   151
    unfolding linorder_not_le[symmetric] by blast
chaieb@26123
   152
qed
chaieb@26123
   153
wenzelm@61585
   154
text \<open>Hence we can always reduce modulus of \<open>1 + b z^n\<close> if nonzero\<close>
chaieb@26123
   155
lemma reduce_poly_simple:
wenzelm@56778
   156
  assumes b: "b \<noteq> 0"
wenzelm@56778
   157
    and n: "n \<noteq> 0"
chaieb@26123
   158
  shows "\<exists>z. cmod (1 + b * z^n) < 1"
wenzelm@56778
   159
  using n
wenzelm@56778
   160
proof (induct n rule: nat_less_induct)
chaieb@26123
   161
  fix n
wenzelm@56778
   162
  assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)"
wenzelm@56778
   163
  assume n: "n \<noteq> 0"
chaieb@26123
   164
  let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
wenzelm@60457
   165
  show "\<exists>z. ?P z n"
wenzelm@60457
   166
  proof cases
wenzelm@60457
   167
    assume "even n"
wenzelm@56778
   168
    then have "\<exists>m. n = 2 * m"
wenzelm@56778
   169
      by presburger
wenzelm@56778
   170
    then obtain m where m: "n = 2 * m"
wenzelm@56778
   171
      by blast
wenzelm@56778
   172
    from n m have "m \<noteq> 0" "m < n"
wenzelm@56778
   173
      by presburger+
wenzelm@56778
   174
    with IH[rule_format, of m] obtain z where z: "?P z m"
wenzelm@56778
   175
      by blast
wenzelm@56795
   176
    from z have "?P (csqrt z) n"
wenzelm@60457
   177
      by (simp add: m power_mult)
wenzelm@60457
   178
    then show ?thesis ..
wenzelm@60457
   179
  next
wenzelm@60457
   180
    assume "odd n"
wenzelm@60457
   181
    then have "\<exists>m. n = Suc (2 * m)"
wenzelm@56778
   182
      by presburger+
wenzelm@56795
   183
    then obtain m where m: "n = Suc (2 * m)"
wenzelm@56778
   184
      by blast
wenzelm@60457
   185
    have th0: "cmod (complex_of_real (cmod b) / b) = 1"
wenzelm@60457
   186
      using b by (simp add: norm_divide)
wenzelm@60457
   187
    from unimodular_reduce_norm[OF th0] \<open>odd n\<close>
chaieb@26123
   188
    have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
wenzelm@56795
   189
      apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1")
wenzelm@56795
   190
      apply (rule_tac x="1" in exI)
wenzelm@56795
   191
      apply simp
wenzelm@56795
   192
      apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1")
wenzelm@56795
   193
      apply (rule_tac x="-1" in exI)
wenzelm@56795
   194
      apply simp
wenzelm@63589
   195
      apply (cases "cmod (complex_of_real (cmod b) / b + \<i>) < 1")
wenzelm@56795
   196
      apply (cases "even m")
wenzelm@63589
   197
      apply (rule_tac x="\<i>" in exI)
wenzelm@56795
   198
      apply (simp add: m power_mult)
wenzelm@63589
   199
      apply (rule_tac x="- \<i>" in exI)
wenzelm@56795
   200
      apply (simp add: m power_mult)
wenzelm@56795
   201
      apply (cases "even m")
wenzelm@63589
   202
      apply (rule_tac x="- \<i>" in exI)
wenzelm@56795
   203
      apply (simp add: m power_mult)
haftmann@54489
   204
      apply (auto simp add: m power_mult)
wenzelm@63589
   205
      apply (rule_tac x="\<i>" in exI)
haftmann@54489
   206
      apply (auto simp add: m power_mult)
chaieb@26123
   207
      done
wenzelm@56778
   208
    then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1"
wenzelm@56778
   209
      by blast
chaieb@26123
   210
    let ?w = "v / complex_of_real (root n (cmod b))"
wenzelm@60457
   211
    from odd_real_root_pow[OF \<open>odd n\<close>, of "cmod b"]
huffman@30488
   212
    have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
hoelzl@56889
   213
      by (simp add: power_divide of_real_power[symmetric])
wenzelm@56778
   214
    have th2:"cmod (complex_of_real (cmod b) / b) = 1"
wenzelm@56778
   215
      using b by (simp add: norm_divide)
wenzelm@56778
   216
    then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"
wenzelm@56778
   217
      by simp
chaieb@26123
   218
    have th4: "cmod (complex_of_real (cmod b) / b) *
wenzelm@56778
   219
        cmod (1 + b * (v ^ n / complex_of_real (cmod b))) <
wenzelm@56778
   220
        cmod (complex_of_real (cmod b) / b) * 1"
webertj@49962
   221
      apply (simp only: norm_mult[symmetric] distrib_left)
wenzelm@56778
   222
      using b v
wenzelm@56778
   223
      apply (simp add: th2)
wenzelm@56778
   224
      done
haftmann@59555
   225
    from mult_left_less_imp_less[OF th4 th3]
huffman@30488
   226
    have "?P ?w n" unfolding th1 .
wenzelm@60457
   227
    then show ?thesis ..
wenzelm@60457
   228
  qed
chaieb@26123
   229
qed
chaieb@26123
   230
wenzelm@60424
   231
text \<open>Bolzano-Weierstrass type property for closed disc in complex plane.\<close>
chaieb@26123
   232
wenzelm@56778
   233
lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
wenzelm@56795
   234
  using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y"]
chaieb@26123
   235
  unfolding cmod_def by simp
chaieb@26123
   236
chaieb@26123
   237
lemma bolzano_weierstrass_complex_disc:
chaieb@26123
   238
  assumes r: "\<forall>n. cmod (s n) \<le> r"
chaieb@26123
   239
  shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
wenzelm@60424
   240
proof -
wenzelm@56778
   241
  from seq_monosub[of "Re \<circ> s"]
lp15@55358
   242
  obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"
chaieb@26123
   243
    unfolding o_def by blast
wenzelm@56778
   244
  from seq_monosub[of "Im \<circ> s \<circ> f"]
wenzelm@56778
   245
  obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))"
wenzelm@56778
   246
    unfolding o_def by blast
wenzelm@56778
   247
  let ?h = "f \<circ> g"
wenzelm@56778
   248
  from r[rule_format, of 0] have rp: "r \<ge> 0"
wenzelm@56778
   249
    using norm_ge_zero[of "s 0"] by arith
wenzelm@56778
   250
  have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>"
chaieb@26123
   251
  proof
chaieb@26123
   252
    fix n
wenzelm@56778
   253
    from abs_Re_le_cmod[of "s n"] r[rule_format, of n]
wenzelm@56778
   254
    show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
chaieb@26123
   255
  qed
wenzelm@56778
   256
  have conv1: "convergent (\<lambda>n. Re (s (f n)))"
chaieb@26123
   257
    apply (rule Bseq_monoseq_convergent)
chaieb@26123
   258
    apply (simp add: Bseq_def)
lp15@55358
   259
    apply (metis gt_ex le_less_linear less_trans order.trans th)
wenzelm@56778
   260
    apply (rule f(2))
wenzelm@56778
   261
    done
wenzelm@56778
   262
  have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>"
chaieb@26123
   263
  proof
chaieb@26123
   264
    fix n
wenzelm@56778
   265
    from abs_Im_le_cmod[of "s n"] r[rule_format, of n]
wenzelm@56778
   266
    show "\<bar>Im (s n)\<bar> \<le> r + 1"
wenzelm@56778
   267
      by arith
chaieb@26123
   268
  qed
chaieb@26123
   269
chaieb@26123
   270
  have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
chaieb@26123
   271
    apply (rule Bseq_monoseq_convergent)
chaieb@26123
   272
    apply (simp add: Bseq_def)
lp15@55358
   273
    apply (metis gt_ex le_less_linear less_trans order.trans th)
wenzelm@56778
   274
    apply (rule g(2))
wenzelm@56778
   275
    done
chaieb@26123
   276
huffman@30488
   277
  from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
huffman@30488
   278
    by blast
wenzelm@56795
   279
  then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r"
huffman@31337
   280
    unfolding LIMSEQ_iff real_norm_def .
chaieb@26123
   281
huffman@30488
   282
  from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
huffman@30488
   283
    by blast
wenzelm@56795
   284
  then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r"
huffman@31337
   285
    unfolding LIMSEQ_iff real_norm_def .
chaieb@26123
   286
  let ?w = "Complex x y"
wenzelm@56778
   287
  from f(1) g(1) have hs: "subseq ?h"
wenzelm@56778
   288
    unfolding subseq_def by auto
wenzelm@60557
   289
  have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" if "e > 0" for e
wenzelm@60557
   290
  proof -
wenzelm@60557
   291
    from that have e2: "e/2 > 0"
wenzelm@56795
   292
      by simp
chaieb@26123
   293
    from x[rule_format, OF e2] y[rule_format, OF e2]
wenzelm@56778
   294
    obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2"
wenzelm@56795
   295
      and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2"
wenzelm@56795
   296
      by blast
wenzelm@60557
   297
    have "cmod (s (?h n) - ?w) < e" if "n \<ge> N1 + N2" for n
wenzelm@60557
   298
    proof -
wenzelm@60557
   299
      from that have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2"
wenzelm@56778
   300
        using seq_suble[OF g(1), of n] by arith+
chaieb@26123
   301
      from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
wenzelm@60557
   302
      show ?thesis
wenzelm@56778
   303
        using metric_bound_lemma[of "s (f (g n))" ?w] by simp
wenzelm@60557
   304
    qed
wenzelm@60557
   305
    then show ?thesis by blast
wenzelm@60557
   306
  qed
wenzelm@56778
   307
  with hs show ?thesis by blast
chaieb@26123
   308
qed
chaieb@26123
   309
wenzelm@60424
   310
text \<open>Polynomial is continuous.\<close>
chaieb@26123
   311
chaieb@26123
   312
lemma poly_cont:
wenzelm@56778
   313
  fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
huffman@30488
   314
  assumes ep: "e > 0"
lp15@55735
   315
  shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e"
wenzelm@56778
   316
proof -
wenzelm@63060
   317
  obtain q where q: "degree q = degree p" "poly q x = poly p (z + x)" for x
huffman@29464
   318
  proof
huffman@29464
   319
    show "degree (offset_poly p z) = degree p"
huffman@29464
   320
      by (rule degree_offset_poly)
huffman@29464
   321
    show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
huffman@29464
   322
      by (rule poly_offset_poly)
huffman@29464
   323
  qed
wenzelm@56778
   324
  have th: "\<And>w. poly q (w - z) = poly p w"
wenzelm@56778
   325
    using q(2)[of "w - z" for w] by simp
chaieb@26123
   326
  show ?thesis unfolding th[symmetric]
wenzelm@56778
   327
  proof (induct q)
wenzelm@56778
   328
    case 0
wenzelm@56778
   329
    then show ?case
wenzelm@56778
   330
      using ep by auto
chaieb@26123
   331
  next
huffman@29464
   332
    case (pCons c cs)
huffman@30488
   333
    from poly_bound_exists[of 1 "cs"]
wenzelm@63060
   334
    obtain m where m: "m > 0" "norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" for z
wenzelm@56778
   335
      by blast
wenzelm@56778
   336
    from ep m(1) have em0: "e/m > 0"
wenzelm@56778
   337
      by (simp add: field_simps)
wenzelm@56778
   338
    have one0: "1 > (0::real)"
wenzelm@56778
   339
      by arith
huffman@30488
   340
    from real_lbound_gt_zero[OF one0 em0]
wenzelm@56778
   341
    obtain d where d: "d > 0" "d < 1" "d < e / m"
wenzelm@56778
   342
      by blast
wenzelm@56778
   343
    from d(1,3) m(1) have dm: "d * m > 0" "d * m < e"
nipkow@56544
   344
      by (simp_all add: field_simps)
huffman@30488
   345
    show ?case
wenzelm@56778
   346
    proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)
wenzelm@56778
   347
      fix d w
wenzelm@56778
   348
      assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d"
wenzelm@56778
   349
      then have d1: "norm (w-z) \<le> 1" "d \<ge> 0"
wenzelm@56778
   350
        by simp_all
wenzelm@56778
   351
      from H(3) m(1) have dme: "d*m < e"
wenzelm@56778
   352
        by (simp add: field_simps)
wenzelm@56778
   353
      from H have th: "norm (w - z) \<le> d"
wenzelm@56778
   354
        by simp
wenzelm@56778
   355
      from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
wenzelm@56778
   356
      show "norm (w - z) * norm (poly cs (w - z)) < e"
wenzelm@56778
   357
        by simp
chaieb@26123
   358
    qed
wenzelm@56778
   359
  qed
chaieb@26123
   360
qed
chaieb@26123
   361
wenzelm@60424
   362
text \<open>Hence a polynomial attains minimum on a closed disc
wenzelm@60424
   363
  in the complex plane.\<close>
wenzelm@56778
   364
lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
wenzelm@56778
   365
proof -
wenzelm@60424
   366
  show ?thesis
wenzelm@60424
   367
  proof (cases "r \<ge> 0")
wenzelm@60424
   368
    case False
wenzelm@60424
   369
    then show ?thesis
wenzelm@56778
   370
      by (metis norm_ge_zero order.trans)
wenzelm@60424
   371
  next
wenzelm@60424
   372
    case True
wenzelm@60424
   373
    then have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))"
wenzelm@56778
   374
      by simp
wenzelm@56778
   375
    then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"
wenzelm@56778
   376
      by blast
wenzelm@60557
   377
    have False if "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1" for x z
wenzelm@60557
   378
    proof -
wenzelm@60557
   379
      from that have "- x < 0 "
wenzelm@56778
   380
        by arith
wenzelm@60557
   381
      with that(2) norm_ge_zero[of "poly p z"] show ?thesis
wenzelm@56778
   382
        by simp
wenzelm@60557
   383
    qed
wenzelm@56778
   384
    then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z"
wenzelm@56778
   385
      by blast
huffman@30488
   386
    from real_sup_exists[OF mth1 mth2] obtain s where
wenzelm@60557
   387
      s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s"
wenzelm@60557
   388
      by blast
wenzelm@56778
   389
    let ?m = "- s"
wenzelm@60557
   390
    have s1[unfolded minus_minus]:
wenzelm@60557
   391
      "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" for y
wenzelm@60557
   392
      using s[rule_format, of "-y"]
wenzelm@60557
   393
      unfolding minus_less_iff[of y] equation_minus_iff by blast
huffman@30488
   394
    from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
chaieb@26123
   395
      by auto
wenzelm@60557
   396
    have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" for n
wenzelm@60557
   397
      using s1[rule_format, of "?m + 1/real (Suc n)"] by simp
wenzelm@56778
   398
    then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
huffman@30488
   399
    from choice[OF th] obtain g where
wenzelm@56778
   400
        g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)"
chaieb@26123
   401
      by blast
huffman@30488
   402
    from bolzano_weierstrass_complex_disc[OF g(1)]
chaieb@26123
   403
    obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
huffman@30488
   404
      by blast
wenzelm@56778
   405
    {
wenzelm@56778
   406
      fix w
chaieb@26123
   407
      assume wr: "cmod w \<le> r"
chaieb@26123
   408
      let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
wenzelm@56778
   409
      {
wenzelm@56778
   410
        assume e: "?e > 0"
wenzelm@56795
   411
        then have e2: "?e/2 > 0"
wenzelm@56795
   412
          by simp
wenzelm@32960
   413
        from poly_cont[OF e2, of z p] obtain d where
wenzelm@56778
   414
            d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2"
wenzelm@56778
   415
          by blast
wenzelm@60557
   416
        have th1: "cmod(poly p w - poly p z) < ?e / 2" if w: "cmod (w - z) < d" for w
wenzelm@60557
   417
          using d(2)[rule_format, of w] w e by (cases "w = z") simp_all
wenzelm@56778
   418
        from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d"
wenzelm@56778
   419
          by blast
wenzelm@56778
   420
        from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2"
wenzelm@56778
   421
          by blast
wenzelm@56778
   422
        have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2"
wenzelm@32960
   423
          using N1[rule_format, of "N1 + N2"] th1 by simp
wenzelm@60424
   424
        have th0: "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False"
wenzelm@60424
   425
          for a b e2 m :: real
wenzelm@60424
   426
          by arith
wenzelm@60424
   427
        have ath: "m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e" for m x e :: real
wenzelm@56778
   428
          by arith
wenzelm@56778
   429
        from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
wenzelm@56795
   430
        from seq_suble[OF fz(1), of "N1 + N2"]
wenzelm@56778
   431
        have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))"
wenzelm@56778
   432
          by simp
wenzelm@56778
   433
        have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0"
wenzelm@56778
   434
          using N2 by auto
wenzelm@56778
   435
        from frac_le[OF th000 th00]
wenzelm@56795
   436
        have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))"
wenzelm@56778
   437
          by simp
wenzelm@56778
   438
        from g(2)[rule_format, of "f (N1 + N2)"]
wenzelm@56778
   439
        have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
wenzelm@56778
   440
        from order_less_le_trans[OF th01 th00]
wenzelm@56795
   441
        have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
wenzelm@56778
   442
        from N2 have "2/?e < real (Suc (N1 + N2))"
wenzelm@56778
   443
          by arith
wenzelm@56778
   444
        with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
wenzelm@56778
   445
        have "?e/2 > 1/ real (Suc (N1 + N2))"
wenzelm@56778
   446
          by (simp add: inverse_eq_divide)
wenzelm@60424
   447
        with ath[OF th31 th32] have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2"
wenzelm@56778
   448
          by arith
wenzelm@60424
   449
        have ath2: "\<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c" for a b c m :: real
wenzelm@56778
   450
          by arith
wenzelm@56778
   451
        have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le>
wenzelm@56778
   452
            cmod (poly p (g (f (N1 + N2))) - poly p z)"
wenzelm@56778
   453
          by (simp add: norm_triangle_ineq3)
wenzelm@56778
   454
        from ath2[OF th22, of ?m]
wenzelm@56778
   455
        have thc2: "2 * (?e/2) \<le>
wenzelm@56778
   456
            \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)"
wenzelm@56778
   457
          by simp
wenzelm@56778
   458
        from th0[OF th2 thc1 thc2] have False .
wenzelm@56778
   459
      }
wenzelm@56778
   460
      then have "?e = 0"
wenzelm@56778
   461
        by auto
wenzelm@56778
   462
      then have "cmod (poly p z) = ?m"
wenzelm@56778
   463
        by simp
wenzelm@56778
   464
      with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)"
wenzelm@56778
   465
        by simp
wenzelm@56778
   466
    }
wenzelm@60424
   467
    then show ?thesis by blast
wenzelm@60424
   468
  qed
chaieb@26123
   469
qed
chaieb@26123
   470
wenzelm@60424
   471
text \<open>Nonzero polynomial in z goes to infinity as z does.\<close>
chaieb@26123
   472
chaieb@26123
   473
lemma poly_infinity:
wenzelm@56778
   474
  fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
huffman@29464
   475
  assumes ex: "p \<noteq> 0"
lp15@55735
   476
  shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)"
wenzelm@56778
   477
  using ex
wenzelm@56778
   478
proof (induct p arbitrary: a d)
wenzelm@56795
   479
  case 0
wenzelm@56795
   480
  then show ?case by simp
wenzelm@56795
   481
next
huffman@30488
   482
  case (pCons c cs a d)
wenzelm@56795
   483
  show ?case
wenzelm@56795
   484
  proof (cases "cs = 0")
wenzelm@56795
   485
    case False
wenzelm@56778
   486
    with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)"
wenzelm@56778
   487
      by blast
chaieb@26123
   488
    let ?r = "1 + \<bar>r\<bar>"
wenzelm@60557
   489
    have "d \<le> norm (poly (pCons a (pCons c cs)) z)" if "1 + \<bar>r\<bar> \<le> norm z" for z
wenzelm@60557
   490
    proof -
wenzelm@56795
   491
      have r0: "r \<le> norm z"
wenzelm@60557
   492
        using that by arith
wenzelm@56778
   493
      from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)"
wenzelm@56778
   494
        by arith
wenzelm@60557
   495
      from that have z1: "norm z \<ge> 1"
wenzelm@56778
   496
        by arith
huffman@29464
   497
      from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
lp15@55735
   498
      have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a"
wenzelm@32960
   499
        unfolding norm_mult by (simp add: algebra_simps)
lp15@55735
   500
      from norm_diff_ineq[of "z * poly (pCons c cs) z" a]
wenzelm@56795
   501
      have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)"
wenzelm@51541
   502
        by (simp add: algebra_simps)
wenzelm@60557
   503
      from th1 th2 show ?thesis
wenzelm@56795
   504
        by arith
wenzelm@60557
   505
    qed
wenzelm@56795
   506
    then show ?thesis by blast
wenzelm@56795
   507
  next
wenzelm@56795
   508
    case True
wenzelm@56778
   509
    with pCons.prems have c0: "c \<noteq> 0"
wenzelm@56778
   510
      by simp
wenzelm@60424
   511
    have "d \<le> norm (poly (pCons a (pCons c cs)) z)"
wenzelm@60424
   512
      if h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" for z :: 'a
wenzelm@60424
   513
    proof -
wenzelm@56778
   514
      from c0 have "norm c > 0"
wenzelm@56778
   515
        by simp
blanchet@56403
   516
      from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)"
wenzelm@32960
   517
        by (simp add: field_simps norm_mult)
wenzelm@56778
   518
      have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh"
wenzelm@56778
   519
        by arith
wenzelm@56778
   520
      from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a"
wenzelm@32960
   521
        by (simp add: algebra_simps)
wenzelm@60424
   522
      from ath[OF th1 th0] show ?thesis
wenzelm@56795
   523
        using True by simp
wenzelm@60424
   524
    qed
wenzelm@56795
   525
    then show ?thesis by blast
wenzelm@56795
   526
  qed
wenzelm@56795
   527
qed
chaieb@26123
   528
wenzelm@60424
   529
text \<open>Hence polynomial's modulus attains its minimum somewhere.\<close>
wenzelm@56778
   530
lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
wenzelm@56778
   531
proof (induct p)
wenzelm@56778
   532
  case 0
wenzelm@56778
   533
  then show ?case by simp
wenzelm@56778
   534
next
huffman@30488
   535
  case (pCons c cs)
wenzelm@56778
   536
  show ?case
wenzelm@56778
   537
  proof (cases "cs = 0")
wenzelm@56778
   538
    case False
wenzelm@56778
   539
    from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c]
wenzelm@63060
   540
    obtain r where r: "cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)"
wenzelm@63060
   541
      if "r \<le> cmod z" for z
wenzelm@56778
   542
      by blast
wenzelm@56778
   543
    have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>"
wenzelm@56778
   544
      by arith
huffman@30488
   545
    from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
wenzelm@63060
   546
    obtain v where v: "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)"
wenzelm@63060
   547
      if "cmod w \<le> \<bar>r\<bar>" for w
wenzelm@56778
   548
      by blast
wenzelm@60424
   549
    have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" if z: "r \<le> cmod z" for z
wenzelm@60424
   550
      using v[of 0] r[OF z] by simp
wenzelm@60424
   551
    with v ath[of r] show ?thesis
wenzelm@56778
   552
      by blast
wenzelm@56778
   553
  next
wenzelm@56778
   554
    case True
wenzelm@60424
   555
    with pCons.hyps show ?thesis
wenzelm@60424
   556
      by simp
wenzelm@56778
   557
  qed
wenzelm@56778
   558
qed
chaieb@26123
   559
wenzelm@60424
   560
text \<open>Constant function (non-syntactic characterization).\<close>
wenzelm@56795
   561
definition "constant f \<longleftrightarrow> (\<forall>x y. f x = f y)"
chaieb@26123
   562
wenzelm@56778
   563
lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2"
wenzelm@56778
   564
  by (induct p) (auto simp: constant_def psize_def)
huffman@30488
   565
wenzelm@56795
   566
lemma poly_replicate_append: "poly (monom 1 n * p) (x::'a::comm_ring_1) = x^n * poly p x"
huffman@29464
   567
  by (simp add: poly_monom)
chaieb@26123
   568
wenzelm@60424
   569
text \<open>Decomposition of polynomial, skipping zero coefficients after the first.\<close>
chaieb@26123
   570
chaieb@26123
   571
lemma poly_decompose_lemma:
wenzelm@56778
   572
  assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))"
wenzelm@56795
   573
  shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> (\<forall>z. poly p z = z^k * poly (pCons a q) z)"
wenzelm@56778
   574
  unfolding psize_def
wenzelm@56778
   575
  using nz
wenzelm@56778
   576
proof (induct p)
wenzelm@56778
   577
  case 0
wenzelm@56778
   578
  then show ?case by simp
chaieb@26123
   579
next
huffman@29464
   580
  case (pCons c cs)
wenzelm@56778
   581
  show ?case
wenzelm@56778
   582
  proof (cases "c = 0")
wenzelm@56778
   583
    case True
wenzelm@56778
   584
    from pCons.hyps pCons.prems True show ?thesis
wenzelm@60424
   585
      apply auto
chaieb@26123
   586
      apply (rule_tac x="k+1" in exI)
wenzelm@60557
   587
      apply (rule_tac x="a" in exI)
wenzelm@60557
   588
      apply clarsimp
chaieb@26123
   589
      apply (rule_tac x="q" in exI)
wenzelm@56778
   590
      apply auto
wenzelm@56778
   591
      done
wenzelm@56778
   592
  next
wenzelm@56778
   593
    case False
wenzelm@56778
   594
    show ?thesis
chaieb@26123
   595
      apply (rule exI[where x=0])
wenzelm@60424
   596
      apply (rule exI[where x=c])
wenzelm@60424
   597
      apply (auto simp: False)
wenzelm@56778
   598
      done
wenzelm@56778
   599
  qed
chaieb@26123
   600
qed
chaieb@26123
   601
chaieb@26123
   602
lemma poly_decompose:
wenzelm@56776
   603
  assumes nc: "\<not> constant (poly p)"
wenzelm@56778
   604
  shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and>
huffman@30488
   605
               psize q + k + 1 = psize p \<and>
huffman@29464
   606
              (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
wenzelm@56776
   607
  using nc
wenzelm@56776
   608
proof (induct p)
wenzelm@56776
   609
  case 0
wenzelm@56776
   610
  then show ?case
wenzelm@56776
   611
    by (simp add: constant_def)
chaieb@26123
   612
next
huffman@29464
   613
  case (pCons c cs)
wenzelm@60557
   614
  have "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)"
wenzelm@60557
   615
  proof
wenzelm@60424
   616
    assume "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
wenzelm@60424
   617
    then have "poly (pCons c cs) x = poly (pCons c cs) y" for x y
wenzelm@60424
   618
      by (cases "x = 0") auto
wenzelm@60557
   619
    with pCons.prems show False
wenzelm@56778
   620
      by (auto simp add: constant_def)
wenzelm@60557
   621
  qed
wenzelm@60557
   622
  from poly_decompose_lemma[OF this]
huffman@30488
   623
  show ?case
huffman@29464
   624
    apply clarsimp
chaieb@26123
   625
    apply (rule_tac x="k+1" in exI)
chaieb@26123
   626
    apply (rule_tac x="a" in exI)
chaieb@26123
   627
    apply simp
chaieb@26123
   628
    apply (rule_tac x="q" in exI)
huffman@29538
   629
    apply (auto simp add: psize_def split: if_splits)
chaieb@26123
   630
    done
chaieb@26123
   631
qed
chaieb@26123
   632
wenzelm@60424
   633
text \<open>Fundamental theorem of algebra\<close>
chaieb@26123
   634
chaieb@26123
   635
lemma fundamental_theorem_of_algebra:
wenzelm@56776
   636
  assumes nc: "\<not> constant (poly p)"
chaieb@26123
   637
  shows "\<exists>z::complex. poly p z = 0"
wenzelm@56776
   638
  using nc
wenzelm@56776
   639
proof (induct "psize p" arbitrary: p rule: less_induct)
berghofe@34915
   640
  case less
chaieb@26123
   641
  let ?p = "poly p"
chaieb@26123
   642
  let ?ths = "\<exists>z. ?p z = 0"
chaieb@26123
   643
berghofe@34915
   644
  from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" .
wenzelm@56776
   645
  from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)"
wenzelm@56776
   646
    by blast
wenzelm@56778
   647
wenzelm@56778
   648
  show ?ths
wenzelm@56778
   649
  proof (cases "?p c = 0")
wenzelm@56778
   650
    case True
wenzelm@56778
   651
    then show ?thesis by blast
wenzelm@56778
   652
  next
wenzelm@56778
   653
    case False
wenzelm@56778
   654
    from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)"
wenzelm@56778
   655
      by blast
wenzelm@60424
   656
    have False if h: "constant (poly q)"
wenzelm@60424
   657
    proof -
wenzelm@56795
   658
      from q(2) have th: "\<forall>x. poly q (x - c) = ?p x"
wenzelm@56795
   659
        by auto
wenzelm@60424
   660
      have "?p x = ?p y" for x y
wenzelm@60424
   661
      proof -
wenzelm@56795
   662
        from th have "?p x = poly q (x - c)"
wenzelm@56795
   663
          by auto
wenzelm@32960
   664
        also have "\<dots> = poly q (y - c)"
wenzelm@32960
   665
          using h unfolding constant_def by blast
wenzelm@56795
   666
        also have "\<dots> = ?p y"
wenzelm@56795
   667
          using th by auto
wenzelm@60424
   668
        finally show ?thesis .
wenzelm@60424
   669
      qed
wenzelm@60424
   670
      with less(2) show ?thesis
wenzelm@56778
   671
        unfolding constant_def by blast
wenzelm@60424
   672
    qed
wenzelm@56778
   673
    then have qnc: "\<not> constant (poly q)"
wenzelm@56778
   674
      by blast
wenzelm@56778
   675
    from q(2) have pqc0: "?p c = poly q 0"
wenzelm@56778
   676
      by simp
wenzelm@56778
   677
    from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)"
wenzelm@56778
   678
      by simp
chaieb@26123
   679
    let ?a0 = "poly q 0"
wenzelm@60424
   680
    from False pqc0 have a00: "?a0 \<noteq> 0"
wenzelm@56778
   681
      by simp
wenzelm@56778
   682
    from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"
huffman@29464
   683
      by simp
huffman@29464
   684
    let ?r = "smult (inverse ?a0) q"
huffman@29538
   685
    have lgqr: "psize q = psize ?r"
wenzelm@56778
   686
      using a00
wenzelm@56778
   687
      unfolding psize_def degree_def
haftmann@52380
   688
      by (simp add: poly_eq_iff)
wenzelm@60424
   689
    have False if h: "\<And>x y. poly ?r x = poly ?r y"
wenzelm@60424
   690
    proof -
wenzelm@60557
   691
      have "poly q x = poly q y" for x y
wenzelm@60557
   692
      proof -
wenzelm@56778
   693
        from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0"
wenzelm@56778
   694
          by auto
wenzelm@56778
   695
        also have "\<dots> = poly ?r y * ?a0"
wenzelm@56778
   696
          using h by simp
wenzelm@56778
   697
        also have "\<dots> = poly q y"
wenzelm@56778
   698
          using qr[rule_format, of y] by simp
wenzelm@60557
   699
        finally show ?thesis .
wenzelm@60557
   700
      qed
wenzelm@60424
   701
      with qnc show ?thesis
wenzelm@56795
   702
        unfolding constant_def by blast
wenzelm@60424
   703
    qed
wenzelm@56778
   704
    then have rnc: "\<not> constant (poly ?r)"
wenzelm@56778
   705
      unfolding constant_def by blast
wenzelm@56778
   706
    from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1"
wenzelm@56778
   707
      by auto
wenzelm@60424
   708
    have mrmq_eq: "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" for w
wenzelm@60424
   709
    proof -
chaieb@26123
   710
      have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
haftmann@57514
   711
        using qr[rule_format, of w] a00 by (simp add: divide_inverse ac_simps)
chaieb@26123
   712
      also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
wenzelm@32960
   713
        using a00 unfolding norm_divide by (simp add: field_simps)
wenzelm@60424
   714
      finally show ?thesis .
wenzelm@60424
   715
    qed
huffman@30488
   716
    from poly_decompose[OF rnc] obtain k a s where
wenzelm@56778
   717
      kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r"
wenzelm@56778
   718
        "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
wenzelm@60424
   719
    have "\<exists>w. cmod (poly ?r w) < 1"
wenzelm@60424
   720
    proof (cases "psize p = k + 1")
wenzelm@60424
   721
      case True
wenzelm@56778
   722
      with kas(3) lgqr[symmetric] q(1) have s0: "s = 0"
wenzelm@56778
   723
        by auto
wenzelm@60424
   724
      have hth[symmetric]: "cmod (poly ?r w) = cmod (1 + a * w ^ k)" for w
wenzelm@60424
   725
        using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)
wenzelm@60424
   726
      from reduce_poly_simple[OF kas(1,2)] show ?thesis
wenzelm@56778
   727
        unfolding hth by blast
wenzelm@60424
   728
    next
wenzelm@60424
   729
      case False note kn = this
wenzelm@56778
   730
      from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p"
wenzelm@56778
   731
        by simp
huffman@30488
   732
      have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
wenzelm@32960
   733
        unfolding constant_def poly_pCons poly_monom
wenzelm@56795
   734
        using kas(1)
wenzelm@56795
   735
        apply simp
wenzelm@56778
   736
        apply (rule exI[where x=0])
wenzelm@56778
   737
        apply (rule exI[where x=1])
wenzelm@56778
   738
        apply simp
wenzelm@56778
   739
        done
wenzelm@56778
   740
      from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))"
wenzelm@32960
   741
        by (simp add: psize_def degree_monom_eq)
berghofe@34915
   742
      from less(1) [OF k1n [simplified th02] th01]
chaieb@26123
   743
      obtain w where w: "1 + w^k * a = 0"
wenzelm@32960
   744
        unfolding poly_pCons poly_monom
wenzelm@56778
   745
        using kas(2) by (cases k) (auto simp add: algebra_simps)
huffman@30488
   746
      from poly_bound_exists[of "cmod w" s] obtain m where
wenzelm@32960
   747
        m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
wenzelm@56795
   748
      have w0: "w \<noteq> 0"
wenzelm@56795
   749
        using kas(2) w by (auto simp add: power_0_left)
wenzelm@56778
   750
      from w have "(1 + w ^ k * a) - 1 = 0 - 1"
wenzelm@56778
   751
        by simp
wenzelm@56778
   752
      then have wm1: "w^k * a = - 1"
wenzelm@56778
   753
        by simp
huffman@30488
   754
      have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
wenzelm@32960
   755
        using norm_ge_zero[of w] w0 m(1)
wenzelm@56778
   756
        by (simp add: inverse_eq_divide zero_less_mult_iff)
lp15@55358
   757
      with real_lbound_gt_zero[OF zero_less_one] obtain t where
wenzelm@32960
   758
        t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
chaieb@26123
   759
      let ?ct = "complex_of_real t"
chaieb@26123
   760
      let ?w = "?ct * w"
wenzelm@56778
   761
      have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w"
wenzelm@56778
   762
        using kas(1) by (simp add: algebra_simps power_mult_distrib)
chaieb@26123
   763
      also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
wenzelm@56778
   764
        unfolding wm1 by simp
wenzelm@56778
   765
      finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) =
wenzelm@56778
   766
        cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
lp15@55358
   767
        by metis
huffman@30488
   768
      with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
wenzelm@56778
   769
      have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)"
wenzelm@56778
   770
        unfolding norm_of_real by simp
wenzelm@56778
   771
      have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1"
wenzelm@56778
   772
        by arith
wenzelm@56778
   773
      have "t * cmod w \<le> 1 * cmod w"
wenzelm@56778
   774
        apply (rule mult_mono)
wenzelm@56778
   775
        using t(1,2)
wenzelm@56778
   776
        apply auto
wenzelm@56778
   777
        done
wenzelm@56778
   778
      then have tw: "cmod ?w \<le> cmod w"
wenzelm@56778
   779
        using t(1) by (simp add: norm_mult)
wenzelm@56778
   780
      from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1"
wenzelm@57862
   781
        by (simp add: field_simps)
wenzelm@56778
   782
      with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
haftmann@59557
   783
        by simp
wenzelm@56778
   784
      have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))"
wenzelm@56778
   785
        using w0 t(1)
wenzelm@51541
   786
        by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)
chaieb@26123
   787
      then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
wenzelm@32960
   788
        using t(1,2) m(2)[rule_format, OF tw] w0
lp15@55358
   789
        by auto
wenzelm@56778
   790
      with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k"
wenzelm@56778
   791
        by simp
huffman@30488
   792
      from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
wenzelm@32960
   793
        by auto
huffman@27514
   794
      from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
huffman@30488
   795
      have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
wenzelm@56778
   796
      from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"
wenzelm@56778
   797
        by arith
huffman@30488
   798
      then have "cmod (poly ?r ?w) < 1"
wenzelm@32960
   799
        unfolding kas(4)[rule_format, of ?w] r01 by simp
wenzelm@60424
   800
      then show ?thesis
wenzelm@56778
   801
        by blast
wenzelm@60424
   802
    qed
wenzelm@60424
   803
    with cq0 q(2) show ?thesis
wenzelm@56778
   804
      unfolding mrmq_eq not_less[symmetric] by auto
wenzelm@56778
   805
  qed
chaieb@26123
   806
qed
chaieb@26123
   807
wenzelm@60424
   808
text \<open>Alternative version with a syntactic notion of constant polynomial.\<close>
chaieb@26123
   809
chaieb@26123
   810
lemma fundamental_theorem_of_algebra_alt:
wenzelm@56778
   811
  assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"
chaieb@26123
   812
  shows "\<exists>z. poly p z = (0::complex)"
wenzelm@56778
   813
  using nc
wenzelm@56778
   814
proof (induct p)
wenzelm@56778
   815
  case 0
wenzelm@56778
   816
  then show ?case by simp
wenzelm@56778
   817
next
huffman@29464
   818
  case (pCons c cs)
wenzelm@56778
   819
  show ?case
wenzelm@56778
   820
  proof (cases "c = 0")
wenzelm@56778
   821
    case True
wenzelm@56778
   822
    then show ?thesis by auto
wenzelm@56778
   823
  next
wenzelm@56778
   824
    case False
wenzelm@60557
   825
    have "\<not> constant (poly (pCons c cs))"
wenzelm@60557
   826
    proof
wenzelm@56778
   827
      assume nc: "constant (poly (pCons c cs))"
huffman@30488
   828
      from nc[unfolded constant_def, rule_format, of 0]
huffman@30488
   829
      have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
wenzelm@56778
   830
      then have "cs = 0"
wenzelm@56778
   831
      proof (induct cs)
wenzelm@56778
   832
        case 0
wenzelm@56778
   833
        then show ?case by simp
wenzelm@56778
   834
      next
wenzelm@56778
   835
        case (pCons d ds)
wenzelm@56778
   836
        show ?case
wenzelm@56778
   837
        proof (cases "d = 0")
wenzelm@56778
   838
          case True
wenzelm@60424
   839
          then show ?thesis
wenzelm@60424
   840
            using pCons.prems pCons.hyps by simp
wenzelm@56778
   841
        next
wenzelm@56778
   842
          case False
wenzelm@56778
   843
          from poly_bound_exists[of 1 ds] obtain m where
wenzelm@56778
   844
            m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
wenzelm@56795
   845
          have dm: "cmod d / m > 0"
wenzelm@56795
   846
            using False m(1) by (simp add: field_simps)
wenzelm@60424
   847
          from real_lbound_gt_zero[OF dm zero_less_one]
wenzelm@60424
   848
          obtain x where x: "x > 0" "x < cmod d / m" "x < 1"
wenzelm@60424
   849
            by blast
wenzelm@56778
   850
          let ?x = "complex_of_real x"
wenzelm@60424
   851
          from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1"
wenzelm@56795
   852
            by simp_all
wenzelm@56778
   853
          from pCons.prems[rule_format, OF cx(1)]
wenzelm@56795
   854
          have cth: "cmod (?x*poly ds ?x) = cmod d"
wenzelm@56795
   855
            by (simp add: eq_diff_eq[symmetric])
wenzelm@56778
   856
          from m(2)[rule_format, OF cx(2)] x(1)
wenzelm@56778
   857
          have th0: "cmod (?x*poly ds ?x) \<le> x*m"
wenzelm@56778
   858
            by (simp add: norm_mult)
wenzelm@56795
   859
          from x(2) m(1) have "x * m < cmod d"
wenzelm@56795
   860
            by (simp add: field_simps)
wenzelm@56795
   861
          with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d"
wenzelm@56795
   862
            by auto
wenzelm@56795
   863
          with cth show ?thesis
wenzelm@56795
   864
            by blast
wenzelm@56778
   865
        qed
wenzelm@56778
   866
      qed
wenzelm@60557
   867
      then show False
wenzelm@60557
   868
        using pCons.prems False by blast
wenzelm@60557
   869
    qed
wenzelm@60557
   870
    then show ?thesis
wenzelm@60557
   871
      by (rule fundamental_theorem_of_algebra)
wenzelm@56778
   872
  qed
wenzelm@56778
   873
qed
chaieb@26123
   874
huffman@29464
   875
wenzelm@60424
   876
subsection \<open>Nullstellensatz, degrees and divisibility of polynomials\<close>
chaieb@26123
   877
chaieb@26123
   878
lemma nullstellensatz_lemma:
huffman@29464
   879
  fixes p :: "complex poly"
chaieb@26123
   880
  assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
wenzelm@56776
   881
    and "degree p = n"
wenzelm@56776
   882
    and "n \<noteq> 0"
huffman@29464
   883
  shows "p dvd (q ^ n)"
wenzelm@56776
   884
  using assms
wenzelm@56776
   885
proof (induct n arbitrary: p q rule: nat_less_induct)
wenzelm@56776
   886
  fix n :: nat
wenzelm@56776
   887
  fix p q :: "complex poly"
chaieb@26123
   888
  assume IH: "\<forall>m<n. \<forall>p q.
chaieb@26123
   889
                 (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
huffman@29464
   890
                 degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"
huffman@30488
   891
    and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
wenzelm@56778
   892
    and dpn: "degree p = n"
wenzelm@56778
   893
    and n0: "n \<noteq> 0"
huffman@29464
   894
  from dpn n0 have pne: "p \<noteq> 0" by auto
wenzelm@60557
   895
  show "p dvd (q ^ n)"
wenzelm@60557
   896
  proof (cases "\<exists>a. poly p a = 0")
wenzelm@60557
   897
    case True
wenzelm@60557
   898
    then obtain a where a: "poly p a = 0" ..
wenzelm@60557
   899
    have ?thesis if oa: "order a p \<noteq> 0"
wenzelm@60424
   900
    proof -
chaieb@26123
   901
      let ?op = "order a p"
wenzelm@56778
   902
      from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p"
wenzelm@56778
   903
        using order by blast+
huffman@29464
   904
      note oop = order_degree[OF pne, unfolded dpn]
wenzelm@60424
   905
      show ?thesis
wenzelm@60424
   906
      proof (cases "q = 0")
wenzelm@60424
   907
        case True
wenzelm@60424
   908
        with n0 show ?thesis by (simp add: power_0_left)
wenzelm@60424
   909
      next
wenzelm@60424
   910
        case False
wenzelm@32960
   911
        from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]
wenzelm@32960
   912
        obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)
wenzelm@56778
   913
        from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s"
wenzelm@56778
   914
          by (rule dvdE)
wenzelm@60424
   915
        have sne: "s \<noteq> 0"
wenzelm@60424
   916
          using s pne by auto
wenzelm@60424
   917
        show ?thesis
wenzelm@60424
   918
        proof (cases "degree s = 0")
wenzelm@60424
   919
          case True
wenzelm@60424
   920
          then obtain k where kpn: "s = [:k:]"
wenzelm@51541
   921
            by (cases s) (auto split: if_splits)
huffman@29464
   922
          from sne kpn have k: "k \<noteq> 0" by simp
wenzelm@32960
   923
          let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"
lp15@55358
   924
          have "q ^ n = p * ?w"
wenzelm@56795
   925
            apply (subst r)
wenzelm@56795
   926
            apply (subst s)
wenzelm@56795
   927
            apply (subst kpn)
wenzelm@56778
   928
            using k oop [of a]
wenzelm@56795
   929
            apply (subst power_mult_distrib)
wenzelm@56795
   930
            apply simp
wenzelm@56795
   931
            apply (subst power_add [symmetric])
wenzelm@56795
   932
            apply simp
huffman@29464
   933
            done
wenzelm@60424
   934
          then show ?thesis
wenzelm@56795
   935
            unfolding dvd_def by blast
wenzelm@60424
   936
        next
wenzelm@60424
   937
          case False
wenzelm@60424
   938
          with sne dpn s oa have dsn: "degree s < n"
wenzelm@60557
   939
            apply auto
wenzelm@60557
   940
            apply (erule ssubst)
wenzelm@60557
   941
            apply (simp add: degree_mult_eq degree_linear_power)
wenzelm@60557
   942
            done
wenzelm@60557
   943
          have "poly r x = 0" if h: "poly s x = 0" for x
wenzelm@60557
   944
          proof -
wenzelm@60557
   945
            have xa: "x \<noteq> a"
wenzelm@60557
   946
            proof
wenzelm@60557
   947
              assume "x = a"
wenzelm@60557
   948
              from h[unfolded this poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u"
wenzelm@60557
   949
                by (rule dvdE)
wenzelm@60557
   950
              have "p = [:- a, 1:] ^ (Suc ?op) * u"
wenzelm@60557
   951
                apply (subst s)
wenzelm@60557
   952
                apply (subst u)
wenzelm@60557
   953
                apply (simp only: power_Suc ac_simps)
wenzelm@60557
   954
                done
wenzelm@60557
   955
              with ap(2)[unfolded dvd_def] show False
wenzelm@56795
   956
                by blast
wenzelm@60557
   957
            qed
wenzelm@60557
   958
            from h have "poly p x = 0"
wenzelm@60557
   959
              by (subst s) simp
wenzelm@60557
   960
            with pq0 have "poly q x = 0"
wenzelm@56795
   961
              by blast
wenzelm@60557
   962
            with r xa show ?thesis
wenzelm@60557
   963
              by auto
wenzelm@60557
   964
          qed
wenzelm@60557
   965
          with IH[rule_format, OF dsn, of s r] False have "s dvd (r ^ (degree s))"
wenzelm@60557
   966
            by blast
wenzelm@60557
   967
          then obtain u where u: "r ^ (degree s) = s * u" ..
wenzelm@60557
   968
          then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
wenzelm@60557
   969
            by (simp only: poly_mult[symmetric] poly_power[symmetric])
wenzelm@60557
   970
          let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
wenzelm@60557
   971
          from oop[of a] dsn have "q ^ n = p * ?w"
wenzelm@60557
   972
            apply -
wenzelm@60557
   973
            apply (subst s)
wenzelm@60557
   974
            apply (subst r)
wenzelm@60557
   975
            apply (simp only: power_mult_distrib)
wenzelm@60557
   976
            apply (subst mult.assoc [where b=s])
wenzelm@60557
   977
            apply (subst mult.assoc [where a=u])
wenzelm@60557
   978
            apply (subst mult.assoc [where b=u, symmetric])
wenzelm@60557
   979
            apply (subst u [symmetric])
wenzelm@60557
   980
            apply (simp add: ac_simps power_add [symmetric])
wenzelm@60557
   981
            done
wenzelm@60557
   982
          then show ?thesis
wenzelm@60557
   983
            unfolding dvd_def by blast
wenzelm@60424
   984
        qed
wenzelm@60424
   985
      qed
wenzelm@60424
   986
    qed
wenzelm@60557
   987
    then show ?thesis
wenzelm@60557
   988
      using a order_root pne by blast
wenzelm@60557
   989
  next
wenzelm@60557
   990
    case False
wenzelm@60557
   991
    with fundamental_theorem_of_algebra_alt[of p]
wenzelm@56778
   992
    obtain c where ccs: "c \<noteq> 0" "p = pCons c 0"
wenzelm@56778
   993
      by blast
wenzelm@60557
   994
    then have pp: "poly p x = c" for x
wenzelm@56778
   995
      by simp
huffman@29464
   996
    let ?w = "[:1/c:] * (q ^ n)"
wenzelm@56778
   997
    from ccs have "(q ^ n) = (p * ?w)"
wenzelm@56778
   998
      by simp
wenzelm@60557
   999
    then show ?thesis
wenzelm@56778
  1000
      unfolding dvd_def by blast
wenzelm@60557
  1001
  qed
chaieb@26123
  1002
qed
chaieb@26123
  1003
chaieb@26123
  1004
lemma nullstellensatz_univariate:
huffman@30488
  1005
  "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>
huffman@29464
  1006
    p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"
wenzelm@56776
  1007
proof -
wenzelm@60457
  1008
  consider "p = 0" | "p \<noteq> 0" "degree p = 0" | n where "p \<noteq> 0" "degree p = Suc n"
wenzelm@60457
  1009
    by (cases "degree p") auto
wenzelm@60457
  1010
  then show ?thesis
wenzelm@60457
  1011
  proof cases
wenzelm@60567
  1012
    case p: 1
wenzelm@56778
  1013
    then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
haftmann@52380
  1014
      by (auto simp add: poly_all_0_iff_0)
wenzelm@56778
  1015
    {
wenzelm@56778
  1016
      assume "p dvd (q ^ (degree p))"
huffman@29464
  1017
      then obtain r where r: "q ^ (degree p) = p * r" ..
wenzelm@60567
  1018
      from r p have False by simp
wenzelm@56778
  1019
    }
wenzelm@60567
  1020
    with eq p show ?thesis by blast
wenzelm@60424
  1021
  next
wenzelm@60567
  1022
    case dp: 2
wenzelm@60457
  1023
    then obtain k where k: "p = [:k:]" "k \<noteq> 0"
wenzelm@60457
  1024
      by (cases p) (simp split: if_splits)
wenzelm@60457
  1025
    then have th1: "\<forall>x. poly p x \<noteq> 0"
wenzelm@60457
  1026
      by simp
wenzelm@60567
  1027
    from k dp(2) have "q ^ (degree p) = p * [:1/k:]"
haftmann@65486
  1028
      by simp
wenzelm@60457
  1029
    then have th2: "p dvd (q ^ (degree p))" ..
wenzelm@60567
  1030
    from dp(1) th1 th2 show ?thesis
wenzelm@60457
  1031
      by blast
wenzelm@60457
  1032
  next
wenzelm@60567
  1033
    case dp: 3
wenzelm@60557
  1034
    have False if dvd: "p dvd (q ^ (Suc n))" and h: "poly p x = 0" "poly q x \<noteq> 0" for x
wenzelm@60557
  1035
    proof -
wenzelm@60557
  1036
      from dvd obtain u where u: "q ^ (Suc n) = p * u" ..
wenzelm@60557
  1037
      from h have "poly (q ^ (Suc n)) x \<noteq> 0"
wenzelm@56778
  1038
        by simp
wenzelm@60557
  1039
      with u h(1) show ?thesis
wenzelm@60457
  1040
        by (simp only: poly_mult) simp
wenzelm@60557
  1041
    qed
wenzelm@60567
  1042
    with dp nullstellensatz_lemma[of p q "degree p"] show ?thesis
wenzelm@60567
  1043
      by auto
wenzelm@60424
  1044
  qed
chaieb@26123
  1045
qed
chaieb@26123
  1046
wenzelm@60424
  1047
text \<open>Useful lemma\<close>
huffman@29464
  1048
lemma constant_degree:
huffman@29464
  1049
  fixes p :: "'a::{idom,ring_char_0} poly"
huffman@29464
  1050
  shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
chaieb@26123
  1051
proof
wenzelm@60557
  1052
  show ?rhs if ?lhs
wenzelm@60557
  1053
  proof -
wenzelm@60557
  1054
    from that[unfolded constant_def, rule_format, of _ "0"]
wenzelm@60557
  1055
    have th: "poly p = poly [:poly p 0:]"
wenzelm@60557
  1056
      by auto
wenzelm@60557
  1057
    then have "p = [:poly p 0:]"
wenzelm@60557
  1058
      by (simp add: poly_eq_poly_eq_iff)
wenzelm@60557
  1059
    then have "degree p = degree [:poly p 0:]"
wenzelm@60557
  1060
      by simp
wenzelm@60557
  1061
    then show ?thesis
wenzelm@60557
  1062
      by simp
wenzelm@60557
  1063
  qed
wenzelm@60557
  1064
  show ?lhs if ?rhs
wenzelm@60557
  1065
  proof -
wenzelm@60557
  1066
    from that obtain k where "p = [:k:]"
wenzelm@60557
  1067
      by (cases p) (simp split: if_splits)
wenzelm@60557
  1068
    then show ?thesis
wenzelm@60557
  1069
      unfolding constant_def by auto
wenzelm@60557
  1070
  qed
chaieb@26123
  1071
qed
chaieb@26123
  1072
wenzelm@60424
  1073
text \<open>Arithmetic operations on multivariate polynomials.\<close>
chaieb@26123
  1074
huffman@30488
  1075
lemma mpoly_base_conv:
wenzelm@56778
  1076
  fixes x :: "'a::comm_ring_1"
lp15@55735
  1077
  shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x"
lp15@55735
  1078
  by simp_all
chaieb@26123
  1079
huffman@30488
  1080
lemma mpoly_norm_conv:
wenzelm@56778
  1081
  fixes x :: "'a::comm_ring_1"
wenzelm@56776
  1082
  shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x"
wenzelm@56776
  1083
  by simp_all
chaieb@26123
  1084
huffman@30488
  1085
lemma mpoly_sub_conv:
wenzelm@56778
  1086
  fixes x :: "'a::comm_ring_1"
lp15@55735
  1087
  shows "poly p x - poly q x = poly p x + -1 * poly q x"
haftmann@54230
  1088
  by simp
chaieb@26123
  1089
wenzelm@56778
  1090
lemma poly_pad_rule: "poly p x = 0 \<Longrightarrow> poly (pCons 0 p) x = 0"
wenzelm@56778
  1091
  by simp
chaieb@26123
  1092
lp15@55735
  1093
lemma poly_cancel_eq_conv:
wenzelm@56778
  1094
  fixes x :: "'a::field"
wenzelm@56795
  1095
  shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0"
lp15@55735
  1096
  by auto
chaieb@26123
  1097
huffman@30488
  1098
lemma poly_divides_pad_rule:
wenzelm@56778
  1099
  fixes p:: "('a::comm_ring_1) poly"
huffman@29464
  1100
  assumes pq: "p dvd q"
wenzelm@56778
  1101
  shows "p dvd (pCons 0 q)"
wenzelm@56778
  1102
proof -
huffman@29464
  1103
  have "pCons 0 q = q * [:0,1:]" by simp
huffman@29464
  1104
  then have "q dvd (pCons 0 q)" ..
huffman@29464
  1105
  with pq show ?thesis by (rule dvd_trans)
chaieb@26123
  1106
qed
chaieb@26123
  1107
huffman@30488
  1108
lemma poly_divides_conv0:
wenzelm@56778
  1109
  fixes p:: "'a::field poly"
wenzelm@56776
  1110
  assumes lgpq: "degree q < degree p"
wenzelm@56776
  1111
    and lq: "p \<noteq> 0"
wenzelm@56776
  1112
  shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs")
wenzelm@56776
  1113
proof
wenzelm@60557
  1114
  assume ?rhs
wenzelm@56776
  1115
  then have "q = p * 0" by simp
wenzelm@56776
  1116
  then show ?lhs ..
wenzelm@56776
  1117
next
wenzelm@56776
  1118
  assume l: ?lhs
wenzelm@56778
  1119
  show ?rhs
wenzelm@56778
  1120
  proof (cases "q = 0")
wenzelm@56778
  1121
    case True
wenzelm@56778
  1122
    then show ?thesis by simp
wenzelm@56778
  1123
  next
wenzelm@56776
  1124
    assume q0: "q \<noteq> 0"
wenzelm@56776
  1125
    from l q0 have "degree p \<le> degree q"
wenzelm@56776
  1126
      by (rule dvd_imp_degree_le)
wenzelm@56778
  1127
    with lgpq show ?thesis by simp
wenzelm@56778
  1128
  qed
chaieb@26123
  1129
qed
chaieb@26123
  1130
huffman@30488
  1131
lemma poly_divides_conv1:
wenzelm@56778
  1132
  fixes p :: "'a::field poly"
wenzelm@56776
  1133
  assumes a0: "a \<noteq> 0"
wenzelm@56776
  1134
    and pp': "p dvd p'"
wenzelm@56776
  1135
    and qrp': "smult a q - p' = r"
wenzelm@56776
  1136
  shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs")
wenzelm@56776
  1137
proof
huffman@29464
  1138
  from pp' obtain t where t: "p' = p * t" ..
wenzelm@60557
  1139
  show ?rhs if ?lhs
wenzelm@60557
  1140
  proof -
wenzelm@60557
  1141
    from that obtain u where u: "q = p * u" ..
wenzelm@56776
  1142
    have "r = p * (smult a u - t)"
wenzelm@56776
  1143
      using u qrp' [symmetric] t by (simp add: algebra_simps)
wenzelm@60557
  1144
    then show ?thesis ..
wenzelm@60557
  1145
  qed
wenzelm@60557
  1146
  show ?lhs if ?rhs
wenzelm@60557
  1147
  proof -
wenzelm@60557
  1148
    from that obtain u where u: "r = p * u" ..
huffman@29464
  1149
    from u [symmetric] t qrp' [symmetric] a0
wenzelm@60557
  1150
    have "q = p * smult (1/a) (u + t)"
wenzelm@60557
  1151
      by (simp add: algebra_simps)
wenzelm@60557
  1152
    then show ?thesis ..
wenzelm@60557
  1153
  qed
chaieb@26123
  1154
qed
chaieb@26123
  1155
chaieb@26123
  1156
lemma basic_cqe_conv1:
lp15@55358
  1157
  "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False"
lp15@55358
  1158
  "(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False"
wenzelm@56776
  1159
  "(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c \<noteq> 0"
lp15@55358
  1160
  "(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True"
wenzelm@56776
  1161
  "(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0"
wenzelm@56776
  1162
  by simp_all
chaieb@26123
  1163
huffman@30488
  1164
lemma basic_cqe_conv2:
wenzelm@56795
  1165
  assumes l: "p \<noteq> 0"
wenzelm@56795
  1166
  shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)"
wenzelm@56776
  1167
proof -
wenzelm@60424
  1168
  have False if "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t" for h t
wenzelm@60449
  1169
    using l that by simp
wenzelm@56776
  1170
  then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)"
chaieb@26123
  1171
    by blast
wenzelm@56776
  1172
  from fundamental_theorem_of_algebra_alt[OF th] show ?thesis
wenzelm@56776
  1173
    by auto
chaieb@26123
  1174
qed
chaieb@26123
  1175
wenzelm@56776
  1176
lemma  basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0"
wenzelm@56776
  1177
  by (metis poly_all_0_iff_0)
chaieb@26123
  1178
chaieb@26123
  1179
lemma basic_cqe_conv3:
huffman@29464
  1180
  fixes p q :: "complex poly"
huffman@30488
  1181
  assumes l: "p \<noteq> 0"
wenzelm@56795
  1182
  shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)"
lp15@55358
  1183
proof -
wenzelm@56776
  1184
  from l have dp: "degree (pCons a p) = psize p"
wenzelm@56776
  1185
    by (simp add: psize_def)
huffman@29464
  1186
  from nullstellensatz_univariate[of "pCons a p" q] l
lp15@55358
  1187
  show ?thesis
lp15@55358
  1188
    by (metis dp pCons_eq_0_iff)
chaieb@26123
  1189
qed
chaieb@26123
  1190
chaieb@26123
  1191
lemma basic_cqe_conv4:
huffman@29464
  1192
  fixes p q :: "complex poly"
lp15@55358
  1193
  assumes h: "\<And>x. poly (q ^ n) x = poly r x"
lp15@55358
  1194
  shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
wenzelm@56776
  1195
proof -
wenzelm@56776
  1196
  from h have "poly (q ^ n) = poly r"
wenzelm@56776
  1197
    by auto
wenzelm@56776
  1198
  then have "(q ^ n) = r"
wenzelm@56776
  1199
    by (simp add: poly_eq_poly_eq_iff)
wenzelm@56776
  1200
  then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
wenzelm@56776
  1201
    by simp
chaieb@26123
  1202
qed
chaieb@26123
  1203
lp15@55735
  1204
lemma poly_const_conv:
wenzelm@56778
  1205
  fixes x :: "'a::comm_ring_1"
wenzelm@56776
  1206
  shows "poly [:c:] x = y \<longleftrightarrow> c = y"
wenzelm@56776
  1207
  by simp
chaieb@26123
  1208
huffman@29464
  1209
end