src/HOL/Library/Nat_Bijection.thy
author haftmann
Mon Jun 05 15:59:41 2017 +0200 (2017-06-05)
changeset 66010 2f7d39285a1a
parent 64267 b9a1486e79be
child 67399 eab6ce8368fa
permissions -rw-r--r--
executable domain membership checks
wenzelm@41959
     1
(*  Title:      HOL/Library/Nat_Bijection.thy
huffman@35700
     2
    Author:     Brian Huffman
huffman@35700
     3
    Author:     Florian Haftmann
huffman@35700
     4
    Author:     Stefan Richter
huffman@35700
     5
    Author:     Tobias Nipkow
huffman@35700
     6
    Author:     Alexander Krauss
huffman@35700
     7
*)
huffman@35700
     8
wenzelm@60500
     9
section \<open>Bijections between natural numbers and other types\<close>
huffman@35700
    10
huffman@35700
    11
theory Nat_Bijection
wenzelm@63625
    12
  imports Main
huffman@35700
    13
begin
huffman@35700
    14
wenzelm@60500
    15
subsection \<open>Type @{typ "nat \<times> nat"}\<close>
huffman@35700
    16
wenzelm@63625
    17
text \<open>Triangle numbers: 0, 1, 3, 6, 10, 15, ...\<close>
huffman@35700
    18
wenzelm@62046
    19
definition triangle :: "nat \<Rightarrow> nat"
wenzelm@62046
    20
  where "triangle n = (n * Suc n) div 2"
huffman@35700
    21
huffman@35700
    22
lemma triangle_0 [simp]: "triangle 0 = 0"
wenzelm@63625
    23
  by (simp add: triangle_def)
huffman@35700
    24
huffman@35700
    25
lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n"
wenzelm@63625
    26
  by (simp add: triangle_def)
huffman@35700
    27
wenzelm@62046
    28
definition prod_encode :: "nat \<times> nat \<Rightarrow> nat"
wenzelm@62046
    29
  where "prod_encode = (\<lambda>(m, n). triangle (m + n) + m)"
huffman@35700
    30
wenzelm@60500
    31
text \<open>In this auxiliary function, @{term "triangle k + m"} is an invariant.\<close>
huffman@35700
    32
wenzelm@62046
    33
fun prod_decode_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat"
wenzelm@63625
    34
  where "prod_decode_aux k m =
huffman@35700
    35
    (if m \<le> k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))"
huffman@35700
    36
huffman@35700
    37
declare prod_decode_aux.simps [simp del]
huffman@35700
    38
wenzelm@62046
    39
definition prod_decode :: "nat \<Rightarrow> nat \<times> nat"
wenzelm@62046
    40
  where "prod_decode = prod_decode_aux 0"
huffman@35700
    41
wenzelm@63625
    42
lemma prod_encode_prod_decode_aux: "prod_encode (prod_decode_aux k m) = triangle k + m"
wenzelm@63625
    43
  apply (induct k m rule: prod_decode_aux.induct)
wenzelm@63625
    44
  apply (subst prod_decode_aux.simps)
wenzelm@63625
    45
  apply (simp add: prod_encode_def)
wenzelm@63625
    46
  done
huffman@35700
    47
huffman@35700
    48
lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n"
wenzelm@63625
    49
  by (simp add: prod_decode_def prod_encode_prod_decode_aux)
huffman@35700
    50
wenzelm@62046
    51
lemma prod_decode_triangle_add: "prod_decode (triangle k + m) = prod_decode_aux k m"
wenzelm@63625
    52
  apply (induct k arbitrary: m)
wenzelm@63625
    53
   apply (simp add: prod_decode_def)
wenzelm@63625
    54
  apply (simp only: triangle_Suc add.assoc)
wenzelm@63625
    55
  apply (subst prod_decode_aux.simps)
wenzelm@63625
    56
  apply simp
wenzelm@63625
    57
  done
huffman@35700
    58
huffman@35700
    59
lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x"
wenzelm@63625
    60
  unfolding prod_encode_def
wenzelm@63625
    61
  apply (induct x)
wenzelm@63625
    62
  apply (simp add: prod_decode_triangle_add)
wenzelm@63625
    63
  apply (subst prod_decode_aux.simps)
wenzelm@63625
    64
  apply simp
wenzelm@63625
    65
  done
huffman@35700
    66
huffman@35700
    67
lemma inj_prod_encode: "inj_on prod_encode A"
wenzelm@63625
    68
  by (rule inj_on_inverseI) (rule prod_encode_inverse)
huffman@35700
    69
huffman@35700
    70
lemma inj_prod_decode: "inj_on prod_decode A"
wenzelm@63625
    71
  by (rule inj_on_inverseI) (rule prod_decode_inverse)
huffman@35700
    72
huffman@35700
    73
lemma surj_prod_encode: "surj prod_encode"
wenzelm@63625
    74
  by (rule surjI) (rule prod_decode_inverse)
huffman@35700
    75
huffman@35700
    76
lemma surj_prod_decode: "surj prod_decode"
wenzelm@63625
    77
  by (rule surjI) (rule prod_encode_inverse)
huffman@35700
    78
huffman@35700
    79
lemma bij_prod_encode: "bij prod_encode"
wenzelm@63625
    80
  by (rule bijI [OF inj_prod_encode surj_prod_encode])
huffman@35700
    81
huffman@35700
    82
lemma bij_prod_decode: "bij prod_decode"
wenzelm@63625
    83
  by (rule bijI [OF inj_prod_decode surj_prod_decode])
huffman@35700
    84
huffman@35700
    85
lemma prod_encode_eq: "prod_encode x = prod_encode y \<longleftrightarrow> x = y"
wenzelm@63625
    86
  by (rule inj_prod_encode [THEN inj_eq])
huffman@35700
    87
huffman@35700
    88
lemma prod_decode_eq: "prod_decode x = prod_decode y \<longleftrightarrow> x = y"
wenzelm@63625
    89
  by (rule inj_prod_decode [THEN inj_eq])
huffman@35700
    90
wenzelm@62046
    91
wenzelm@60500
    92
text \<open>Ordering properties\<close>
huffman@35700
    93
huffman@35700
    94
lemma le_prod_encode_1: "a \<le> prod_encode (a, b)"
wenzelm@63625
    95
  by (simp add: prod_encode_def)
huffman@35700
    96
huffman@35700
    97
lemma le_prod_encode_2: "b \<le> prod_encode (a, b)"
wenzelm@63625
    98
  by (induct b) (simp_all add: prod_encode_def)
huffman@35700
    99
huffman@35700
   100
wenzelm@60500
   101
subsection \<open>Type @{typ "nat + nat"}\<close>
huffman@35700
   102
wenzelm@62046
   103
definition sum_encode :: "nat + nat \<Rightarrow> nat"
wenzelm@63625
   104
  where "sum_encode x = (case x of Inl a \<Rightarrow> 2 * a | Inr b \<Rightarrow> Suc (2 * b))"
huffman@35700
   105
wenzelm@62046
   106
definition sum_decode :: "nat \<Rightarrow> nat + nat"
wenzelm@63625
   107
  where "sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))"
huffman@35700
   108
huffman@35700
   109
lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x"
wenzelm@63625
   110
  by (induct x) (simp_all add: sum_decode_def sum_encode_def)
huffman@35700
   111
huffman@35700
   112
lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n"
haftmann@58834
   113
  by (simp add: even_two_times_div_two sum_decode_def sum_encode_def)
huffman@35700
   114
huffman@35700
   115
lemma inj_sum_encode: "inj_on sum_encode A"
wenzelm@63625
   116
  by (rule inj_on_inverseI) (rule sum_encode_inverse)
huffman@35700
   117
huffman@35700
   118
lemma inj_sum_decode: "inj_on sum_decode A"
wenzelm@63625
   119
  by (rule inj_on_inverseI) (rule sum_decode_inverse)
huffman@35700
   120
huffman@35700
   121
lemma surj_sum_encode: "surj sum_encode"
wenzelm@63625
   122
  by (rule surjI) (rule sum_decode_inverse)
huffman@35700
   123
huffman@35700
   124
lemma surj_sum_decode: "surj sum_decode"
wenzelm@63625
   125
  by (rule surjI) (rule sum_encode_inverse)
huffman@35700
   126
huffman@35700
   127
lemma bij_sum_encode: "bij sum_encode"
wenzelm@63625
   128
  by (rule bijI [OF inj_sum_encode surj_sum_encode])
huffman@35700
   129
huffman@35700
   130
lemma bij_sum_decode: "bij sum_decode"
wenzelm@63625
   131
  by (rule bijI [OF inj_sum_decode surj_sum_decode])
huffman@35700
   132
huffman@35700
   133
lemma sum_encode_eq: "sum_encode x = sum_encode y \<longleftrightarrow> x = y"
wenzelm@63625
   134
  by (rule inj_sum_encode [THEN inj_eq])
huffman@35700
   135
huffman@35700
   136
lemma sum_decode_eq: "sum_decode x = sum_decode y \<longleftrightarrow> x = y"
wenzelm@63625
   137
  by (rule inj_sum_decode [THEN inj_eq])
huffman@35700
   138
huffman@35700
   139
wenzelm@60500
   140
subsection \<open>Type @{typ "int"}\<close>
huffman@35700
   141
wenzelm@62046
   142
definition int_encode :: "int \<Rightarrow> nat"
wenzelm@63625
   143
  where "int_encode i = sum_encode (if 0 \<le> i then Inl (nat i) else Inr (nat (- i - 1)))"
huffman@35700
   144
wenzelm@62046
   145
definition int_decode :: "nat \<Rightarrow> int"
wenzelm@63625
   146
  where "int_decode n = (case sum_decode n of Inl a \<Rightarrow> int a | Inr b \<Rightarrow> - int b - 1)"
huffman@35700
   147
huffman@35700
   148
lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x"
wenzelm@63625
   149
  by (simp add: int_decode_def int_encode_def)
huffman@35700
   150
huffman@35700
   151
lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n"
wenzelm@63625
   152
  unfolding int_decode_def int_encode_def
wenzelm@63625
   153
  using sum_decode_inverse [of n] by (cases "sum_decode n") simp_all
huffman@35700
   154
huffman@35700
   155
lemma inj_int_encode: "inj_on int_encode A"
wenzelm@63625
   156
  by (rule inj_on_inverseI) (rule int_encode_inverse)
huffman@35700
   157
huffman@35700
   158
lemma inj_int_decode: "inj_on int_decode A"
wenzelm@63625
   159
  by (rule inj_on_inverseI) (rule int_decode_inverse)
huffman@35700
   160
huffman@35700
   161
lemma surj_int_encode: "surj int_encode"
wenzelm@63625
   162
  by (rule surjI) (rule int_decode_inverse)
huffman@35700
   163
huffman@35700
   164
lemma surj_int_decode: "surj int_decode"
wenzelm@63625
   165
  by (rule surjI) (rule int_encode_inverse)
huffman@35700
   166
huffman@35700
   167
lemma bij_int_encode: "bij int_encode"
wenzelm@63625
   168
  by (rule bijI [OF inj_int_encode surj_int_encode])
huffman@35700
   169
huffman@35700
   170
lemma bij_int_decode: "bij int_decode"
wenzelm@63625
   171
  by (rule bijI [OF inj_int_decode surj_int_decode])
huffman@35700
   172
huffman@35700
   173
lemma int_encode_eq: "int_encode x = int_encode y \<longleftrightarrow> x = y"
wenzelm@63625
   174
  by (rule inj_int_encode [THEN inj_eq])
huffman@35700
   175
huffman@35700
   176
lemma int_decode_eq: "int_decode x = int_decode y \<longleftrightarrow> x = y"
wenzelm@63625
   177
  by (rule inj_int_decode [THEN inj_eq])
huffman@35700
   178
huffman@35700
   179
wenzelm@60500
   180
subsection \<open>Type @{typ "nat list"}\<close>
huffman@35700
   181
wenzelm@62046
   182
fun list_encode :: "nat list \<Rightarrow> nat"
wenzelm@63625
   183
  where
wenzelm@63625
   184
    "list_encode [] = 0"
wenzelm@63625
   185
  | "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))"
huffman@35700
   186
wenzelm@62046
   187
function list_decode :: "nat \<Rightarrow> nat list"
wenzelm@63625
   188
  where
wenzelm@63625
   189
    "list_decode 0 = []"
wenzelm@63625
   190
  | "list_decode (Suc n) = (case prod_decode n of (x, y) \<Rightarrow> x # list_decode y)"
wenzelm@63625
   191
  by pat_completeness auto
huffman@35700
   192
huffman@35700
   193
termination list_decode
wenzelm@63625
   194
  apply (relation "measure id")
wenzelm@63625
   195
   apply simp_all
wenzelm@63625
   196
  apply (drule arg_cong [where f="prod_encode"])
wenzelm@63625
   197
  apply (drule sym)
wenzelm@63625
   198
  apply (simp add: le_imp_less_Suc le_prod_encode_2)
wenzelm@63625
   199
  done
huffman@35700
   200
huffman@35700
   201
lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x"
wenzelm@63625
   202
  by (induct x rule: list_encode.induct) simp_all
huffman@35700
   203
huffman@35700
   204
lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n"
wenzelm@63625
   205
  apply (induct n rule: list_decode.induct)
wenzelm@63625
   206
   apply simp
wenzelm@63625
   207
  apply (simp split: prod.split)
wenzelm@63625
   208
  apply (simp add: prod_decode_eq [symmetric])
wenzelm@63625
   209
  done
huffman@35700
   210
huffman@35700
   211
lemma inj_list_encode: "inj_on list_encode A"
wenzelm@63625
   212
  by (rule inj_on_inverseI) (rule list_encode_inverse)
huffman@35700
   213
huffman@35700
   214
lemma inj_list_decode: "inj_on list_decode A"
wenzelm@63625
   215
  by (rule inj_on_inverseI) (rule list_decode_inverse)
huffman@35700
   216
huffman@35700
   217
lemma surj_list_encode: "surj list_encode"
wenzelm@63625
   218
  by (rule surjI) (rule list_decode_inverse)
huffman@35700
   219
huffman@35700
   220
lemma surj_list_decode: "surj list_decode"
wenzelm@63625
   221
  by (rule surjI) (rule list_encode_inverse)
huffman@35700
   222
huffman@35700
   223
lemma bij_list_encode: "bij list_encode"
wenzelm@63625
   224
  by (rule bijI [OF inj_list_encode surj_list_encode])
huffman@35700
   225
huffman@35700
   226
lemma bij_list_decode: "bij list_decode"
wenzelm@63625
   227
  by (rule bijI [OF inj_list_decode surj_list_decode])
huffman@35700
   228
huffman@35700
   229
lemma list_encode_eq: "list_encode x = list_encode y \<longleftrightarrow> x = y"
wenzelm@63625
   230
  by (rule inj_list_encode [THEN inj_eq])
huffman@35700
   231
huffman@35700
   232
lemma list_decode_eq: "list_decode x = list_decode y \<longleftrightarrow> x = y"
wenzelm@63625
   233
  by (rule inj_list_decode [THEN inj_eq])
huffman@35700
   234
huffman@35700
   235
wenzelm@60500
   236
subsection \<open>Finite sets of naturals\<close>
huffman@35700
   237
wenzelm@60500
   238
subsubsection \<open>Preliminaries\<close>
huffman@35700
   239
huffman@35700
   240
lemma finite_vimage_Suc_iff: "finite (Suc -` F) \<longleftrightarrow> finite F"
wenzelm@63625
   241
  apply (safe intro!: finite_vimageI inj_Suc)
wenzelm@63625
   242
  apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"])
wenzelm@63625
   243
   apply (rule subsetI)
wenzelm@63625
   244
   apply (case_tac x)
wenzelm@63625
   245
    apply simp
wenzelm@63625
   246
   apply simp
wenzelm@63625
   247
  apply (rule finite_insert [THEN iffD2])
wenzelm@63625
   248
  apply (erule finite_imageI)
wenzelm@63625
   249
  done
huffman@35700
   250
huffman@35700
   251
lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A"
wenzelm@63625
   252
  by auto
huffman@35700
   253
wenzelm@63625
   254
lemma vimage_Suc_insert_Suc: "Suc -` insert (Suc n) A = insert n (Suc -` A)"
wenzelm@63625
   255
  by auto
huffman@35700
   256
huffman@35700
   257
lemma div2_even_ext_nat:
haftmann@58834
   258
  fixes x y :: nat
haftmann@58834
   259
  assumes "x div 2 = y div 2"
wenzelm@63625
   260
    and "even x \<longleftrightarrow> even y"
haftmann@58834
   261
  shows "x = y"
haftmann@58834
   262
proof -
wenzelm@60500
   263
  from \<open>even x \<longleftrightarrow> even y\<close> have "x mod 2 = y mod 2"
haftmann@58834
   264
    by (simp only: even_iff_mod_2_eq_zero) auto
haftmann@58834
   265
  with assms have "x div 2 * 2 + x mod 2 = y div 2 * 2 + y mod 2"
haftmann@58834
   266
    by simp
haftmann@58834
   267
  then show ?thesis
haftmann@58834
   268
    by simp
haftmann@58834
   269
qed
huffman@35700
   270
haftmann@58710
   271
wenzelm@60500
   272
subsubsection \<open>From sets to naturals\<close>
huffman@35700
   273
wenzelm@62046
   274
definition set_encode :: "nat set \<Rightarrow> nat"
nipkow@64267
   275
  where "set_encode = sum (op ^ 2)"
huffman@35700
   276
huffman@35700
   277
lemma set_encode_empty [simp]: "set_encode {} = 0"
lp15@59506
   278
  by (simp add: set_encode_def)
lp15@59506
   279
wenzelm@63625
   280
lemma set_encode_inf: "\<not> finite A \<Longrightarrow> set_encode A = 0"
wenzelm@63625
   281
  by (simp add: set_encode_def)
wenzelm@63625
   282
wenzelm@63625
   283
lemma set_encode_insert [simp]: "finite A \<Longrightarrow> n \<notin> A \<Longrightarrow> set_encode (insert n A) = 2^n + set_encode A"
wenzelm@63625
   284
  by (simp add: set_encode_def)
huffman@35700
   285
huffman@35700
   286
lemma even_set_encode_iff: "finite A \<Longrightarrow> even (set_encode A) \<longleftrightarrow> 0 \<notin> A"
wenzelm@63625
   287
  by (induct set: finite) (auto simp: set_encode_def)
huffman@35700
   288
huffman@35700
   289
lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2"
wenzelm@63625
   290
  apply (cases "finite A")
wenzelm@63625
   291
   apply (erule finite_induct)
wenzelm@63625
   292
    apply simp
wenzelm@63625
   293
   apply (case_tac x)
wenzelm@63625
   294
    apply (simp add: even_set_encode_iff vimage_Suc_insert_0)
wenzelm@63625
   295
   apply (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc)
wenzelm@63625
   296
  apply (simp add: set_encode_def finite_vimage_Suc_iff)
wenzelm@63625
   297
  done
huffman@35700
   298
huffman@35700
   299
lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric]
huffman@35700
   300
wenzelm@62046
   301
wenzelm@60500
   302
subsubsection \<open>From naturals to sets\<close>
huffman@35700
   303
wenzelm@62046
   304
definition set_decode :: "nat \<Rightarrow> nat set"
wenzelm@62046
   305
  where "set_decode x = {n. odd (x div 2 ^ n)}"
huffman@35700
   306
huffman@35700
   307
lemma set_decode_0 [simp]: "0 \<in> set_decode x \<longleftrightarrow> odd x"
wenzelm@63625
   308
  by (simp add: set_decode_def)
huffman@35700
   309
wenzelm@63625
   310
lemma set_decode_Suc [simp]: "Suc n \<in> set_decode x \<longleftrightarrow> n \<in> set_decode (x div 2)"
wenzelm@63625
   311
  by (simp add: set_decode_def div_mult2_eq)
huffman@35700
   312
huffman@35700
   313
lemma set_decode_zero [simp]: "set_decode 0 = {}"
wenzelm@63625
   314
  by (simp add: set_decode_def)
huffman@35700
   315
huffman@35700
   316
lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x"
wenzelm@63625
   317
  by auto
huffman@35700
   318
huffman@35700
   319
lemma set_decode_plus_power_2:
huffman@35700
   320
  "n \<notin> set_decode z \<Longrightarrow> set_decode (2 ^ n + z) = insert n (set_decode z)"
haftmann@60352
   321
proof (induct n arbitrary: z)
wenzelm@63625
   322
  case 0
wenzelm@63625
   323
  show ?case
haftmann@60352
   324
  proof (rule set_eqI)
wenzelm@63625
   325
    show "q \<in> set_decode (2 ^ 0 + z) \<longleftrightarrow> q \<in> insert 0 (set_decode z)" for q
wenzelm@63625
   326
      by (induct q) (use 0 in simp_all)
haftmann@60352
   327
  qed
haftmann@60352
   328
next
wenzelm@63625
   329
  case (Suc n)
wenzelm@63625
   330
  show ?case
haftmann@60352
   331
  proof (rule set_eqI)
wenzelm@63625
   332
    show "q \<in> set_decode (2 ^ Suc n + z) \<longleftrightarrow> q \<in> insert (Suc n) (set_decode z)" for q
wenzelm@63625
   333
      by (induct q) (use Suc in simp_all)
haftmann@60352
   334
  qed
haftmann@60352
   335
qed
huffman@35700
   336
huffman@35700
   337
lemma finite_set_decode [simp]: "finite (set_decode n)"
wenzelm@63625
   338
  apply (induct n rule: nat_less_induct)
wenzelm@63625
   339
  apply (case_tac "n = 0")
wenzelm@63625
   340
   apply simp
wenzelm@63625
   341
  apply (drule_tac x="n div 2" in spec)
wenzelm@63625
   342
  apply simp
wenzelm@63625
   343
  apply (simp add: set_decode_div_2)
wenzelm@63625
   344
  apply (simp add: finite_vimage_Suc_iff)
wenzelm@63625
   345
  done
huffman@35700
   346
wenzelm@62046
   347
wenzelm@60500
   348
subsubsection \<open>Proof of isomorphism\<close>
huffman@35700
   349
huffman@35700
   350
lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n"
wenzelm@63625
   351
  apply (induct n rule: nat_less_induct)
wenzelm@63625
   352
  apply (case_tac "n = 0")
wenzelm@63625
   353
   apply simp
wenzelm@63625
   354
  apply (drule_tac x="n div 2" in spec)
wenzelm@63625
   355
  apply simp
wenzelm@63625
   356
  apply (simp add: set_decode_div_2 set_encode_vimage_Suc)
wenzelm@63625
   357
  apply (erule div2_even_ext_nat)
wenzelm@63625
   358
  apply (simp add: even_set_encode_iff)
wenzelm@63625
   359
  done
huffman@35700
   360
huffman@35700
   361
lemma set_encode_inverse [simp]: "finite A \<Longrightarrow> set_decode (set_encode A) = A"
wenzelm@63625
   362
  apply (erule finite_induct)
wenzelm@63625
   363
   apply simp_all
wenzelm@63625
   364
  apply (simp add: set_decode_plus_power_2)
wenzelm@63625
   365
  done
huffman@35700
   366
huffman@35700
   367
lemma inj_on_set_encode: "inj_on set_encode (Collect finite)"
wenzelm@63625
   368
  by (rule inj_on_inverseI [where g = "set_decode"]) simp
huffman@35700
   369
wenzelm@63625
   370
lemma set_encode_eq: "finite A \<Longrightarrow> finite B \<Longrightarrow> set_encode A = set_encode B \<longleftrightarrow> A = B"
wenzelm@63625
   371
  by (rule iffI) (simp_all add: inj_onD [OF inj_on_set_encode])
huffman@35700
   372
wenzelm@62046
   373
lemma subset_decode_imp_le:
wenzelm@62046
   374
  assumes "set_decode m \<subseteq> set_decode n"
wenzelm@62046
   375
  shows "m \<le> n"
paulson@51414
   376
proof -
paulson@51414
   377
  have "n = m + set_encode (set_decode n - set_decode m)"
paulson@51414
   378
  proof -
wenzelm@63625
   379
    obtain A B where
wenzelm@63625
   380
      "m = set_encode A" "finite A"
wenzelm@63625
   381
      "n = set_encode B" "finite B"
paulson@51414
   382
      by (metis finite_set_decode set_decode_inverse)
wenzelm@63625
   383
  with assms show ?thesis
nipkow@64267
   384
    by auto (simp add: set_encode_def add.commute sum.subset_diff)
paulson@51414
   385
  qed
wenzelm@63625
   386
  then show ?thesis
paulson@51414
   387
    by (metis le_add1)
paulson@51414
   388
qed
paulson@51414
   389
huffman@35700
   390
end