src/HOL/Library/Infinite_Set.thy
author haftmann
Mon Jun 05 15:59:41 2017 +0200 (2017-06-05)
changeset 66010 2f7d39285a1a
parent 64967 1ab49aa7f3c0
child 66837 6ba663ff2b1c
permissions -rw-r--r--
executable domain membership checks
huffman@27407
     1
(*  Title:      HOL/Library/Infinite_Set.thy
wenzelm@20809
     2
    Author:     Stephan Merz
wenzelm@20809
     3
*)
wenzelm@20809
     4
wenzelm@60500
     5
section \<open>Infinite Sets and Related Concepts\<close>
wenzelm@20809
     6
wenzelm@20809
     7
theory Infinite_Set
wenzelm@64967
     8
  imports Main
wenzelm@20809
     9
begin
wenzelm@20809
    10
wenzelm@64967
    11
subsection \<open>The set of natural numbers is infinite\<close>
wenzelm@20809
    12
wenzelm@64967
    13
lemma infinite_nat_iff_unbounded_le: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n\<ge>m. n \<in> S)"
wenzelm@64967
    14
  for S :: "nat set"
hoelzl@60040
    15
  using frequently_cofinite[of "\<lambda>x. x \<in> S"]
hoelzl@60040
    16
  by (simp add: cofinite_eq_sequentially frequently_def eventually_sequentially)
hoelzl@60040
    17
wenzelm@64967
    18
lemma infinite_nat_iff_unbounded: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n>m. n \<in> S)"
wenzelm@64967
    19
  for S :: "nat set"
hoelzl@60040
    20
  using frequently_cofinite[of "\<lambda>x. x \<in> S"]
hoelzl@60040
    21
  by (simp add: cofinite_eq_sequentially frequently_def eventually_at_top_dense)
wenzelm@20809
    22
wenzelm@64967
    23
lemma finite_nat_iff_bounded: "finite S \<longleftrightarrow> (\<exists>k. S \<subseteq> {..<k})"
wenzelm@64967
    24
  for S :: "nat set"
hoelzl@60040
    25
  using infinite_nat_iff_unbounded_le[of S] by (simp add: subset_eq) (metis not_le)
wenzelm@20809
    26
wenzelm@64967
    27
lemma finite_nat_iff_bounded_le: "finite S \<longleftrightarrow> (\<exists>k. S \<subseteq> {.. k})"
wenzelm@64967
    28
  for S :: "nat set"
hoelzl@60040
    29
  using infinite_nat_iff_unbounded[of S] by (simp add: subset_eq) (metis not_le)
wenzelm@20809
    30
wenzelm@64967
    31
lemma finite_nat_bounded: "finite S \<Longrightarrow> \<exists>k. S \<subseteq> {..<k}"
wenzelm@64967
    32
  for S :: "nat set"
hoelzl@60040
    33
  by (simp add: finite_nat_iff_bounded)
wenzelm@20809
    34
lp15@61762
    35
wenzelm@60500
    36
text \<open>
wenzelm@20809
    37
  For a set of natural numbers to be infinite, it is enough to know
wenzelm@61585
    38
  that for any number larger than some \<open>k\<close>, there is some larger
wenzelm@20809
    39
  number that is an element of the set.
wenzelm@60500
    40
\<close>
wenzelm@20809
    41
hoelzl@60040
    42
lemma unbounded_k_infinite: "\<forall>m>k. \<exists>n>m. n \<in> S \<Longrightarrow> infinite (S::nat set)"
wenzelm@64967
    43
  apply (clarsimp simp add: finite_nat_set_iff_bounded)
wenzelm@64967
    44
  apply (drule_tac x="Suc (max m k)" in spec)
wenzelm@64967
    45
  using less_Suc_eq apply fastforce
wenzelm@64967
    46
  done
wenzelm@20809
    47
huffman@35056
    48
lemma nat_not_finite: "finite (UNIV::nat set) \<Longrightarrow> R"
wenzelm@20809
    49
  by simp
wenzelm@20809
    50
wenzelm@20809
    51
lemma range_inj_infinite:
wenzelm@64967
    52
  fixes f :: "nat \<Rightarrow> 'a"
wenzelm@64967
    53
  assumes "inj f"
wenzelm@64967
    54
  shows "infinite (range f)"
wenzelm@20809
    55
proof
wenzelm@64967
    56
  assume "finite (range f)"
wenzelm@64967
    57
  from this assms have "finite (UNIV::nat set)"
huffman@27407
    58
    by (rule finite_imageD)
wenzelm@20809
    59
  then show False by simp
wenzelm@20809
    60
qed
wenzelm@20809
    61
wenzelm@64967
    62
wenzelm@64967
    63
subsection \<open>The set of integers is also infinite\<close>
lp15@61762
    64
wenzelm@64967
    65
lemma infinite_int_iff_infinite_nat_abs: "infinite S \<longleftrightarrow> infinite ((nat \<circ> abs) ` S)"
wenzelm@64967
    66
  for S :: "int set"
lp15@61762
    67
  by (auto simp: transfer_nat_int_set_relations o_def image_comp dest: finite_image_absD)
lp15@61762
    68
wenzelm@64967
    69
proposition infinite_int_iff_unbounded_le: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n. \<bar>n\<bar> \<ge> m \<and> n \<in> S)"
wenzelm@64967
    70
  for S :: "int set"
wenzelm@64967
    71
  by (simp add: infinite_int_iff_infinite_nat_abs infinite_nat_iff_unbounded_le o_def image_def)
wenzelm@64967
    72
    (metis abs_ge_zero nat_le_eq_zle le_nat_iff)
lp15@61762
    73
wenzelm@64967
    74
proposition infinite_int_iff_unbounded: "infinite S \<longleftrightarrow> (\<forall>m. \<exists>n. \<bar>n\<bar> > m \<and> n \<in> S)"
wenzelm@64967
    75
  for S :: "int set"
wenzelm@64967
    76
  by (simp add: infinite_int_iff_infinite_nat_abs infinite_nat_iff_unbounded o_def image_def)
wenzelm@64967
    77
    (metis (full_types) nat_le_iff nat_mono not_le)
lp15@61762
    78
wenzelm@64967
    79
proposition finite_int_iff_bounded: "finite S \<longleftrightarrow> (\<exists>k. abs ` S \<subseteq> {..<k})"
wenzelm@64967
    80
  for S :: "int set"
lp15@61762
    81
  using infinite_int_iff_unbounded_le[of S] by (simp add: subset_eq) (metis not_le)
lp15@61762
    82
wenzelm@64967
    83
proposition finite_int_iff_bounded_le: "finite S \<longleftrightarrow> (\<exists>k. abs ` S \<subseteq> {.. k})"
wenzelm@64967
    84
  for S :: "int set"
lp15@61762
    85
  using infinite_int_iff_unbounded[of S] by (simp add: subset_eq) (metis not_le)
lp15@61762
    86
wenzelm@64967
    87
wenzelm@64967
    88
subsection \<open>Infinitely Many and Almost All\<close>
wenzelm@20809
    89
wenzelm@60500
    90
text \<open>
wenzelm@20809
    91
  We often need to reason about the existence of infinitely many
wenzelm@20809
    92
  (resp., all but finitely many) objects satisfying some predicate, so
wenzelm@20809
    93
  we introduce corresponding binders and their proof rules.
wenzelm@60500
    94
\<close>
wenzelm@20809
    95
wenzelm@64967
    96
lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)"
wenzelm@64967
    97
  by (rule not_frequently)
wenzelm@64967
    98
wenzelm@64967
    99
lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)"
wenzelm@64967
   100
  by (rule not_eventually)
huffman@34112
   101
huffman@34112
   102
lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)"
hoelzl@60040
   103
  by (simp add: frequently_const_iff)
huffman@34112
   104
huffman@34112
   105
lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)"
hoelzl@60040
   106
  by (simp add: eventually_const_iff)
wenzelm@20809
   107
hoelzl@60040
   108
lemma INFM_imp_distrib: "(INFM x. P x \<longrightarrow> Q x) \<longleftrightarrow> ((MOST x. P x) \<longrightarrow> (INFM x. Q x))"
wenzelm@64967
   109
  by (rule frequently_imp_iff)
huffman@34112
   110
hoelzl@60040
   111
lemma MOST_imp_iff: "MOST x. P x \<Longrightarrow> (MOST x. P x \<longrightarrow> Q x) \<longleftrightarrow> (MOST x. Q x)"
lp15@61810
   112
  by (auto intro: eventually_rev_mp eventually_mono)
huffman@34113
   113
hoelzl@60040
   114
lemma INFM_conjI: "INFM x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> INFM x. P x \<and> Q x"
lp15@61810
   115
  by (rule frequently_rev_mp[of P]) (auto elim: eventually_mono)
huffman@34112
   116
wenzelm@64967
   117
wenzelm@60500
   118
text \<open>Properties of quantifiers with injective functions.\<close>
huffman@34112
   119
wenzelm@53239
   120
lemma INFM_inj: "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x"
hoelzl@60040
   121
  using finite_vimageI[of "{x. P x}" f] by (auto simp: frequently_cofinite)
huffman@27407
   122
wenzelm@53239
   123
lemma MOST_inj: "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)"
hoelzl@60040
   124
  using finite_vimageI[of "{x. \<not> P x}" f] by (auto simp: eventually_cofinite)
huffman@34112
   125
wenzelm@64967
   126
wenzelm@60500
   127
text \<open>Properties of quantifiers with singletons.\<close>
huffman@34112
   128
huffman@34112
   129
lemma not_INFM_eq [simp]:
huffman@34112
   130
  "\<not> (INFM x. x = a)"
huffman@34112
   131
  "\<not> (INFM x. a = x)"
hoelzl@60040
   132
  unfolding frequently_cofinite by simp_all
huffman@34112
   133
huffman@34112
   134
lemma MOST_neq [simp]:
huffman@34112
   135
  "MOST x. x \<noteq> a"
huffman@34112
   136
  "MOST x. a \<noteq> x"
hoelzl@60040
   137
  unfolding eventually_cofinite by simp_all
huffman@27407
   138
huffman@34112
   139
lemma INFM_neq [simp]:
huffman@34112
   140
  "(INFM x::'a. x \<noteq> a) \<longleftrightarrow> infinite (UNIV::'a set)"
huffman@34112
   141
  "(INFM x::'a. a \<noteq> x) \<longleftrightarrow> infinite (UNIV::'a set)"
hoelzl@60040
   142
  unfolding frequently_cofinite by simp_all
huffman@34112
   143
huffman@34112
   144
lemma MOST_eq [simp]:
huffman@34112
   145
  "(MOST x::'a. x = a) \<longleftrightarrow> finite (UNIV::'a set)"
huffman@34112
   146
  "(MOST x::'a. a = x) \<longleftrightarrow> finite (UNIV::'a set)"
hoelzl@60040
   147
  unfolding eventually_cofinite by simp_all
huffman@34112
   148
huffman@34112
   149
lemma MOST_eq_imp:
huffman@34112
   150
  "MOST x. x = a \<longrightarrow> P x"
huffman@34112
   151
  "MOST x. a = x \<longrightarrow> P x"
hoelzl@60040
   152
  unfolding eventually_cofinite by simp_all
huffman@34112
   153
wenzelm@64967
   154
wenzelm@60500
   155
text \<open>Properties of quantifiers over the naturals.\<close>
huffman@27407
   156
wenzelm@64967
   157
lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<exists>m. \<forall>n>m. P n)"
wenzelm@64967
   158
  for P :: "nat \<Rightarrow> bool"
hoelzl@60040
   159
  by (auto simp add: eventually_cofinite finite_nat_iff_bounded_le subset_eq not_le[symmetric])
hoelzl@60040
   160
wenzelm@64967
   161
lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<exists>m. \<forall>n\<ge>m. P n)"
wenzelm@64967
   162
  for P :: "nat \<Rightarrow> bool"
hoelzl@60040
   163
  by (auto simp add: eventually_cofinite finite_nat_iff_bounded subset_eq not_le[symmetric])
hoelzl@60040
   164
wenzelm@64967
   165
lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<forall>m. \<exists>n>m. P n)"
wenzelm@64967
   166
  for P :: "nat \<Rightarrow> bool"
hoelzl@60040
   167
  by (simp add: frequently_cofinite infinite_nat_iff_unbounded)
wenzelm@20809
   168
wenzelm@64967
   169
lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P n) \<longleftrightarrow> (\<forall>m. \<exists>n\<ge>m. P n)"
wenzelm@64967
   170
  for P :: "nat \<Rightarrow> bool"
hoelzl@60040
   171
  by (simp add: frequently_cofinite infinite_nat_iff_unbounded_le)
hoelzl@60040
   172
hoelzl@60040
   173
lemma MOST_INFM: "infinite (UNIV::'a set) \<Longrightarrow> MOST x::'a. P x \<Longrightarrow> INFM x::'a. P x"
hoelzl@60040
   174
  by (simp add: eventually_frequently)
hoelzl@60040
   175
hoelzl@60040
   176
lemma MOST_Suc_iff: "(MOST n. P (Suc n)) \<longleftrightarrow> (MOST n. P n)"
wenzelm@64697
   177
  by (simp add: cofinite_eq_sequentially)
wenzelm@20809
   178
wenzelm@64967
   179
lemma MOST_SucI: "MOST n. P n \<Longrightarrow> MOST n. P (Suc n)"
wenzelm@64967
   180
  and MOST_SucD: "MOST n. P (Suc n) \<Longrightarrow> MOST n. P n"
hoelzl@60040
   181
  by (simp_all add: MOST_Suc_iff)
hoelzl@60040
   182
hoelzl@60040
   183
lemma MOST_ge_nat: "MOST n::nat. m \<le> n"
hoelzl@60040
   184
  by (simp add: cofinite_eq_sequentially eventually_ge_at_top)
wenzelm@20809
   185
hoelzl@60040
   186
(* legacy names *)
hoelzl@60040
   187
lemma Inf_many_def: "Inf_many P \<longleftrightarrow> infinite {x. P x}" by (fact frequently_cofinite)
hoelzl@60040
   188
lemma Alm_all_def: "Alm_all P \<longleftrightarrow> \<not> (INFM x. \<not> P x)" by simp
hoelzl@60040
   189
lemma INFM_iff_infinite: "(INFM x. P x) \<longleftrightarrow> infinite {x. P x}" by (fact frequently_cofinite)
hoelzl@60040
   190
lemma MOST_iff_cofinite: "(MOST x. P x) \<longleftrightarrow> finite {x. \<not> P x}" by (fact eventually_cofinite)
hoelzl@60040
   191
lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)" by (fact frequently_ex)
hoelzl@60040
   192
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x" by (fact always_eventually)
hoelzl@60040
   193
lemma INFM_mono: "\<exists>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<exists>\<^sub>\<infinity>x. Q x" by (fact frequently_elim1)
lp15@61810
   194
lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" by (fact eventually_mono)
hoelzl@60040
   195
lemma INFM_disj_distrib: "(\<exists>\<^sub>\<infinity>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>\<infinity>x. P x) \<or> (\<exists>\<^sub>\<infinity>x. Q x)" by (fact frequently_disj_iff)
hoelzl@60040
   196
lemma MOST_rev_mp: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x \<longrightarrow> Q x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" by (fact eventually_rev_mp)
hoelzl@60040
   197
lemma MOST_conj_distrib: "(\<forall>\<^sub>\<infinity>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>\<^sub>\<infinity>x. P x) \<and> (\<forall>\<^sub>\<infinity>x. Q x)" by (fact eventually_conj_iff)
hoelzl@60040
   198
lemma MOST_conjI: "MOST x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> MOST x. P x \<and> Q x" by (fact eventually_conj)
hoelzl@60040
   199
lemma INFM_finite_Bex_distrib: "finite A \<Longrightarrow> (INFM y. \<exists>x\<in>A. P x y) \<longleftrightarrow> (\<exists>x\<in>A. INFM y. P x y)" by (fact frequently_bex_finite_distrib)
hoelzl@60040
   200
lemma MOST_finite_Ball_distrib: "finite A \<Longrightarrow> (MOST y. \<forall>x\<in>A. P x y) \<longleftrightarrow> (\<forall>x\<in>A. MOST y. P x y)" by (fact eventually_ball_finite_distrib)
hoelzl@60040
   201
lemma INFM_E: "INFM x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> thesis) \<Longrightarrow> thesis" by (fact frequentlyE)
hoelzl@60040
   202
lemma MOST_I: "(\<And>x. P x) \<Longrightarrow> MOST x. P x" by (rule eventuallyI)
hoelzl@60040
   203
lemmas MOST_iff_finiteNeg = MOST_iff_cofinite
wenzelm@20809
   204
wenzelm@20809
   205
wenzelm@64967
   206
subsection \<open>Enumeration of an Infinite Set\<close>
wenzelm@64967
   207
wenzelm@64967
   208
text \<open>The set's element type must be wellordered (e.g. the natural numbers).\<close>
wenzelm@20809
   209
hoelzl@60040
   210
text \<open>
hoelzl@60040
   211
  Could be generalized to
wenzelm@64967
   212
    @{prop "enumerate' S n = (SOME t. t \<in> s \<and> finite {s\<in>S. s < t} \<and> card {s\<in>S. s < t} = n)"}.
hoelzl@60040
   213
\<close>
hoelzl@60040
   214
wenzelm@53239
   215
primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a"
wenzelm@64967
   216
  where
wenzelm@64967
   217
    enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"
wenzelm@64967
   218
  | enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
wenzelm@20809
   219
wenzelm@53239
   220
lemma enumerate_Suc': "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
wenzelm@20809
   221
  by simp
wenzelm@20809
   222
hoelzl@60040
   223
lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n \<in> S"
wenzelm@64967
   224
proof (induct n arbitrary: S)
wenzelm@64967
   225
  case 0
wenzelm@64967
   226
  then show ?case
wenzelm@64967
   227
    by (fastforce intro: LeastI dest!: infinite_imp_nonempty)
wenzelm@64967
   228
next
wenzelm@64967
   229
  case (Suc n)
wenzelm@64967
   230
  then show ?case
wenzelm@64967
   231
    by simp (metis DiffE infinite_remove)
wenzelm@64967
   232
qed
wenzelm@20809
   233
wenzelm@20809
   234
declare enumerate_0 [simp del] enumerate_Suc [simp del]
wenzelm@20809
   235
wenzelm@20809
   236
lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)"
wenzelm@20809
   237
  apply (induct n arbitrary: S)
wenzelm@20809
   238
   apply (rule order_le_neq_trans)
wenzelm@20809
   239
    apply (simp add: enumerate_0 Least_le enumerate_in_set)
wenzelm@20809
   240
   apply (simp only: enumerate_Suc')
hoelzl@60040
   241
   apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 \<in> S - {enumerate S 0}")
wenzelm@20809
   242
    apply (blast intro: sym)
wenzelm@20809
   243
   apply (simp add: enumerate_in_set del: Diff_iff)
wenzelm@20809
   244
  apply (simp add: enumerate_Suc')
wenzelm@20809
   245
  done
wenzelm@20809
   246
hoelzl@60040
   247
lemma enumerate_mono: "m < n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n"
wenzelm@64967
   248
  by (induct m n rule: less_Suc_induct) (auto intro: enumerate_step)
wenzelm@20809
   249
hoelzl@50134
   250
lemma le_enumerate:
hoelzl@50134
   251
  assumes S: "infinite S"
hoelzl@50134
   252
  shows "n \<le> enumerate S n"
lp15@61810
   253
  using S
hoelzl@50134
   254
proof (induct n)
wenzelm@53239
   255
  case 0
wenzelm@53239
   256
  then show ?case by simp
wenzelm@53239
   257
next
hoelzl@50134
   258
  case (Suc n)
hoelzl@50134
   259
  then have "n \<le> enumerate S n" by simp
wenzelm@60500
   260
  also note enumerate_mono[of n "Suc n", OF _ \<open>infinite S\<close>]
hoelzl@50134
   261
  finally show ?case by simp
wenzelm@53239
   262
qed
hoelzl@50134
   263
hoelzl@50134
   264
lemma enumerate_Suc'':
hoelzl@50134
   265
  fixes S :: "'a::wellorder set"
wenzelm@53239
   266
  assumes "infinite S"
wenzelm@53239
   267
  shows "enumerate S (Suc n) = (LEAST s. s \<in> S \<and> enumerate S n < s)"
wenzelm@53239
   268
  using assms
hoelzl@50134
   269
proof (induct n arbitrary: S)
hoelzl@50134
   270
  case 0
wenzelm@53239
   271
  then have "\<forall>s \<in> S. enumerate S 0 \<le> s"
hoelzl@50134
   272
    by (auto simp: enumerate.simps intro: Least_le)
hoelzl@50134
   273
  then show ?case
hoelzl@50134
   274
    unfolding enumerate_Suc' enumerate_0[of "S - {enumerate S 0}"]
wenzelm@53239
   275
    by (intro arg_cong[where f = Least] ext) auto
hoelzl@50134
   276
next
hoelzl@50134
   277
  case (Suc n S)
hoelzl@50134
   278
  show ?case
wenzelm@60500
   279
    using enumerate_mono[OF zero_less_Suc \<open>infinite S\<close>, of n] \<open>infinite S\<close>
hoelzl@50134
   280
    apply (subst (1 2) enumerate_Suc')
hoelzl@50134
   281
    apply (subst Suc)
wenzelm@64967
   282
     apply (use \<open>infinite S\<close> in simp)
wenzelm@53239
   283
    apply (intro arg_cong[where f = Least] ext)
wenzelm@53239
   284
    apply (auto simp: enumerate_Suc'[symmetric])
wenzelm@53239
   285
    done
hoelzl@50134
   286
qed
hoelzl@50134
   287
hoelzl@50134
   288
lemma enumerate_Ex:
wenzelm@64967
   289
  fixes S :: "nat set"
wenzelm@64967
   290
  assumes S: "infinite S"
wenzelm@64967
   291
    and s: "s \<in> S"
wenzelm@64967
   292
  shows "\<exists>n. enumerate S n = s"
wenzelm@64967
   293
  using s
hoelzl@50134
   294
proof (induct s rule: less_induct)
hoelzl@50134
   295
  case (less s)
hoelzl@50134
   296
  show ?case
wenzelm@64967
   297
  proof (cases "\<exists>y\<in>S. y < s")
wenzelm@64967
   298
    case True
hoelzl@50134
   299
    let ?y = "Max {s'\<in>S. s' < s}"
wenzelm@64967
   300
    from True have y: "\<And>x. ?y < x \<longleftrightarrow> (\<forall>s'\<in>S. s' < s \<longrightarrow> s' < x)"
wenzelm@53239
   301
      by (subst Max_less_iff) auto
wenzelm@53239
   302
    then have y_in: "?y \<in> {s'\<in>S. s' < s}"
wenzelm@53239
   303
      by (intro Max_in) auto
wenzelm@53239
   304
    with less.hyps[of ?y] obtain n where "enumerate S n = ?y"
wenzelm@53239
   305
      by auto
hoelzl@50134
   306
    with S have "enumerate S (Suc n) = s"
hoelzl@50134
   307
      by (auto simp: y less enumerate_Suc'' intro!: Least_equality)
wenzelm@64967
   308
    then show ?thesis by auto
hoelzl@50134
   309
  next
wenzelm@64967
   310
    case False
hoelzl@50134
   311
    then have "\<forall>t\<in>S. s \<le> t" by auto
wenzelm@60500
   312
    with \<open>s \<in> S\<close> show ?thesis
hoelzl@50134
   313
      by (auto intro!: exI[of _ 0] Least_equality simp: enumerate_0)
hoelzl@50134
   314
  qed
hoelzl@50134
   315
qed
hoelzl@50134
   316
hoelzl@50134
   317
lemma bij_enumerate:
hoelzl@50134
   318
  fixes S :: "nat set"
hoelzl@50134
   319
  assumes S: "infinite S"
hoelzl@50134
   320
  shows "bij_betw (enumerate S) UNIV S"
hoelzl@50134
   321
proof -
hoelzl@50134
   322
  have "\<And>n m. n \<noteq> m \<Longrightarrow> enumerate S n \<noteq> enumerate S m"
wenzelm@60500
   323
    using enumerate_mono[OF _ \<open>infinite S\<close>] by (auto simp: neq_iff)
hoelzl@50134
   324
  then have "inj (enumerate S)"
hoelzl@50134
   325
    by (auto simp: inj_on_def)
wenzelm@53239
   326
  moreover have "\<forall>s \<in> S. \<exists>i. enumerate S i = s"
hoelzl@50134
   327
    using enumerate_Ex[OF S] by auto
wenzelm@60500
   328
  moreover note \<open>infinite S\<close>
hoelzl@50134
   329
  ultimately show ?thesis
hoelzl@50134
   330
    unfolding bij_betw_def by (auto intro: enumerate_in_set)
hoelzl@50134
   331
qed
hoelzl@50134
   332
wenzelm@64967
   333
text \<open>A pair of weird and wonderful lemmas from HOL Light.\<close>
lp15@63492
   334
lemma finite_transitivity_chain:
lp15@63492
   335
  assumes "finite A"
wenzelm@64967
   336
    and R: "\<And>x. \<not> R x x" "\<And>x y z. \<lbrakk>R x y; R y z\<rbrakk> \<Longrightarrow> R x z"
wenzelm@64967
   337
    and A: "\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> A \<and> R x y"
lp15@63492
   338
  shows "A = {}"
wenzelm@64967
   339
  using \<open>finite A\<close> A
wenzelm@64967
   340
proof (induct A)
wenzelm@64967
   341
  case empty
wenzelm@64967
   342
  then show ?case by simp
wenzelm@64967
   343
next
lp15@63492
   344
  case (insert a A)
lp15@63492
   345
  with R show ?case
wenzelm@64967
   346
    by (metis empty_iff insert_iff)   (* somewhat slow *)
wenzelm@64967
   347
qed
lp15@63492
   348
lp15@63492
   349
corollary Union_maximal_sets:
lp15@63492
   350
  assumes "finite \<F>"
wenzelm@64967
   351
  shows "\<Union>{T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} = \<Union>\<F>"
lp15@63492
   352
    (is "?lhs = ?rhs")
lp15@63492
   353
proof
wenzelm@64967
   354
  show "?lhs \<subseteq> ?rhs" by force
lp15@63492
   355
  show "?rhs \<subseteq> ?lhs"
lp15@63492
   356
  proof (rule Union_subsetI)
lp15@63492
   357
    fix S
lp15@63492
   358
    assume "S \<in> \<F>"
wenzelm@64967
   359
    have "{T \<in> \<F>. S \<subseteq> T} = {}"
wenzelm@64967
   360
      if "\<not> (\<exists>y. y \<in> {T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} \<and> S \<subseteq> y)"
lp15@63492
   361
      apply (rule finite_transitivity_chain [of _ "\<lambda>T U. S \<subseteq> T \<and> T \<subset> U"])
wenzelm@64967
   362
         apply (use assms that in auto)
wenzelm@64967
   363
      apply (blast intro: dual_order.trans psubset_imp_subset)
wenzelm@64967
   364
      done
wenzelm@64967
   365
    with \<open>S \<in> \<F>\<close> show "\<exists>y. y \<in> {T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} \<and> S \<subseteq> y"
wenzelm@64967
   366
      by blast
lp15@63492
   367
  qed
wenzelm@64967
   368
qed
lp15@63492
   369
wenzelm@20809
   370
end