src/HOL/Product_Type.thy
author nipkow
Wed Jun 02 12:40:12 2010 +0200 (2010-06-02)
changeset 37278 307845cc7f51
parent 37166 e8400e31528a
child 37387 3581483cca6c
permissions -rw-r--r--
added lemmas
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
haftmann@24699
    10
uses
haftmann@24699
    11
  ("Tools/split_rule.ML")
haftmann@31723
    12
  ("Tools/inductive_set.ML")
nipkow@15131
    13
begin
wenzelm@11838
    14
haftmann@24699
    15
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    16
haftmann@27104
    17
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    18
haftmann@24699
    19
declare case_split [cases type: bool]
haftmann@24699
    20
  -- "prefer plain propositional version"
haftmann@24699
    21
haftmann@28346
    22
lemma
haftmann@28562
    23
  shows [code]: "eq_class.eq False P \<longleftrightarrow> \<not> P"
haftmann@28562
    24
    and [code]: "eq_class.eq True P \<longleftrightarrow> P" 
haftmann@28562
    25
    and [code]: "eq_class.eq P False \<longleftrightarrow> \<not> P" 
haftmann@28562
    26
    and [code]: "eq_class.eq P True \<longleftrightarrow> P"
haftmann@28346
    27
    and [code nbe]: "eq_class.eq P P \<longleftrightarrow> True"
haftmann@28346
    28
  by (simp_all add: eq)
haftmann@25534
    29
haftmann@28346
    30
code_const "eq_class.eq \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
haftmann@25534
    31
  (Haskell infixl 4 "==")
haftmann@25534
    32
haftmann@25534
    33
code_instance bool :: eq
haftmann@25534
    34
  (Haskell -)
haftmann@24699
    35
haftmann@26358
    36
haftmann@37166
    37
subsection {* The @{text unit} type *}
wenzelm@11838
    38
wenzelm@11838
    39
typedef unit = "{True}"
wenzelm@11838
    40
proof
haftmann@20588
    41
  show "True : ?unit" ..
wenzelm@11838
    42
qed
wenzelm@11838
    43
haftmann@24699
    44
definition
wenzelm@11838
    45
  Unity :: unit    ("'(')")
haftmann@24699
    46
where
haftmann@24699
    47
  "() = Abs_unit True"
wenzelm@11838
    48
blanchet@35828
    49
lemma unit_eq [no_atp]: "u = ()"
wenzelm@11838
    50
  by (induct u) (simp add: unit_def Unity_def)
wenzelm@11838
    51
wenzelm@11838
    52
text {*
wenzelm@11838
    53
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    54
  this rule directly --- it loops!
wenzelm@11838
    55
*}
wenzelm@11838
    56
wenzelm@26480
    57
ML {*
wenzelm@13462
    58
  val unit_eq_proc =
haftmann@24699
    59
    let val unit_meta_eq = mk_meta_eq @{thm unit_eq} in
haftmann@24699
    60
      Simplifier.simproc @{theory} "unit_eq" ["x::unit"]
skalberg@15531
    61
      (fn _ => fn _ => fn t => if HOLogic.is_unit t then NONE else SOME unit_meta_eq)
wenzelm@13462
    62
    end;
wenzelm@11838
    63
wenzelm@11838
    64
  Addsimprocs [unit_eq_proc];
wenzelm@11838
    65
*}
wenzelm@11838
    66
haftmann@27104
    67
rep_datatype "()" by simp
haftmann@24699
    68
wenzelm@11838
    69
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    70
  by simp
wenzelm@11838
    71
wenzelm@11838
    72
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    73
  by (rule triv_forall_equality)
wenzelm@11838
    74
wenzelm@11838
    75
text {*
wenzelm@11838
    76
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
wenzelm@11838
    77
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    78
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    79
*}
wenzelm@11838
    80
blanchet@35828
    81
lemma unit_abs_eta_conv [simp,no_atp]: "(%u::unit. f ()) = f"
wenzelm@11838
    82
  by (rule ext) simp
nipkow@10213
    83
haftmann@30924
    84
instantiation unit :: default
haftmann@30924
    85
begin
haftmann@30924
    86
haftmann@30924
    87
definition "default = ()"
haftmann@30924
    88
haftmann@30924
    89
instance ..
haftmann@30924
    90
haftmann@30924
    91
end
nipkow@10213
    92
haftmann@28562
    93
lemma [code]:
haftmann@28346
    94
  "eq_class.eq (u\<Colon>unit) v \<longleftrightarrow> True" unfolding eq unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
    95
haftmann@26358
    96
code_type unit
haftmann@26358
    97
  (SML "unit")
haftmann@26358
    98
  (OCaml "unit")
haftmann@26358
    99
  (Haskell "()")
haftmann@34886
   100
  (Scala "Unit")
haftmann@26358
   101
haftmann@37166
   102
code_const Unity
haftmann@37166
   103
  (SML "()")
haftmann@37166
   104
  (OCaml "()")
haftmann@37166
   105
  (Haskell "()")
haftmann@37166
   106
  (Scala "()")
haftmann@37166
   107
haftmann@26358
   108
code_instance unit :: eq
haftmann@26358
   109
  (Haskell -)
haftmann@26358
   110
haftmann@28346
   111
code_const "eq_class.eq \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
haftmann@26358
   112
  (Haskell infixl 4 "==")
haftmann@26358
   113
haftmann@26358
   114
code_reserved SML
haftmann@26358
   115
  unit
haftmann@26358
   116
haftmann@26358
   117
code_reserved OCaml
haftmann@26358
   118
  unit
haftmann@26358
   119
haftmann@34886
   120
code_reserved Scala
haftmann@34886
   121
  Unit
haftmann@34886
   122
haftmann@26358
   123
haftmann@37166
   124
subsection {* The product type *}
nipkow@10213
   125
haftmann@37166
   126
subsubsection {* Type definition *}
haftmann@37166
   127
haftmann@37166
   128
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   129
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   130
nipkow@10213
   131
global
nipkow@10213
   132
nipkow@10213
   133
typedef (Prod)
haftmann@22838
   134
  ('a, 'b) "*"    (infixr "*" 20)
haftmann@26358
   135
    = "{f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
oheimb@11025
   136
proof
haftmann@26358
   137
  fix a b show "Pair_Rep a b \<in> ?Prod"
haftmann@26358
   138
    by rule+
oheimb@11025
   139
qed
nipkow@10213
   140
wenzelm@35427
   141
type_notation (xsymbols)
wenzelm@35427
   142
  "*"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   143
type_notation (HTML output)
wenzelm@35427
   144
  "*"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   145
nipkow@10213
   146
consts
haftmann@26358
   147
  Pair     :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b"
nipkow@10213
   148
wenzelm@11777
   149
local
nipkow@10213
   150
wenzelm@19535
   151
defs
wenzelm@19535
   152
  Pair_def:     "Pair a b == Abs_Prod (Pair_Rep a b)"
haftmann@37166
   153
haftmann@37166
   154
rep_datatype (prod) Pair proof -
haftmann@37166
   155
  fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
haftmann@37166
   156
  assume "\<And>a b. P (Pair a b)"
haftmann@37166
   157
  then show "P p" by (cases p) (auto simp add: Prod_def Pair_def Pair_Rep_def)
haftmann@37166
   158
next
haftmann@37166
   159
  fix a c :: 'a and b d :: 'b
haftmann@37166
   160
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37166
   161
    by (auto simp add: Pair_Rep_def expand_fun_eq)
haftmann@37166
   162
  moreover have "Pair_Rep a b \<in> Prod" and "Pair_Rep c d \<in> Prod"
haftmann@37166
   163
    by (auto simp add: Prod_def)
haftmann@37166
   164
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37166
   165
    by (simp add: Pair_def Abs_Prod_inject)
haftmann@37166
   166
qed
haftmann@37166
   167
haftmann@37166
   168
haftmann@37166
   169
subsubsection {* Tuple syntax *}
haftmann@37166
   170
haftmann@37166
   171
global consts
haftmann@37166
   172
  split    :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
haftmann@37166
   173
haftmann@37166
   174
local defs
haftmann@37166
   175
  split_prod_case: "split == prod_case"
wenzelm@19535
   176
wenzelm@11777
   177
text {*
wenzelm@11777
   178
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   179
  abstractions.
wenzelm@11777
   180
*}
nipkow@10213
   181
nipkow@10213
   182
nonterminals
nipkow@10213
   183
  tuple_args patterns
nipkow@10213
   184
nipkow@10213
   185
syntax
nipkow@10213
   186
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   187
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   188
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   189
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   190
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   191
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   192
nipkow@10213
   193
translations
wenzelm@35115
   194
  "(x, y)" == "CONST Pair x y"
nipkow@10213
   195
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
wenzelm@35115
   196
  "%(x, y, zs). b" == "CONST split (%x (y, zs). b)"
wenzelm@35115
   197
  "%(x, y). b" == "CONST split (%x y. b)"
wenzelm@35115
   198
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   199
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   200
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   201
wenzelm@35115
   202
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   203
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   204
print_translation {*
wenzelm@35115
   205
let
wenzelm@35115
   206
  fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@35115
   207
        (* split (%x y. t) => %(x,y) t *)
wenzelm@35115
   208
        let
wenzelm@35115
   209
          val (y, t') = atomic_abs_tr' abs;
wenzelm@35115
   210
          val (x', t'') = atomic_abs_tr' (x, T, t');
wenzelm@35115
   211
        in
wenzelm@35115
   212
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   213
            (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   214
        end
wenzelm@35115
   215
    | split_tr' [Abs (x, T, (s as Const (@{const_syntax split}, _) $ t))] =
wenzelm@35115
   216
        (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@35115
   217
        let
wenzelm@35115
   218
          val Const (@{syntax_const "_abs"}, _) $
wenzelm@35115
   219
            (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@35115
   220
          val (x', t'') = atomic_abs_tr' (x, T, t');
wenzelm@35115
   221
        in
wenzelm@35115
   222
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   223
            (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@35115
   224
              (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@35115
   225
        end
wenzelm@35115
   226
    | split_tr' [Const (@{const_syntax split}, _) $ t] =
wenzelm@35115
   227
        (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@35115
   228
        split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@35115
   229
    | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@35115
   230
        (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@35115
   231
        let val (z, t) = atomic_abs_tr' abs in
wenzelm@35115
   232
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   233
            (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@35115
   234
        end
wenzelm@35115
   235
    | split_tr' _ = raise Match;
wenzelm@35115
   236
in [(@{const_syntax split}, split_tr')] end
schirmer@14359
   237
*}
schirmer@14359
   238
schirmer@15422
   239
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   240
typed_print_translation {*
schirmer@15422
   241
let
wenzelm@35115
   242
  fun split_guess_names_tr' _ T [Abs (x, _, Abs _)] = raise Match
wenzelm@35115
   243
    | split_guess_names_tr' _ T [Abs (x, xT, t)] =
schirmer@15422
   244
        (case (head_of t) of
wenzelm@35115
   245
          Const (@{const_syntax split}, _) => raise Match
wenzelm@35115
   246
        | _ =>
wenzelm@35115
   247
          let 
wenzelm@35115
   248
            val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@35115
   249
            val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@35115
   250
            val (x', t'') = atomic_abs_tr' (x, xT, t');
wenzelm@35115
   251
          in
wenzelm@35115
   252
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   253
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   254
          end)
schirmer@15422
   255
    | split_guess_names_tr' _ T [t] =
wenzelm@35115
   256
        (case head_of t of
wenzelm@35115
   257
          Const (@{const_syntax split}, _) => raise Match
wenzelm@35115
   258
        | _ =>
wenzelm@35115
   259
          let
wenzelm@35115
   260
            val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@35115
   261
            val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@35115
   262
            val (x', t'') = atomic_abs_tr' ("x", xT, t');
wenzelm@35115
   263
          in
wenzelm@35115
   264
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   265
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   266
          end)
schirmer@15422
   267
    | split_guess_names_tr' _ _ _ = raise Match;
wenzelm@35115
   268
in [(@{const_syntax split}, split_guess_names_tr')] end
schirmer@15422
   269
*}
schirmer@15422
   270
nipkow@10213
   271
haftmann@37166
   272
subsubsection {* Code generator setup *}
haftmann@37166
   273
haftmann@37166
   274
lemma split_case_cert:
haftmann@37166
   275
  assumes "CASE \<equiv> split f"
haftmann@37166
   276
  shows "CASE (a, b) \<equiv> f a b"
haftmann@37166
   277
  using assms by (simp add: split_prod_case)
haftmann@37166
   278
haftmann@37166
   279
setup {*
haftmann@37166
   280
  Code.add_case @{thm split_case_cert}
haftmann@37166
   281
*}
haftmann@37166
   282
haftmann@37166
   283
code_type *
haftmann@37166
   284
  (SML infix 2 "*")
haftmann@37166
   285
  (OCaml infix 2 "*")
haftmann@37166
   286
  (Haskell "!((_),/ (_))")
haftmann@37166
   287
  (Scala "((_),/ (_))")
haftmann@37166
   288
haftmann@37166
   289
code_const Pair
haftmann@37166
   290
  (SML "!((_),/ (_))")
haftmann@37166
   291
  (OCaml "!((_),/ (_))")
haftmann@37166
   292
  (Haskell "!((_),/ (_))")
haftmann@37166
   293
  (Scala "!((_),/ (_))")
haftmann@37166
   294
haftmann@37166
   295
code_instance * :: eq
haftmann@37166
   296
  (Haskell -)
haftmann@37166
   297
haftmann@37166
   298
code_const "eq_class.eq \<Colon> 'a\<Colon>eq \<times> 'b\<Colon>eq \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
haftmann@37166
   299
  (Haskell infixl 4 "==")
haftmann@37166
   300
haftmann@37166
   301
types_code
haftmann@37166
   302
  "*"     ("(_ */ _)")
haftmann@37166
   303
attach (term_of) {*
haftmann@37166
   304
fun term_of_id_42 aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y;
haftmann@37166
   305
*}
haftmann@37166
   306
attach (test) {*
haftmann@37166
   307
fun gen_id_42 aG aT bG bT i =
haftmann@37166
   308
  let
haftmann@37166
   309
    val (x, t) = aG i;
haftmann@37166
   310
    val (y, u) = bG i
haftmann@37166
   311
  in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end;
haftmann@37166
   312
*}
haftmann@37166
   313
haftmann@37166
   314
consts_code
haftmann@37166
   315
  "Pair"    ("(_,/ _)")
haftmann@37166
   316
haftmann@37166
   317
setup {*
haftmann@37166
   318
let
haftmann@37166
   319
haftmann@37166
   320
fun strip_abs_split 0 t = ([], t)
haftmann@37166
   321
  | strip_abs_split i (Abs (s, T, t)) =
haftmann@37166
   322
      let
haftmann@37166
   323
        val s' = Codegen.new_name t s;
haftmann@37166
   324
        val v = Free (s', T)
haftmann@37166
   325
      in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
haftmann@37166
   326
  | strip_abs_split i (u as Const (@{const_name split}, _) $ t) =
haftmann@37166
   327
      (case strip_abs_split (i+1) t of
haftmann@37166
   328
        (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
haftmann@37166
   329
      | _ => ([], u))
haftmann@37166
   330
  | strip_abs_split i t =
haftmann@37166
   331
      strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0));
haftmann@37166
   332
haftmann@37166
   333
fun let_codegen thy defs dep thyname brack t gr =
haftmann@37166
   334
  (case strip_comb t of
haftmann@37166
   335
    (t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) =>
haftmann@37166
   336
    let
haftmann@37166
   337
      fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) =
haftmann@37166
   338
          (case strip_abs_split 1 u of
haftmann@37166
   339
             ([p], u') => apfst (cons (p, t)) (dest_let u')
haftmann@37166
   340
           | _ => ([], l))
haftmann@37166
   341
        | dest_let t = ([], t);
haftmann@37166
   342
      fun mk_code (l, r) gr =
haftmann@37166
   343
        let
haftmann@37166
   344
          val (pl, gr1) = Codegen.invoke_codegen thy defs dep thyname false l gr;
haftmann@37166
   345
          val (pr, gr2) = Codegen.invoke_codegen thy defs dep thyname false r gr1;
haftmann@37166
   346
        in ((pl, pr), gr2) end
haftmann@37166
   347
    in case dest_let (t1 $ t2 $ t3) of
haftmann@37166
   348
        ([], _) => NONE
haftmann@37166
   349
      | (ps, u) =>
haftmann@37166
   350
          let
haftmann@37166
   351
            val (qs, gr1) = fold_map mk_code ps gr;
haftmann@37166
   352
            val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
haftmann@37166
   353
            val (pargs, gr3) = fold_map
haftmann@37166
   354
              (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
haftmann@37166
   355
          in
haftmann@37166
   356
            SOME (Codegen.mk_app brack
haftmann@37166
   357
              (Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat
haftmann@37166
   358
                  (separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
haftmann@37166
   359
                    [Pretty.block [Codegen.str "val ", pl, Codegen.str " =",
haftmann@37166
   360
                       Pretty.brk 1, pr]]) qs))),
haftmann@37166
   361
                Pretty.brk 1, Codegen.str "in ", pu,
haftmann@37166
   362
                Pretty.brk 1, Codegen.str "end"])) pargs, gr3)
haftmann@37166
   363
          end
haftmann@37166
   364
    end
haftmann@37166
   365
  | _ => NONE);
haftmann@37166
   366
haftmann@37166
   367
fun split_codegen thy defs dep thyname brack t gr = (case strip_comb t of
haftmann@37166
   368
    (t1 as Const (@{const_name split}, _), t2 :: ts) =>
haftmann@37166
   369
      let
haftmann@37166
   370
        val ([p], u) = strip_abs_split 1 (t1 $ t2);
haftmann@37166
   371
        val (q, gr1) = Codegen.invoke_codegen thy defs dep thyname false p gr;
haftmann@37166
   372
        val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
haftmann@37166
   373
        val (pargs, gr3) = fold_map
haftmann@37166
   374
          (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
haftmann@37166
   375
      in
haftmann@37166
   376
        SOME (Codegen.mk_app brack
haftmann@37166
   377
          (Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>",
haftmann@37166
   378
            Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2)
haftmann@37166
   379
      end
haftmann@37166
   380
  | _ => NONE);
haftmann@37166
   381
haftmann@37166
   382
in
haftmann@37166
   383
haftmann@37166
   384
  Codegen.add_codegen "let_codegen" let_codegen
haftmann@37166
   385
  #> Codegen.add_codegen "split_codegen" split_codegen
haftmann@37166
   386
haftmann@37166
   387
end
haftmann@37166
   388
*}
haftmann@37166
   389
haftmann@37166
   390
haftmann@37166
   391
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   392
haftmann@26358
   393
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   394
  by (cases p) simp
nipkow@10213
   395
haftmann@37166
   396
global consts
haftmann@37166
   397
  fst      :: "'a \<times> 'b \<Rightarrow> 'a"
haftmann@37166
   398
  snd      :: "'a \<times> 'b \<Rightarrow> 'b"
wenzelm@11838
   399
haftmann@37166
   400
local defs
haftmann@37166
   401
  fst_def:      "fst p == case p of (a, b) \<Rightarrow> a"
haftmann@37166
   402
  snd_def:      "snd p == case p of (a, b) \<Rightarrow> b"
wenzelm@11838
   403
haftmann@22886
   404
lemma fst_conv [simp, code]: "fst (a, b) = a"
haftmann@37166
   405
  unfolding fst_def by simp
wenzelm@11838
   406
haftmann@22886
   407
lemma snd_conv [simp, code]: "snd (a, b) = b"
haftmann@37166
   408
  unfolding snd_def by simp
oheimb@11025
   409
haftmann@37166
   410
code_const fst and snd
haftmann@37166
   411
  (Haskell "fst" and "snd")
haftmann@26358
   412
haftmann@37166
   413
lemma prod_case_unfold: "prod_case = (%c p. c (fst p) (snd p))"
haftmann@37166
   414
  by (simp add: expand_fun_eq split: prod.split)
haftmann@26358
   415
wenzelm@11838
   416
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   417
  by simp
wenzelm@11838
   418
wenzelm@11838
   419
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   420
  by simp
wenzelm@11838
   421
haftmann@26358
   422
lemma pair_collapse [simp]: "(fst p, snd p) = p"
wenzelm@11838
   423
  by (cases p) simp
wenzelm@11838
   424
haftmann@26358
   425
lemmas surjective_pairing = pair_collapse [symmetric]
wenzelm@11838
   426
haftmann@37166
   427
lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   428
  by (cases s, cases t) simp
haftmann@37166
   429
haftmann@37166
   430
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
haftmann@37166
   431
  by (simp add: Pair_fst_snd_eq)
haftmann@37166
   432
haftmann@37166
   433
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@37166
   434
  by (simp add: split_prod_case)
haftmann@37166
   435
haftmann@37166
   436
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   437
  by (rule split_conv [THEN iffD2])
haftmann@37166
   438
haftmann@37166
   439
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   440
  by (rule split_conv [THEN iffD1])
haftmann@37166
   441
haftmann@37166
   442
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
haftmann@37166
   443
  by (simp add: split_prod_case expand_fun_eq split: prod.split)
haftmann@37166
   444
haftmann@37166
   445
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   446
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
haftmann@37166
   447
  by (simp add: split_prod_case expand_fun_eq split: prod.split)
haftmann@37166
   448
haftmann@37166
   449
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   450
  by (cases x) simp
haftmann@37166
   451
haftmann@37166
   452
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   453
  by (cases p) simp
haftmann@37166
   454
haftmann@37166
   455
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
haftmann@37166
   456
  by (simp add: split_prod_case prod_case_unfold)
haftmann@37166
   457
haftmann@37166
   458
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   459
  -- {* Prevents simplification of @{term c}: much faster *}
haftmann@37166
   460
  by (erule arg_cong)
haftmann@37166
   461
haftmann@37166
   462
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   463
  by (simp add: split_eta)
haftmann@37166
   464
wenzelm@11838
   465
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   466
proof
wenzelm@11820
   467
  fix a b
wenzelm@11820
   468
  assume "!!x. PROP P x"
wenzelm@19535
   469
  then show "PROP P (a, b)" .
wenzelm@11820
   470
next
wenzelm@11820
   471
  fix x
wenzelm@11820
   472
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   473
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   474
qed
wenzelm@11820
   475
wenzelm@11838
   476
text {*
wenzelm@11838
   477
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   478
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   479
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   480
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   481
*}
wenzelm@11838
   482
haftmann@26358
   483
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   484
wenzelm@26480
   485
ML {*
wenzelm@11838
   486
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   487
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   488
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   489
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   490
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   491
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   492
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   493
      | exists_paired_all _ = false;
wenzelm@11838
   494
    val ss = HOL_basic_ss
wenzelm@26340
   495
      addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@11838
   496
      addsimprocs [unit_eq_proc];
wenzelm@11838
   497
  in
wenzelm@11838
   498
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   499
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   500
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   501
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   502
    fun split_all th =
wenzelm@26340
   503
   if exists_paired_all (Thm.prop_of th) then full_simplify ss th else th;
wenzelm@11838
   504
  end;
wenzelm@26340
   505
*}
wenzelm@11838
   506
wenzelm@26340
   507
declaration {* fn _ =>
wenzelm@26340
   508
  Classical.map_cs (fn cs => cs addSbefore ("split_all_tac", split_all_tac))
wenzelm@16121
   509
*}
wenzelm@11838
   510
wenzelm@11838
   511
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   512
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   513
  by fast
wenzelm@11838
   514
haftmann@26358
   515
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   516
  by fast
haftmann@26358
   517
wenzelm@11838
   518
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   519
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   520
  by (simp add: split_eta)
wenzelm@11838
   521
wenzelm@11838
   522
text {*
wenzelm@11838
   523
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   524
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   525
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   526
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   527
  split_beta}.
haftmann@26358
   528
*}
wenzelm@11838
   529
wenzelm@26480
   530
ML {*
wenzelm@11838
   531
local
wenzelm@35364
   532
  val cond_split_eta_ss = HOL_basic_ss addsimps @{thms cond_split_eta};
wenzelm@35364
   533
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   534
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   535
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   536
    | Pair_pat _ _ _ = false;
wenzelm@35364
   537
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   538
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   539
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   540
    | no_args _ _ _ = true;
wenzelm@35364
   541
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
wenzelm@35364
   542
    | split_pat tp i (Const (@{const_name split}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   543
    | split_pat tp i _ = NONE;
wenzelm@20044
   544
  fun metaeq ss lhs rhs = mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] []
wenzelm@35364
   545
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@18328
   546
        (K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1)));
wenzelm@11838
   547
wenzelm@35364
   548
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   549
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   550
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   551
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   552
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   553
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   554
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   555
    | subst arg k i (t $ u) =
wenzelm@35364
   556
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   557
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   558
    | subst arg k i t = t;
wenzelm@35364
   559
  fun beta_proc ss (s as Const (@{const_name split}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   560
        (case split_pat beta_term_pat 1 t of
wenzelm@35364
   561
          SOME (i, f) => SOME (metaeq ss s (subst arg 0 i f))
skalberg@15531
   562
        | NONE => NONE)
wenzelm@35364
   563
    | beta_proc _ _ = NONE;
wenzelm@35364
   564
  fun eta_proc ss (s as Const (@{const_name split}, _) $ Abs (_, _, t)) =
wenzelm@11838
   565
        (case split_pat eta_term_pat 1 t of
wenzelm@35364
   566
          SOME (_, ft) => SOME (metaeq ss s (let val (f $ arg) = ft in f end))
skalberg@15531
   567
        | NONE => NONE)
wenzelm@35364
   568
    | eta_proc _ _ = NONE;
wenzelm@11838
   569
in
wenzelm@32010
   570
  val split_beta_proc = Simplifier.simproc @{theory} "split_beta" ["split f z"] (K beta_proc);
wenzelm@32010
   571
  val split_eta_proc = Simplifier.simproc @{theory} "split_eta" ["split f"] (K eta_proc);
wenzelm@11838
   572
end;
wenzelm@11838
   573
wenzelm@11838
   574
Addsimprocs [split_beta_proc, split_eta_proc];
wenzelm@11838
   575
*}
wenzelm@11838
   576
berghofe@26798
   577
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   578
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   579
blanchet@35828
   580
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   581
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   582
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   583
wenzelm@11838
   584
text {*
wenzelm@11838
   585
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   586
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   587
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   588
  current goal contains one of those constants.
wenzelm@11838
   589
*}
wenzelm@11838
   590
blanchet@35828
   591
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   592
by (subst split_split, simp)
wenzelm@11838
   593
wenzelm@11838
   594
text {*
wenzelm@11838
   595
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   596
wenzelm@11838
   597
  \medskip These rules are for use with @{text blast}; could instead
wenzelm@11838
   598
  call @{text simp} using @{thm [source] split} as rewrite. *}
wenzelm@11838
   599
wenzelm@11838
   600
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   601
  apply (simp only: split_tupled_all)
wenzelm@11838
   602
  apply (simp (no_asm_simp))
wenzelm@11838
   603
  done
wenzelm@11838
   604
wenzelm@11838
   605
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   606
  apply (simp only: split_tupled_all)
wenzelm@11838
   607
  apply (simp (no_asm_simp))
wenzelm@11838
   608
  done
wenzelm@11838
   609
wenzelm@11838
   610
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37166
   611
  by (induct p) (auto simp add: split_prod_case)
wenzelm@11838
   612
wenzelm@11838
   613
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37166
   614
  by (induct p) (auto simp add: split_prod_case)
wenzelm@11838
   615
wenzelm@11838
   616
lemma splitE2:
wenzelm@11838
   617
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   618
proof -
wenzelm@11838
   619
  assume q: "Q (split P z)"
wenzelm@11838
   620
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   621
  show R
wenzelm@11838
   622
    apply (rule r surjective_pairing)+
wenzelm@11838
   623
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   624
    done
wenzelm@11838
   625
qed
wenzelm@11838
   626
wenzelm@11838
   627
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   628
  by simp
wenzelm@11838
   629
wenzelm@11838
   630
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   631
  by simp
wenzelm@11838
   632
wenzelm@11838
   633
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   634
by (simp only: split_tupled_all, simp)
wenzelm@11838
   635
wenzelm@18372
   636
lemma mem_splitE:
haftmann@37166
   637
  assumes major: "z \<in> split c p"
haftmann@37166
   638
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   639
  shows Q
haftmann@37166
   640
  by (rule major [unfolded split_prod_case prod_case_unfold] cases surjective_pairing)+
wenzelm@11838
   641
wenzelm@11838
   642
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   643
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   644
wenzelm@26340
   645
ML {*
wenzelm@11838
   646
local (* filtering with exists_p_split is an essential optimization *)
wenzelm@35364
   647
  fun exists_p_split (Const (@{const_name split},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   648
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   649
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   650
    | exists_p_split _ = false;
wenzelm@35364
   651
  val ss = HOL_basic_ss addsimps @{thms split_conv};
wenzelm@11838
   652
in
wenzelm@11838
   653
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   654
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   655
end;
wenzelm@26340
   656
*}
wenzelm@26340
   657
wenzelm@11838
   658
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   659
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@26340
   660
declaration {* fn _ =>
wenzelm@26340
   661
  Classical.map_cs (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac))
wenzelm@16121
   662
*}
wenzelm@11838
   663
blanchet@35828
   664
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   665
  by (rule ext) fast
wenzelm@11838
   666
blanchet@35828
   667
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   668
  by (rule ext) fast
wenzelm@11838
   669
wenzelm@11838
   670
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   671
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   672
  by (rule ext) blast
wenzelm@11838
   673
nipkow@14337
   674
(* Do NOT make this a simp rule as it
nipkow@14337
   675
   a) only helps in special situations
nipkow@14337
   676
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   677
*)
nipkow@14337
   678
lemma split_comp_eq: 
paulson@20415
   679
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   680
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   681
  by (rule ext) auto
oheimb@14101
   682
haftmann@26358
   683
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   684
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   685
   apply auto
haftmann@26358
   686
  done
haftmann@26358
   687
wenzelm@11838
   688
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   689
  by blast
wenzelm@11838
   690
wenzelm@11838
   691
(*
wenzelm@11838
   692
the following  would be slightly more general,
wenzelm@11838
   693
but cannot be used as rewrite rule:
wenzelm@11838
   694
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   695
### ?y = .x
wenzelm@11838
   696
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   697
by (rtac some_equality 1)
paulson@14208
   698
by ( Simp_tac 1)
paulson@14208
   699
by (split_all_tac 1)
paulson@14208
   700
by (Asm_full_simp_tac 1)
wenzelm@11838
   701
qed "The_split_eq";
wenzelm@11838
   702
*)
wenzelm@11838
   703
wenzelm@11838
   704
text {*
wenzelm@11838
   705
  Setup of internal @{text split_rule}.
wenzelm@11838
   706
*}
wenzelm@11838
   707
haftmann@24699
   708
lemmas prod_caseI = prod.cases [THEN iffD2, standard]
haftmann@24699
   709
haftmann@24699
   710
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@24699
   711
  by auto
haftmann@24699
   712
haftmann@24699
   713
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@24699
   714
  by (auto simp: split_tupled_all)
haftmann@24699
   715
haftmann@24699
   716
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@24699
   717
  by (induct p) auto
haftmann@24699
   718
haftmann@24699
   719
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@24699
   720
  by (induct p) auto
haftmann@24699
   721
haftmann@24699
   722
declare prod_caseI2' [intro!] prod_caseI2 [intro!] prod_caseI [intro!]
haftmann@24699
   723
declare prod_caseE' [elim!] prod_caseE [elim!]
haftmann@24699
   724
haftmann@24844
   725
lemma prod_case_split:
haftmann@24699
   726
  "prod_case = split"
haftmann@24699
   727
  by (auto simp add: expand_fun_eq)
haftmann@24699
   728
bulwahn@26143
   729
lemma prod_case_beta:
bulwahn@26143
   730
  "prod_case f p = f (fst p) (snd p)"
bulwahn@26143
   731
  unfolding prod_case_split split_beta ..
bulwahn@26143
   732
haftmann@24699
   733
lemma prod_cases3 [cases type]:
haftmann@24699
   734
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   735
  by (cases y, case_tac b) blast
haftmann@24699
   736
haftmann@24699
   737
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   738
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   739
  by (cases x) blast
haftmann@24699
   740
haftmann@24699
   741
lemma prod_cases4 [cases type]:
haftmann@24699
   742
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   743
  by (cases y, case_tac c) blast
haftmann@24699
   744
haftmann@24699
   745
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   746
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   747
  by (cases x) blast
haftmann@24699
   748
haftmann@24699
   749
lemma prod_cases5 [cases type]:
haftmann@24699
   750
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   751
  by (cases y, case_tac d) blast
haftmann@24699
   752
haftmann@24699
   753
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   754
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   755
  by (cases x) blast
haftmann@24699
   756
haftmann@24699
   757
lemma prod_cases6 [cases type]:
haftmann@24699
   758
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   759
  by (cases y, case_tac e) blast
haftmann@24699
   760
haftmann@24699
   761
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   762
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   763
  by (cases x) blast
haftmann@24699
   764
haftmann@24699
   765
lemma prod_cases7 [cases type]:
haftmann@24699
   766
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   767
  by (cases y, case_tac f) blast
haftmann@24699
   768
haftmann@24699
   769
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   770
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   771
  by (cases x) blast
haftmann@24699
   772
haftmann@37166
   773
lemma split_def:
haftmann@37166
   774
  "split = (\<lambda>c p. c (fst p) (snd p))"
haftmann@37166
   775
  unfolding split_prod_case prod_case_unfold ..
haftmann@37166
   776
haftmann@37166
   777
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   778
  "internal_split == split"
haftmann@37166
   779
haftmann@37166
   780
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   781
  by (simp only: internal_split_def split_conv)
haftmann@37166
   782
haftmann@37166
   783
use "Tools/split_rule.ML"
haftmann@37166
   784
setup Split_Rule.setup
haftmann@37166
   785
haftmann@37166
   786
hide_const internal_split
haftmann@37166
   787
haftmann@24699
   788
haftmann@26358
   789
subsubsection {* Derived operations *}
haftmann@26358
   790
haftmann@37166
   791
global consts
haftmann@37166
   792
  curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c"
haftmann@37166
   793
haftmann@37166
   794
local defs
haftmann@37166
   795
  curry_def:    "curry == (%c x y. c (Pair x y))"
haftmann@37166
   796
haftmann@37166
   797
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   798
  by (simp add: curry_def)
haftmann@37166
   799
haftmann@37166
   800
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   801
  by (simp add: curry_def)
haftmann@37166
   802
haftmann@37166
   803
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   804
  by (simp add: curry_def)
haftmann@37166
   805
haftmann@37166
   806
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   807
  by (simp add: curry_def)
haftmann@37166
   808
haftmann@37166
   809
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   810
  by (simp add: curry_def split_def)
haftmann@37166
   811
haftmann@37166
   812
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   813
  by (simp add: curry_def split_def)
haftmann@37166
   814
haftmann@26358
   815
text {*
haftmann@26358
   816
  The composition-uncurry combinator.
haftmann@26358
   817
*}
haftmann@26358
   818
haftmann@26588
   819
notation fcomp (infixl "o>" 60)
haftmann@26358
   820
haftmann@37166
   821
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "o\<rightarrow>" 60) where
haftmann@26588
   822
  "f o\<rightarrow> g = (\<lambda>x. split g (f x))"
haftmann@26358
   823
haftmann@26588
   824
lemma scomp_apply:  "(f o\<rightarrow> g) x = split g (f x)"
haftmann@26588
   825
  by (simp add: scomp_def)
haftmann@26358
   826
haftmann@26588
   827
lemma Pair_scomp: "Pair x o\<rightarrow> f = f x"
haftmann@26588
   828
  by (simp add: expand_fun_eq scomp_apply)
haftmann@26358
   829
haftmann@26588
   830
lemma scomp_Pair: "x o\<rightarrow> Pair = x"
haftmann@26588
   831
  by (simp add: expand_fun_eq scomp_apply)
haftmann@26358
   832
haftmann@26588
   833
lemma scomp_scomp: "(f o\<rightarrow> g) o\<rightarrow> h = f o\<rightarrow> (\<lambda>x. g x o\<rightarrow> h)"
haftmann@26588
   834
  by (simp add: expand_fun_eq split_twice scomp_def)
haftmann@26358
   835
haftmann@26588
   836
lemma scomp_fcomp: "(f o\<rightarrow> g) o> h = f o\<rightarrow> (\<lambda>x. g x o> h)"
haftmann@26588
   837
  by (simp add: expand_fun_eq scomp_apply fcomp_def split_def)
haftmann@26358
   838
haftmann@26588
   839
lemma fcomp_scomp: "(f o> g) o\<rightarrow> h = f o> (g o\<rightarrow> h)"
haftmann@26588
   840
  by (simp add: expand_fun_eq scomp_apply fcomp_apply)
haftmann@26358
   841
haftmann@31202
   842
code_const scomp
haftmann@31202
   843
  (Eval infixl 3 "#->")
haftmann@31202
   844
haftmann@26588
   845
no_notation fcomp (infixl "o>" 60)
haftmann@26588
   846
no_notation scomp (infixl "o\<rightarrow>" 60)
haftmann@26358
   847
haftmann@26358
   848
text {*
haftmann@26358
   849
  @{term prod_fun} --- action of the product functor upon
krauss@36664
   850
  functions.
haftmann@26358
   851
*}
haftmann@21195
   852
haftmann@26358
   853
definition prod_fun :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@28562
   854
  [code del]: "prod_fun f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   855
haftmann@28562
   856
lemma prod_fun [simp, code]: "prod_fun f g (a, b) = (f a, g b)"
haftmann@26358
   857
  by (simp add: prod_fun_def)
haftmann@26358
   858
nipkow@37278
   859
lemma fst_prod_fun[simp]: "fst (prod_fun f g x) = f (fst x)"
nipkow@37278
   860
by (cases x, auto)
nipkow@37278
   861
nipkow@37278
   862
lemma snd_prod_fun[simp]: "snd (prod_fun f g x) = g (snd x)"
nipkow@37278
   863
by (cases x, auto)
nipkow@37278
   864
nipkow@37278
   865
lemma fst_comp_prod_fun[simp]: "fst \<circ> prod_fun f g = f \<circ> fst"
nipkow@37278
   866
by (rule ext) auto
nipkow@37278
   867
nipkow@37278
   868
lemma snd_comp_prod_fun[simp]: "snd \<circ> prod_fun f g = g \<circ> snd"
nipkow@37278
   869
by (rule ext) auto
nipkow@37278
   870
nipkow@37278
   871
nipkow@37278
   872
lemma prod_fun_compose:
nipkow@37278
   873
  "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
nipkow@37278
   874
by (rule ext) auto
haftmann@26358
   875
haftmann@26358
   876
lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
haftmann@26358
   877
  by (rule ext) auto
haftmann@26358
   878
haftmann@26358
   879
lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
haftmann@26358
   880
  apply (rule image_eqI)
haftmann@26358
   881
  apply (rule prod_fun [symmetric], assumption)
haftmann@26358
   882
  done
haftmann@21195
   883
haftmann@26358
   884
lemma prod_fun_imageE [elim!]:
haftmann@26358
   885
  assumes major: "c: (prod_fun f g)`r"
haftmann@26358
   886
    and cases: "!!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P"
haftmann@26358
   887
  shows P
haftmann@26358
   888
  apply (rule major [THEN imageE])
haftmann@37166
   889
  apply (case_tac x)
haftmann@26358
   890
  apply (rule cases)
haftmann@26358
   891
   apply (blast intro: prod_fun)
haftmann@26358
   892
  apply blast
haftmann@26358
   893
  done
haftmann@26358
   894
nipkow@37278
   895
haftmann@37166
   896
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
haftmann@37166
   897
  "apfst f = prod_fun f id"
haftmann@26358
   898
haftmann@37166
   899
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
haftmann@37166
   900
  "apsnd f = prod_fun id f"
haftmann@26358
   901
haftmann@26358
   902
lemma apfst_conv [simp, code]:
haftmann@26358
   903
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   904
  by (simp add: apfst_def)
haftmann@26358
   905
hoelzl@33638
   906
lemma apsnd_conv [simp, code]:
haftmann@26358
   907
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   908
  by (simp add: apsnd_def)
haftmann@21195
   909
haftmann@33594
   910
lemma fst_apfst [simp]:
haftmann@33594
   911
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   912
  by (cases x) simp
haftmann@33594
   913
haftmann@33594
   914
lemma fst_apsnd [simp]:
haftmann@33594
   915
  "fst (apsnd f x) = fst x"
haftmann@33594
   916
  by (cases x) simp
haftmann@33594
   917
haftmann@33594
   918
lemma snd_apfst [simp]:
haftmann@33594
   919
  "snd (apfst f x) = snd x"
haftmann@33594
   920
  by (cases x) simp
haftmann@33594
   921
haftmann@33594
   922
lemma snd_apsnd [simp]:
haftmann@33594
   923
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   924
  by (cases x) simp
haftmann@33594
   925
haftmann@33594
   926
lemma apfst_compose:
haftmann@33594
   927
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   928
  by (cases x) simp
haftmann@33594
   929
haftmann@33594
   930
lemma apsnd_compose:
haftmann@33594
   931
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   932
  by (cases x) simp
haftmann@33594
   933
haftmann@33594
   934
lemma apfst_apsnd [simp]:
haftmann@33594
   935
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   936
  by (cases x) simp
haftmann@33594
   937
haftmann@33594
   938
lemma apsnd_apfst [simp]:
haftmann@33594
   939
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   940
  by (cases x) simp
haftmann@33594
   941
haftmann@33594
   942
lemma apfst_id [simp] :
haftmann@33594
   943
  "apfst id = id"
haftmann@33594
   944
  by (simp add: expand_fun_eq)
haftmann@33594
   945
haftmann@33594
   946
lemma apsnd_id [simp] :
haftmann@33594
   947
  "apsnd id = id"
haftmann@33594
   948
  by (simp add: expand_fun_eq)
haftmann@33594
   949
haftmann@33594
   950
lemma apfst_eq_conv [simp]:
haftmann@33594
   951
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   952
  by (cases x) simp
haftmann@33594
   953
haftmann@33594
   954
lemma apsnd_eq_conv [simp]:
haftmann@33594
   955
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   956
  by (cases x) simp
haftmann@33594
   957
hoelzl@33638
   958
lemma apsnd_apfst_commute:
hoelzl@33638
   959
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   960
  by simp
haftmann@21195
   961
haftmann@26358
   962
text {*
haftmann@26358
   963
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   964
*}
haftmann@26358
   965
haftmann@26358
   966
definition  Sigma :: "['a set, 'a => 'b set] => ('a \<times> 'b) set" where
haftmann@26358
   967
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   968
haftmann@26358
   969
abbreviation
haftmann@26358
   970
  Times :: "['a set, 'b set] => ('a * 'b) set"
haftmann@26358
   971
    (infixr "<*>" 80) where
haftmann@26358
   972
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   973
haftmann@26358
   974
notation (xsymbols)
haftmann@26358
   975
  Times  (infixr "\<times>" 80)
berghofe@15394
   976
haftmann@26358
   977
notation (HTML output)
haftmann@26358
   978
  Times  (infixr "\<times>" 80)
haftmann@26358
   979
haftmann@26358
   980
syntax
wenzelm@35115
   981
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   982
translations
wenzelm@35115
   983
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   984
haftmann@26358
   985
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   986
  by (unfold Sigma_def) blast
haftmann@26358
   987
haftmann@26358
   988
lemma SigmaE [elim!]:
haftmann@26358
   989
    "[| c: Sigma A B;
haftmann@26358
   990
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   991
     |] ==> P"
haftmann@26358
   992
  -- {* The general elimination rule. *}
haftmann@26358
   993
  by (unfold Sigma_def) blast
haftmann@20588
   994
haftmann@26358
   995
text {*
haftmann@26358
   996
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
   997
  eigenvariables.
haftmann@26358
   998
*}
haftmann@26358
   999
haftmann@26358
  1000
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
  1001
  by blast
haftmann@26358
  1002
haftmann@26358
  1003
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
  1004
  by blast
haftmann@26358
  1005
haftmann@26358
  1006
lemma SigmaE2:
haftmann@26358
  1007
    "[| (a, b) : Sigma A B;
haftmann@26358
  1008
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
  1009
     |] ==> P"
haftmann@26358
  1010
  by blast
haftmann@20588
  1011
haftmann@26358
  1012
lemma Sigma_cong:
haftmann@26358
  1013
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
  1014
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
  1015
  by auto
haftmann@26358
  1016
haftmann@26358
  1017
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
  1018
  by blast
haftmann@26358
  1019
haftmann@26358
  1020
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
  1021
  by blast
haftmann@26358
  1022
haftmann@26358
  1023
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
  1024
  by blast
haftmann@26358
  1025
haftmann@26358
  1026
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
  1027
  by auto
haftmann@21908
  1028
haftmann@26358
  1029
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
  1030
  by auto
haftmann@26358
  1031
haftmann@26358
  1032
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
  1033
  by auto
haftmann@26358
  1034
haftmann@26358
  1035
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
  1036
  by blast
haftmann@26358
  1037
haftmann@26358
  1038
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
  1039
  by blast
haftmann@26358
  1040
haftmann@26358
  1041
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
  1042
  by (blast elim: equalityE)
haftmann@20588
  1043
haftmann@26358
  1044
lemma SetCompr_Sigma_eq:
haftmann@26358
  1045
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
  1046
  by blast
haftmann@26358
  1047
haftmann@26358
  1048
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
  1049
  by blast
haftmann@26358
  1050
haftmann@26358
  1051
lemma UN_Times_distrib:
haftmann@26358
  1052
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
  1053
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
  1054
  by blast
haftmann@26358
  1055
blanchet@35828
  1056
lemma split_paired_Ball_Sigma [simp,no_atp]:
haftmann@26358
  1057
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
  1058
  by blast
haftmann@26358
  1059
blanchet@35828
  1060
lemma split_paired_Bex_Sigma [simp,no_atp]:
haftmann@26358
  1061
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
  1062
  by blast
haftmann@21908
  1063
haftmann@26358
  1064
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
  1065
  by blast
haftmann@26358
  1066
haftmann@26358
  1067
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
  1068
  by blast
haftmann@26358
  1069
haftmann@26358
  1070
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
  1071
  by blast
haftmann@26358
  1072
haftmann@26358
  1073
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
  1074
  by blast
haftmann@26358
  1075
haftmann@26358
  1076
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
  1077
  by blast
haftmann@26358
  1078
haftmann@26358
  1079
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
  1080
  by blast
haftmann@21908
  1081
haftmann@26358
  1082
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1083
  by blast
haftmann@26358
  1084
haftmann@26358
  1085
text {*
haftmann@26358
  1086
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1087
  matching, especially when the rules are re-oriented.
haftmann@26358
  1088
*}
haftmann@21908
  1089
haftmann@26358
  1090
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1091
by blast
haftmann@26358
  1092
haftmann@26358
  1093
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1094
by blast
haftmann@26358
  1095
haftmann@26358
  1096
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1097
by blast
haftmann@26358
  1098
hoelzl@36622
  1099
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1100
  by auto
hoelzl@36622
  1101
hoelzl@36622
  1102
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
hoelzl@36622
  1103
  by (auto intro!: image_eqI)
hoelzl@36622
  1104
hoelzl@36622
  1105
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
hoelzl@36622
  1106
  by (auto intro!: image_eqI)
hoelzl@36622
  1107
nipkow@28719
  1108
lemma insert_times_insert[simp]:
nipkow@28719
  1109
  "insert a A \<times> insert b B =
nipkow@28719
  1110
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1111
by blast
haftmann@26358
  1112
paulson@33271
  1113
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
haftmann@37166
  1114
  by (auto, case_tac "f x", auto)
paulson@33271
  1115
nipkow@37278
  1116
text{* The following @{const prod_fun} lemmas are due to Joachim Breitner: *}
nipkow@37278
  1117
nipkow@37278
  1118
lemma prod_fun_inj_on:
nipkow@37278
  1119
  assumes "inj_on f A" and "inj_on g B"
nipkow@37278
  1120
  shows "inj_on (prod_fun f g) (A \<times> B)"
nipkow@37278
  1121
proof (rule inj_onI)
nipkow@37278
  1122
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
nipkow@37278
  1123
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
nipkow@37278
  1124
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
nipkow@37278
  1125
  assume "prod_fun f g x = prod_fun f g y"
nipkow@37278
  1126
  hence "fst (prod_fun f g x) = fst (prod_fun f g y)" by (auto)
nipkow@37278
  1127
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
nipkow@37278
  1128
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
nipkow@37278
  1129
  have "fst x = fst y" by (auto dest:dest:inj_onD)
nipkow@37278
  1130
  moreover from `prod_fun f g x = prod_fun f g y`
nipkow@37278
  1131
  have "snd (prod_fun f g x) = snd (prod_fun f g y)" by (auto)
nipkow@37278
  1132
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
nipkow@37278
  1133
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
nipkow@37278
  1134
  have "snd x = snd y" by (auto dest:dest:inj_onD)
nipkow@37278
  1135
  ultimately show "x = y" by(rule prod_eqI)
nipkow@37278
  1136
qed
nipkow@37278
  1137
nipkow@37278
  1138
lemma prod_fun_surj:
nipkow@37278
  1139
  assumes "surj f" and "surj g"
nipkow@37278
  1140
  shows "surj (prod_fun f g)"
nipkow@37278
  1141
unfolding surj_def
nipkow@37278
  1142
proof
nipkow@37278
  1143
  fix y :: "'b \<times> 'd"
nipkow@37278
  1144
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
nipkow@37278
  1145
  moreover
nipkow@37278
  1146
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
nipkow@37278
  1147
  ultimately have "(fst y, snd y) = prod_fun f g (a,b)" by auto
nipkow@37278
  1148
  thus "\<exists>x. y = prod_fun f g x" by auto
nipkow@37278
  1149
qed
nipkow@37278
  1150
nipkow@37278
  1151
lemma prod_fun_surj_on:
nipkow@37278
  1152
  assumes "f ` A = A'" and "g ` B = B'"
nipkow@37278
  1153
  shows "prod_fun f g ` (A \<times> B) = A' \<times> B'"
nipkow@37278
  1154
unfolding image_def
nipkow@37278
  1155
proof(rule set_ext,rule iffI)
nipkow@37278
  1156
  fix x :: "'a \<times> 'c"
nipkow@37278
  1157
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = prod_fun f g x}"
nipkow@37278
  1158
  then obtain y where "y \<in> A \<times> B" and "x = prod_fun f g y" by blast
nipkow@37278
  1159
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
nipkow@37278
  1160
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
nipkow@37278
  1161
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
nipkow@37278
  1162
  with `x = prod_fun f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
nipkow@37278
  1163
next
nipkow@37278
  1164
  fix x :: "'a \<times> 'c"
nipkow@37278
  1165
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
nipkow@37278
  1166
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
nipkow@37278
  1167
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
nipkow@37278
  1168
  moreover from `image g B = B'` and `snd x \<in> B'`
nipkow@37278
  1169
  obtain b where "b \<in> B" and "snd x = g b" by auto
nipkow@37278
  1170
  ultimately have "(fst x, snd x) = prod_fun f g (a,b)" by auto
nipkow@37278
  1171
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
nipkow@37278
  1172
  ultimately have "\<exists>y \<in> A \<times> B. x = prod_fun f g y" by auto
nipkow@37278
  1173
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = prod_fun f g y}" by auto
nipkow@37278
  1174
qed
nipkow@37278
  1175
haftmann@35822
  1176
lemma swap_inj_on:
hoelzl@36622
  1177
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1178
  by (auto intro!: inj_onI)
haftmann@35822
  1179
haftmann@35822
  1180
lemma swap_product:
haftmann@35822
  1181
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1182
  by (simp add: split_def image_def) blast
haftmann@35822
  1183
hoelzl@36622
  1184
lemma image_split_eq_Sigma:
hoelzl@36622
  1185
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
hoelzl@36622
  1186
proof (safe intro!: imageI vimageI)
hoelzl@36622
  1187
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1188
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1189
    using * eq[symmetric] by auto
hoelzl@36622
  1190
qed simp_all
haftmann@35822
  1191
haftmann@21908
  1192
haftmann@37166
  1193
subsection {* Inductively defined sets *}
berghofe@15394
  1194
haftmann@31723
  1195
use "Tools/inductive_set.ML"
haftmann@31723
  1196
setup Inductive_Set.setup
haftmann@24699
  1197
haftmann@37166
  1198
haftmann@37166
  1199
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1200
haftmann@37166
  1201
lemma PairE:
haftmann@37166
  1202
  obtains x y where "p = (x, y)"
haftmann@37166
  1203
  by (fact prod.exhaust)
haftmann@37166
  1204
haftmann@37166
  1205
lemma Pair_inject:
haftmann@37166
  1206
  assumes "(a, b) = (a', b')"
haftmann@37166
  1207
    and "a = a' ==> b = b' ==> R"
haftmann@37166
  1208
  shows R
haftmann@37166
  1209
  using assms by simp
haftmann@37166
  1210
haftmann@37166
  1211
lemmas Pair_eq = prod.inject
haftmann@37166
  1212
haftmann@37166
  1213
lemmas split = split_conv  -- {* for backwards compatibility *}
haftmann@37166
  1214
nipkow@10213
  1215
end