src/HOL/Transitive_Closure.thy
author huffman
Fri Mar 10 00:53:28 2006 +0100 (2006-03-10)
changeset 19228 30fce6da8cbe
parent 18372 2bffdf62fe7f
child 19623 12e6cc4382ae
permissions -rw-r--r--
added many simple lemmas
nipkow@10213
     1
(*  Title:      HOL/Transitive_Closure.thy
nipkow@10213
     2
    ID:         $Id$
nipkow@10213
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     4
    Copyright   1992  University of Cambridge
nipkow@10213
     5
*)
nipkow@10213
     6
wenzelm@12691
     7
header {* Reflexive and Transitive closure of a relation *}
wenzelm@12691
     8
nipkow@15131
     9
theory Transitive_Closure
nipkow@15140
    10
imports Inductive
haftmann@16417
    11
uses ("../Provers/trancl.ML")
nipkow@15131
    12
begin
wenzelm@12691
    13
wenzelm@12691
    14
text {*
wenzelm@12691
    15
  @{text rtrancl} is reflexive/transitive closure,
wenzelm@12691
    16
  @{text trancl} is transitive closure,
wenzelm@12691
    17
  @{text reflcl} is reflexive closure.
wenzelm@12691
    18
wenzelm@12691
    19
  These postfix operators have \emph{maximum priority}, forcing their
wenzelm@12691
    20
  operands to be atomic.
wenzelm@12691
    21
*}
nipkow@10213
    22
berghofe@11327
    23
consts
wenzelm@12691
    24
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
berghofe@11327
    25
berghofe@11327
    26
inductive "r^*"
wenzelm@12691
    27
  intros
wenzelm@15801
    28
    rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
wenzelm@15801
    29
    rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
berghofe@11327
    30
berghofe@13704
    31
consts
wenzelm@12691
    32
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
berghofe@13704
    33
berghofe@13704
    34
inductive "r^+"
berghofe@13704
    35
  intros
wenzelm@15801
    36
    r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
wenzelm@15801
    37
    trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
nipkow@10213
    38
nipkow@10213
    39
syntax
wenzelm@12691
    40
  "_reflcl" :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^=)" [1000] 999)
nipkow@10213
    41
translations
wenzelm@12691
    42
  "r^=" == "r \<union> Id"
nipkow@10213
    43
wenzelm@10827
    44
syntax (xsymbols)
schirmer@14361
    45
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>*)" [1000] 999)
schirmer@14361
    46
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>+)" [1000] 999)
schirmer@14361
    47
  "_reflcl" :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>=)" [1000] 999)
wenzelm@12691
    48
kleing@14565
    49
syntax (HTML output)
kleing@14565
    50
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>*)" [1000] 999)
kleing@14565
    51
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>+)" [1000] 999)
kleing@14565
    52
  "_reflcl" :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>=)" [1000] 999)
kleing@14565
    53
wenzelm@12691
    54
wenzelm@12691
    55
subsection {* Reflexive-transitive closure *}
wenzelm@12691
    56
wenzelm@12691
    57
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
wenzelm@12691
    58
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
wenzelm@12691
    59
  apply (simp only: split_tupled_all)
wenzelm@12691
    60
  apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
wenzelm@12691
    61
  done
wenzelm@12691
    62
wenzelm@12691
    63
lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*"
wenzelm@12691
    64
  -- {* monotonicity of @{text rtrancl} *}
wenzelm@12691
    65
  apply (rule subsetI)
wenzelm@12691
    66
  apply (simp only: split_tupled_all)
wenzelm@12691
    67
  apply (erule rtrancl.induct)
paulson@14208
    68
   apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
wenzelm@12691
    69
  done
wenzelm@12691
    70
berghofe@12823
    71
theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
wenzelm@12937
    72
  assumes a: "(a, b) : r^*"
wenzelm@12937
    73
    and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
wenzelm@12937
    74
  shows "P b"
wenzelm@12691
    75
proof -
wenzelm@12691
    76
  from a have "a = a --> P b"
nipkow@17589
    77
    by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
nipkow@17589
    78
  thus ?thesis by iprover
wenzelm@12691
    79
qed
wenzelm@12691
    80
nipkow@14404
    81
lemmas rtrancl_induct2 =
nipkow@14404
    82
  rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
    83
                 consumes 1, case_names refl step]
wenzelm@18372
    84
huffman@19228
    85
lemma reflexive_rtrancl: "reflexive (r^*)"
huffman@19228
    86
  by (unfold refl_def) fast
huffman@19228
    87
wenzelm@12691
    88
lemma trans_rtrancl: "trans(r^*)"
wenzelm@12691
    89
  -- {* transitivity of transitive closure!! -- by induction *}
berghofe@12823
    90
proof (rule transI)
berghofe@12823
    91
  fix x y z
berghofe@12823
    92
  assume "(x, y) \<in> r\<^sup>*"
berghofe@12823
    93
  assume "(y, z) \<in> r\<^sup>*"
nipkow@17589
    94
  thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+
berghofe@12823
    95
qed
wenzelm@12691
    96
wenzelm@12691
    97
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
wenzelm@12691
    98
wenzelm@12691
    99
lemma rtranclE:
wenzelm@18372
   100
  assumes major: "(a::'a,b) : r^*"
wenzelm@18372
   101
    and cases: "(a = b) ==> P"
wenzelm@18372
   102
      "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P"
wenzelm@18372
   103
  shows P
wenzelm@12691
   104
  -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
wenzelm@18372
   105
  apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")
wenzelm@18372
   106
   apply (rule_tac [2] major [THEN rtrancl_induct])
wenzelm@18372
   107
    prefer 2 apply blast
wenzelm@18372
   108
   prefer 2 apply blast
wenzelm@18372
   109
  apply (erule asm_rl exE disjE conjE cases)+
wenzelm@18372
   110
  done
wenzelm@12691
   111
berghofe@12823
   112
lemma converse_rtrancl_into_rtrancl:
berghofe@12823
   113
  "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*"
nipkow@17589
   114
  by (rule rtrancl_trans) iprover+
wenzelm@12691
   115
wenzelm@12691
   116
text {*
wenzelm@12691
   117
  \medskip More @{term "r^*"} equations and inclusions.
wenzelm@12691
   118
*}
wenzelm@12691
   119
wenzelm@12691
   120
lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
wenzelm@12691
   121
  apply auto
wenzelm@12691
   122
  apply (erule rtrancl_induct)
wenzelm@12691
   123
   apply (rule rtrancl_refl)
wenzelm@12691
   124
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   125
  done
wenzelm@12691
   126
wenzelm@12691
   127
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
wenzelm@12691
   128
  apply (rule set_ext)
wenzelm@12691
   129
  apply (simp only: split_tupled_all)
wenzelm@12691
   130
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   131
  done
wenzelm@12691
   132
wenzelm@12691
   133
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
paulson@14208
   134
by (drule rtrancl_mono, simp)
wenzelm@12691
   135
wenzelm@12691
   136
lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*"
wenzelm@12691
   137
  apply (drule rtrancl_mono)
ballarin@14398
   138
  apply (drule rtrancl_mono, simp)
wenzelm@12691
   139
  done
wenzelm@12691
   140
wenzelm@12691
   141
lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*"
wenzelm@12691
   142
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
wenzelm@12691
   143
wenzelm@12691
   144
lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
wenzelm@12691
   145
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
wenzelm@12691
   146
wenzelm@12691
   147
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
wenzelm@12691
   148
  apply (rule sym)
paulson@14208
   149
  apply (rule rtrancl_subset, blast, clarify)
wenzelm@12691
   150
  apply (rename_tac a b)
paulson@14208
   151
  apply (case_tac "a = b", blast)
wenzelm@12691
   152
  apply (blast intro!: r_into_rtrancl)
wenzelm@12691
   153
  done
wenzelm@12691
   154
berghofe@12823
   155
theorem rtrancl_converseD:
wenzelm@12937
   156
  assumes r: "(x, y) \<in> (r^-1)^*"
wenzelm@12937
   157
  shows "(y, x) \<in> r^*"
berghofe@12823
   158
proof -
berghofe@12823
   159
  from r show ?thesis
nipkow@17589
   160
    by induct (iprover intro: rtrancl_trans dest!: converseD)+
berghofe@12823
   161
qed
wenzelm@12691
   162
berghofe@12823
   163
theorem rtrancl_converseI:
wenzelm@12937
   164
  assumes r: "(y, x) \<in> r^*"
wenzelm@12937
   165
  shows "(x, y) \<in> (r^-1)^*"
berghofe@12823
   166
proof -
berghofe@12823
   167
  from r show ?thesis
nipkow@17589
   168
    by induct (iprover intro: rtrancl_trans converseI)+
berghofe@12823
   169
qed
wenzelm@12691
   170
wenzelm@12691
   171
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
wenzelm@12691
   172
  by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
wenzelm@12691
   173
huffman@19228
   174
lemma sym_rtrancl: "sym r ==> sym (r^*)"
huffman@19228
   175
  by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
huffman@19228
   176
nipkow@14404
   177
theorem converse_rtrancl_induct[consumes 1]:
wenzelm@12937
   178
  assumes major: "(a, b) : r^*"
wenzelm@12937
   179
    and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
wenzelm@12937
   180
  shows "P a"
wenzelm@12691
   181
proof -
berghofe@12823
   182
  from rtrancl_converseI [OF major]
wenzelm@12691
   183
  show ?thesis
nipkow@17589
   184
    by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+
wenzelm@12691
   185
qed
wenzelm@12691
   186
nipkow@14404
   187
lemmas converse_rtrancl_induct2 =
nipkow@14404
   188
  converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
   189
                 consumes 1, case_names refl step]
wenzelm@12691
   190
wenzelm@12691
   191
lemma converse_rtranclE:
wenzelm@18372
   192
  assumes major: "(x,z):r^*"
wenzelm@18372
   193
    and cases: "x=z ==> P"
wenzelm@18372
   194
      "!!y. [| (x,y):r; (y,z):r^* |] ==> P"
wenzelm@18372
   195
  shows P
wenzelm@18372
   196
  apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
wenzelm@18372
   197
   apply (rule_tac [2] major [THEN converse_rtrancl_induct])
wenzelm@18372
   198
    prefer 2 apply iprover
wenzelm@18372
   199
   prefer 2 apply iprover
wenzelm@18372
   200
  apply (erule asm_rl exE disjE conjE cases)+
wenzelm@18372
   201
  done
wenzelm@12691
   202
wenzelm@12691
   203
ML_setup {*
wenzelm@12691
   204
  bind_thm ("converse_rtranclE2", split_rule
wenzelm@12691
   205
    (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
wenzelm@12691
   206
*}
wenzelm@12691
   207
wenzelm@12691
   208
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
wenzelm@12691
   209
  by (blast elim: rtranclE converse_rtranclE
wenzelm@12691
   210
    intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
wenzelm@12691
   211
paulson@15551
   212
lemma rtrancl_unfold: "r^* = Id Un (r O r^*)"
paulson@15551
   213
  by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
paulson@15551
   214
wenzelm@12691
   215
wenzelm@12691
   216
subsection {* Transitive closure *}
wenzelm@10331
   217
berghofe@13704
   218
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
berghofe@13704
   219
  apply (simp only: split_tupled_all)
berghofe@13704
   220
  apply (erule trancl.induct)
nipkow@17589
   221
  apply (iprover dest: subsetD)+
wenzelm@12691
   222
  done
wenzelm@12691
   223
berghofe@13704
   224
lemma r_into_trancl': "!!p. p : r ==> p : r^+"
berghofe@13704
   225
  by (simp only: split_tupled_all) (erule r_into_trancl)
berghofe@13704
   226
wenzelm@12691
   227
text {*
wenzelm@12691
   228
  \medskip Conversions between @{text trancl} and @{text rtrancl}.
wenzelm@12691
   229
*}
wenzelm@12691
   230
berghofe@13704
   231
lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*"
nipkow@17589
   232
  by (erule trancl.induct) iprover+
wenzelm@12691
   233
berghofe@13704
   234
lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*"
berghofe@13704
   235
  shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r
nipkow@17589
   236
  by induct iprover+
wenzelm@12691
   237
wenzelm@12691
   238
lemma rtrancl_into_trancl2: "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+"
wenzelm@12691
   239
  -- {* intro rule from @{text r} and @{text rtrancl} *}
nipkow@17589
   240
  apply (erule rtranclE, iprover)
wenzelm@12691
   241
  apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
wenzelm@12691
   242
   apply (assumption | rule r_into_rtrancl)+
wenzelm@12691
   243
  done
wenzelm@12691
   244
berghofe@13704
   245
lemma trancl_induct [consumes 1, induct set: trancl]:
berghofe@13704
   246
  assumes a: "(a,b) : r^+"
berghofe@13704
   247
  and cases: "!!y. (a, y) : r ==> P y"
berghofe@13704
   248
    "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
berghofe@13704
   249
  shows "P b"
wenzelm@12691
   250
  -- {* Nice induction rule for @{text trancl} *}
wenzelm@12691
   251
proof -
berghofe@13704
   252
  from a have "a = a --> P b"
nipkow@17589
   253
    by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
nipkow@17589
   254
  thus ?thesis by iprover
wenzelm@12691
   255
qed
wenzelm@12691
   256
wenzelm@12691
   257
lemma trancl_trans_induct:
wenzelm@18372
   258
  assumes major: "(x,y) : r^+"
wenzelm@18372
   259
    and cases: "!!x y. (x,y) : r ==> P x y"
wenzelm@18372
   260
      "!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z"
wenzelm@18372
   261
  shows "P x y"
wenzelm@12691
   262
  -- {* Another induction rule for trancl, incorporating transitivity *}
wenzelm@18372
   263
  by (iprover intro: r_into_trancl major [THEN trancl_induct] cases)
wenzelm@12691
   264
berghofe@13704
   265
inductive_cases tranclE: "(a, b) : r^+"
wenzelm@10980
   266
paulson@15551
   267
lemma trancl_unfold: "r^+ = r Un (r O r^+)"
paulson@15551
   268
  by (auto intro: trancl_into_trancl elim: tranclE)
paulson@15551
   269
wenzelm@12691
   270
lemma trans_trancl: "trans(r^+)"
wenzelm@12691
   271
  -- {* Transitivity of @{term "r^+"} *}
berghofe@13704
   272
proof (rule transI)
berghofe@13704
   273
  fix x y z
wenzelm@18372
   274
  assume xy: "(x, y) \<in> r^+"
berghofe@13704
   275
  assume "(y, z) \<in> r^+"
wenzelm@18372
   276
  thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+
berghofe@13704
   277
qed
wenzelm@12691
   278
wenzelm@12691
   279
lemmas trancl_trans = trans_trancl [THEN transD, standard]
wenzelm@12691
   280
berghofe@13704
   281
lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*"
berghofe@13704
   282
  shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r
nipkow@17589
   283
  by induct (iprover intro: trancl_trans)+
wenzelm@12691
   284
wenzelm@12691
   285
lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+"
wenzelm@12691
   286
  by (erule transD [OF trans_trancl r_into_trancl])
wenzelm@12691
   287
wenzelm@12691
   288
lemma trancl_insert:
wenzelm@12691
   289
  "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
wenzelm@12691
   290
  -- {* primitive recursion for @{text trancl} over finite relations *}
wenzelm@12691
   291
  apply (rule equalityI)
wenzelm@12691
   292
   apply (rule subsetI)
wenzelm@12691
   293
   apply (simp only: split_tupled_all)
paulson@14208
   294
   apply (erule trancl_induct, blast)
wenzelm@12691
   295
   apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans)
wenzelm@12691
   296
  apply (rule subsetI)
wenzelm@12691
   297
  apply (blast intro: trancl_mono rtrancl_mono
wenzelm@12691
   298
    [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
wenzelm@12691
   299
  done
wenzelm@12691
   300
berghofe@13704
   301
lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+"
berghofe@13704
   302
  apply (drule converseD)
berghofe@13704
   303
  apply (erule trancl.induct)
nipkow@17589
   304
  apply (iprover intro: converseI trancl_trans)+
wenzelm@12691
   305
  done
wenzelm@12691
   306
berghofe@13704
   307
lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1"
berghofe@13704
   308
  apply (rule converseI)
berghofe@13704
   309
  apply (erule trancl.induct)
nipkow@17589
   310
  apply (iprover dest: converseD intro: trancl_trans)+
berghofe@13704
   311
  done
wenzelm@12691
   312
berghofe@13704
   313
lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
berghofe@13704
   314
  by (fastsimp simp add: split_tupled_all
berghofe@13704
   315
    intro!: trancl_converseI trancl_converseD)
wenzelm@12691
   316
huffman@19228
   317
lemma sym_trancl: "sym r ==> sym (r^+)"
huffman@19228
   318
  by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
huffman@19228
   319
wenzelm@12691
   320
lemma converse_trancl_induct:
wenzelm@18372
   321
  assumes major: "(a,b) : r^+"
wenzelm@18372
   322
    and cases: "!!y. (y,b) : r ==> P(y)"
wenzelm@18372
   323
      "!!y z.[| (y,z) : r;  (z,b) : r^+;  P(z) |] ==> P(y)"
wenzelm@18372
   324
  shows "P a"
wenzelm@18372
   325
  apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
wenzelm@18372
   326
   apply (rule cases)
wenzelm@18372
   327
   apply (erule converseD)
wenzelm@18372
   328
  apply (blast intro: prems dest!: trancl_converseD)
wenzelm@18372
   329
  done
wenzelm@12691
   330
wenzelm@12691
   331
lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*"
paulson@14208
   332
  apply (erule converse_trancl_induct, auto)
wenzelm@12691
   333
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   334
  done
wenzelm@12691
   335
nipkow@13867
   336
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
wenzelm@18372
   337
  by (blast elim: tranclE dest: trancl_into_rtrancl)
wenzelm@12691
   338
wenzelm@12691
   339
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
wenzelm@12691
   340
  by (blast dest: r_into_trancl)
wenzelm@12691
   341
wenzelm@12691
   342
lemma trancl_subset_Sigma_aux:
wenzelm@12691
   343
    "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A"
wenzelm@18372
   344
  by (induct rule: rtrancl_induct) auto
wenzelm@12691
   345
wenzelm@12691
   346
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A"
berghofe@13704
   347
  apply (rule subsetI)
berghofe@13704
   348
  apply (simp only: split_tupled_all)
berghofe@13704
   349
  apply (erule tranclE)
berghofe@13704
   350
  apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
wenzelm@12691
   351
  done
nipkow@10996
   352
wenzelm@11090
   353
lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
wenzelm@11084
   354
  apply safe
wenzelm@12691
   355
   apply (erule trancl_into_rtrancl)
wenzelm@11084
   356
  apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
wenzelm@11084
   357
  done
nipkow@10996
   358
wenzelm@11090
   359
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
wenzelm@11084
   360
  apply safe
paulson@14208
   361
   apply (drule trancl_into_rtrancl, simp)
paulson@14208
   362
  apply (erule rtranclE, safe)
paulson@14208
   363
   apply (rule r_into_trancl, simp)
wenzelm@11084
   364
  apply (rule rtrancl_into_trancl1)
paulson@14208
   365
   apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)
wenzelm@11084
   366
  done
nipkow@10996
   367
wenzelm@11090
   368
lemma trancl_empty [simp]: "{}^+ = {}"
wenzelm@11084
   369
  by (auto elim: trancl_induct)
nipkow@10996
   370
wenzelm@11090
   371
lemma rtrancl_empty [simp]: "{}^* = Id"
wenzelm@11084
   372
  by (rule subst [OF reflcl_trancl]) simp
nipkow@10996
   373
wenzelm@11090
   374
lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+"
wenzelm@11084
   375
  by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
wenzelm@11084
   376
kleing@16514
   377
lemma rtrancl_eq_or_trancl:
kleing@16514
   378
  "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
kleing@16514
   379
  by (fast elim: trancl_into_rtrancl dest: rtranclD)
nipkow@10996
   380
wenzelm@12691
   381
text {* @{text Domain} and @{text Range} *}
nipkow@10996
   382
wenzelm@11090
   383
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
wenzelm@11084
   384
  by blast
nipkow@10996
   385
wenzelm@11090
   386
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"
wenzelm@11084
   387
  by blast
nipkow@10996
   388
wenzelm@11090
   389
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*"
wenzelm@11084
   390
  by (rule rtrancl_Un_rtrancl [THEN subst]) fast
nipkow@10996
   391
wenzelm@11090
   392
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*"
wenzelm@11084
   393
  by (blast intro: subsetD [OF rtrancl_Un_subset])
nipkow@10996
   394
wenzelm@11090
   395
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"
wenzelm@11084
   396
  by (unfold Domain_def) (blast dest: tranclD)
nipkow@10996
   397
wenzelm@11090
   398
lemma trancl_range [simp]: "Range (r^+) = Range r"
wenzelm@11084
   399
  by (simp add: Range_def trancl_converse [symmetric])
nipkow@10996
   400
paulson@11115
   401
lemma Not_Domain_rtrancl:
wenzelm@12691
   402
    "x ~: Domain R ==> ((x, y) : R^*) = (x = y)"
wenzelm@12691
   403
  apply auto
wenzelm@12691
   404
  by (erule rev_mp, erule rtrancl_induct, auto)
wenzelm@12691
   405
berghofe@11327
   406
wenzelm@12691
   407
text {* More about converse @{text rtrancl} and @{text trancl}, should
wenzelm@12691
   408
  be merged with main body. *}
kleing@12428
   409
nipkow@14337
   410
lemma single_valued_confluent:
nipkow@14337
   411
  "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk>
nipkow@14337
   412
  \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*"
nipkow@14337
   413
apply(erule rtrancl_induct)
nipkow@14337
   414
 apply simp
nipkow@14337
   415
apply(erule disjE)
nipkow@14337
   416
 apply(blast elim:converse_rtranclE dest:single_valuedD)
nipkow@14337
   417
apply(blast intro:rtrancl_trans)
nipkow@14337
   418
done
nipkow@14337
   419
wenzelm@12691
   420
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+"
kleing@12428
   421
  by (fast intro: trancl_trans)
kleing@12428
   422
kleing@12428
   423
lemma trancl_into_trancl [rule_format]:
wenzelm@12691
   424
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+"
wenzelm@12691
   425
  apply (erule trancl_induct)
kleing@12428
   426
   apply (fast intro: r_r_into_trancl)
kleing@12428
   427
  apply (fast intro: r_r_into_trancl trancl_trans)
kleing@12428
   428
  done
kleing@12428
   429
kleing@12428
   430
lemma trancl_rtrancl_trancl:
wenzelm@12691
   431
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+"
kleing@12428
   432
  apply (drule tranclD)
kleing@12428
   433
  apply (erule exE, erule conjE)
kleing@12428
   434
  apply (drule rtrancl_trans, assumption)
paulson@14208
   435
  apply (drule rtrancl_into_trancl2, assumption, assumption)
kleing@12428
   436
  done
kleing@12428
   437
wenzelm@12691
   438
lemmas transitive_closure_trans [trans] =
wenzelm@12691
   439
  r_r_into_trancl trancl_trans rtrancl_trans
wenzelm@12691
   440
  trancl_into_trancl trancl_into_trancl2
wenzelm@12691
   441
  rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
wenzelm@12691
   442
  rtrancl_trancl_trancl trancl_rtrancl_trancl
kleing@12428
   443
kleing@12428
   444
declare trancl_into_rtrancl [elim]
berghofe@11327
   445
berghofe@11327
   446
declare rtranclE [cases set: rtrancl]
berghofe@11327
   447
declare tranclE [cases set: trancl]
berghofe@11327
   448
paulson@15551
   449
paulson@15551
   450
paulson@15551
   451
paulson@15551
   452
ballarin@15076
   453
subsection {* Setup of transitivity reasoner *}
ballarin@15076
   454
ballarin@15076
   455
use "../Provers/trancl.ML";
ballarin@15076
   456
ballarin@15076
   457
ML_setup {*
ballarin@15076
   458
ballarin@15076
   459
structure Trancl_Tac = Trancl_Tac_Fun (
ballarin@15076
   460
  struct
ballarin@15076
   461
    val r_into_trancl = thm "r_into_trancl";
ballarin@15076
   462
    val trancl_trans  = thm "trancl_trans";
ballarin@15076
   463
    val rtrancl_refl = thm "rtrancl_refl";
ballarin@15076
   464
    val r_into_rtrancl = thm "r_into_rtrancl";
ballarin@15076
   465
    val trancl_into_rtrancl = thm "trancl_into_rtrancl";
ballarin@15076
   466
    val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl";
ballarin@15076
   467
    val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
ballarin@15076
   468
    val rtrancl_trans = thm "rtrancl_trans";
ballarin@15096
   469
wenzelm@18372
   470
  fun decomp (Trueprop $ t) =
wenzelm@18372
   471
    let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
wenzelm@18372
   472
        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
wenzelm@18372
   473
              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
wenzelm@18372
   474
              | decr r = (r,"r");
wenzelm@18372
   475
            val (rel,r) = decr rel;
wenzelm@18372
   476
        in SOME (a,b,rel,r) end
wenzelm@18372
   477
      | dec _ =  NONE
ballarin@15076
   478
    in dec t end;
wenzelm@18372
   479
ballarin@15076
   480
  end); (* struct *)
ballarin@15076
   481
wenzelm@17876
   482
change_simpset (fn ss => ss
wenzelm@17876
   483
  addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
wenzelm@17876
   484
  addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)));
ballarin@15076
   485
ballarin@15076
   486
*}
ballarin@15076
   487
ballarin@15076
   488
(* Optional methods
ballarin@15076
   489
ballarin@15076
   490
method_setup trancl =
ballarin@15076
   491
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trancl_tac)) *}
wenzelm@18372
   492
  {* simple transitivity reasoner *}
ballarin@15076
   493
method_setup rtrancl =
ballarin@15076
   494
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (rtrancl_tac)) *}
ballarin@15076
   495
  {* simple transitivity reasoner *}
ballarin@15076
   496
ballarin@15076
   497
*)
ballarin@15076
   498
nipkow@10213
   499
end