src/HOL/Hyperreal/HyperPow.thy
author nipkow
Wed Aug 18 11:09:40 2004 +0200 (2004-08-18)
changeset 15140 322485b816ac
parent 15131 c69542757a4d
child 15169 2b5da07a0b89
permissions -rw-r--r--
import -> imports
paulson@10751
     1
(*  Title       : HyperPow.thy
paulson@10751
     2
    Author      : Jacques D. Fleuriot  
paulson@10751
     3
    Copyright   : 1998  University of Cambridge
paulson@14387
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@10751
     5
*)
paulson@10751
     6
paulson@14348
     7
header{*Exponentials on the Hyperreals*}
paulson@14348
     8
nipkow@15131
     9
theory HyperPow
nipkow@15140
    10
imports HyperArith HyperNat "../Real/RealPow"
nipkow@15131
    11
begin
paulson@10778
    12
paulson@14348
    13
instance hypreal :: power ..
paulson@10751
    14
paulson@10751
    15
consts hpowr :: "[hypreal,nat] => hypreal"  
paulson@10751
    16
primrec
paulson@14348
    17
   hpowr_0:   "r ^ 0       = (1::hypreal)"
paulson@14348
    18
   hpowr_Suc: "r ^ (Suc n) = (r::hypreal) * (r ^ n)"
paulson@14348
    19
paulson@14348
    20
paulson@15003
    21
instance hypreal :: recpower
paulson@14348
    22
proof
paulson@14348
    23
  fix z :: hypreal
paulson@14348
    24
  fix n :: nat
paulson@14348
    25
  show "z^0 = 1" by simp
paulson@14348
    26
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
    27
qed
paulson@14348
    28
paulson@10751
    29
paulson@10751
    30
consts
paulson@14348
    31
  "pow"  :: "[hypreal,hypnat] => hypreal"     (infixr 80)
paulson@10751
    32
paulson@10751
    33
defs
paulson@10751
    34
paulson@10751
    35
  (* hypernatural powers of hyperreals *)
paulson@14348
    36
  hyperpow_def:
paulson@14348
    37
  "(R::hypreal) pow (N::hypnat) ==
paulson@14348
    38
      Abs_hypreal(\<Union>X \<in> Rep_hypreal(R). \<Union>Y \<in> Rep_hypnat(N).
paulson@14348
    39
                        hyprel``{%n::nat. (X n) ^ (Y n)})"
paulson@14348
    40
paulson@14348
    41
lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r"
paulson@14443
    42
by simp
paulson@14348
    43
paulson@15003
    44
lemma hrealpow_two_le [simp]: "(0::hypreal) \<le> r ^ Suc (Suc 0)"
paulson@14371
    45
by (auto simp add: zero_le_mult_iff)
paulson@14348
    46
paulson@15003
    47
lemma hrealpow_two_le_add_order [simp]:
paulson@14348
    48
     "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)"
paulson@14443
    49
by (simp only: hrealpow_two_le hypreal_le_add_order)
paulson@14348
    50
paulson@15003
    51
lemma hrealpow_two_le_add_order2 [simp]:
paulson@14348
    52
     "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)"
paulson@15003
    53
by (simp only: hrealpow_two_le hypreal_le_add_order)
paulson@14348
    54
paulson@14348
    55
lemma hypreal_add_nonneg_eq_0_iff:
paulson@14348
    56
     "[| 0 \<le> x; 0 \<le> y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))"
paulson@15003
    57
by arith
paulson@15003
    58
paulson@14348
    59
paulson@14348
    60
text{*FIXME: DELETE THESE*}
paulson@14348
    61
lemma hypreal_three_squares_add_zero_iff:
paulson@14348
    62
     "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))"
paulson@14371
    63
apply (simp only: zero_le_square hypreal_le_add_order hypreal_add_nonneg_eq_0_iff, auto)
paulson@14348
    64
done
paulson@14348
    65
paulson@14348
    66
lemma hrealpow_three_squares_add_zero_iff [simp]:
paulson@14348
    67
     "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) = 
paulson@14348
    68
      (x = 0 & y = 0 & z = 0)"
paulson@14348
    69
by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two)
paulson@14348
    70
paulson@14348
    71
paulson@14348
    72
lemma hrabs_hrealpow_two [simp]:
paulson@14348
    73
     "abs(x ^ Suc (Suc 0)) = (x::hypreal) ^ Suc (Suc 0)"
paulson@14348
    74
by (simp add: abs_mult)
paulson@14348
    75
paulson@14348
    76
lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
paulson@14348
    77
by (insert power_increasing [of 0 n "2::hypreal"], simp)
paulson@14348
    78
paulson@15003
    79
lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n"
paulson@14348
    80
apply (induct_tac "n")
paulson@14348
    81
apply (auto simp add: hypreal_of_nat_Suc left_distrib)
paulson@14371
    82
apply (cut_tac n = n in two_hrealpow_ge_one, arith)
paulson@14348
    83
done
paulson@14348
    84
paulson@14348
    85
lemma hrealpow:
paulson@14348
    86
    "Abs_hypreal(hyprel``{%n. X n}) ^ m = Abs_hypreal(hyprel``{%n. (X n) ^ m})"
paulson@14348
    87
apply (induct_tac "m")
paulson@14348
    88
apply (auto simp add: hypreal_one_def hypreal_mult)
paulson@14348
    89
done
paulson@14348
    90
paulson@14348
    91
lemma hrealpow_sum_square_expand:
paulson@14348
    92
     "(x + (y::hypreal)) ^ Suc (Suc 0) =
paulson@14348
    93
      x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
paulson@14348
    94
by (simp add: right_distrib left_distrib hypreal_of_nat_Suc)
paulson@14348
    95
paulson@14348
    96
paulson@14348
    97
subsection{*Literal Arithmetic Involving Powers and Type @{typ hypreal}*}
paulson@14348
    98
paulson@15003
    99
lemma hypreal_of_real_power [simp]:
paulson@15003
   100
     "hypreal_of_real (x ^ n) = hypreal_of_real x ^ n"
paulson@15003
   101
by (induct_tac "n", simp_all add: nat_mult_distrib)
paulson@14348
   102
paulson@14348
   103
lemma power_hypreal_of_real_number_of:
paulson@14348
   104
     "(number_of v :: hypreal) ^ n = hypreal_of_real ((number_of v) ^ n)"
paulson@14387
   105
by (simp only: hypreal_number_of [symmetric] hypreal_of_real_power)
paulson@14348
   106
paulson@14348
   107
declare power_hypreal_of_real_number_of [of _ "number_of w", standard, simp]
paulson@14348
   108
paulson@14348
   109
lemma hrealpow_HFinite: "x \<in> HFinite ==> x ^ n \<in> HFinite"
paulson@14348
   110
apply (induct_tac "n")
paulson@14348
   111
apply (auto intro: HFinite_mult)
paulson@14348
   112
done
paulson@14348
   113
paulson@14348
   114
paulson@14348
   115
subsection{*Powers with Hypernatural Exponents*}
paulson@14348
   116
paulson@14348
   117
lemma hyperpow_congruent:
paulson@14348
   118
     "congruent hyprel
paulson@14348
   119
     (%X Y. hyprel``{%n. ((X::nat=>real) n ^ (Y::nat=>nat) n)})"
paulson@14348
   120
apply (unfold congruent_def)
paulson@14371
   121
apply (auto intro!: ext, fuf+)
paulson@14348
   122
done
paulson@14348
   123
paulson@14348
   124
lemma hyperpow:
paulson@14348
   125
  "Abs_hypreal(hyprel``{%n. X n}) pow Abs_hypnat(hypnatrel``{%n. Y n}) =
paulson@14348
   126
   Abs_hypreal(hyprel``{%n. X n ^ Y n})"
paulson@14348
   127
apply (unfold hyperpow_def)
paulson@14371
   128
apply (rule_tac f = Abs_hypreal in arg_cong)
paulson@14348
   129
apply (auto intro!: lemma_hyprel_refl bexI 
paulson@14348
   130
           simp add: hyprel_in_hypreal [THEN Abs_hypreal_inverse] equiv_hyprel 
paulson@14371
   131
                     hyperpow_congruent, fuf)
paulson@14348
   132
done
paulson@14348
   133
paulson@14348
   134
lemma hyperpow_zero: "(0::hypreal) pow (n + (1::hypnat)) = 0"
paulson@14348
   135
apply (unfold hypnat_one_def)
paulson@14348
   136
apply (simp (no_asm) add: hypreal_zero_def)
paulson@14371
   137
apply (rule_tac z = n in eq_Abs_hypnat)
paulson@14348
   138
apply (auto simp add: hyperpow hypnat_add)
paulson@14348
   139
done
paulson@14348
   140
declare hyperpow_zero [simp]
paulson@14348
   141
paulson@14348
   142
lemma hyperpow_not_zero [rule_format (no_asm)]:
paulson@14348
   143
     "r \<noteq> (0::hypreal) --> r pow n \<noteq> 0"
paulson@14468
   144
apply (simp (no_asm) add: hypreal_zero_def, cases n, cases r)
paulson@14348
   145
apply (auto simp add: hyperpow)
paulson@14371
   146
apply (drule FreeUltrafilterNat_Compl_mem, ultra)
paulson@14348
   147
done
paulson@14348
   148
paulson@14348
   149
lemma hyperpow_inverse:
paulson@14348
   150
     "r \<noteq> (0::hypreal) --> inverse(r pow n) = (inverse r) pow n"
paulson@14468
   151
apply (simp (no_asm) add: hypreal_zero_def, cases n, cases r)
paulson@14348
   152
apply (auto dest!: FreeUltrafilterNat_Compl_mem simp add: hypreal_inverse hyperpow)
paulson@14348
   153
apply (rule FreeUltrafilterNat_subset)
paulson@14348
   154
apply (auto dest: realpow_not_zero intro: power_inverse)
paulson@14348
   155
done
paulson@14348
   156
paulson@14348
   157
lemma hyperpow_hrabs: "abs r pow n = abs (r pow n)"
paulson@14468
   158
apply (cases n, cases r)
paulson@14348
   159
apply (auto simp add: hypreal_hrabs hyperpow power_abs [symmetric])
paulson@14348
   160
done
paulson@14348
   161
paulson@14348
   162
lemma hyperpow_add: "r pow (n + m) = (r pow n) * (r pow m)"
paulson@14468
   163
apply (cases n, cases m, cases r)
paulson@14348
   164
apply (auto simp add: hyperpow hypnat_add hypreal_mult power_add)
paulson@14348
   165
done
paulson@14348
   166
paulson@15003
   167
lemma hyperpow_one [simp]: "r pow (1::hypnat) = r"
paulson@14468
   168
apply (unfold hypnat_one_def, cases r)
paulson@14348
   169
apply (auto simp add: hyperpow)
paulson@14348
   170
done
paulson@14348
   171
paulson@14348
   172
lemma hyperpow_two:
paulson@14348
   173
     "r pow ((1::hypnat) + (1::hypnat)) = r * r"
paulson@14468
   174
apply (unfold hypnat_one_def, cases r)
paulson@14348
   175
apply (auto simp add: hyperpow hypnat_add hypreal_mult)
paulson@14348
   176
done
paulson@14348
   177
paulson@14348
   178
lemma hyperpow_gt_zero: "(0::hypreal) < r ==> 0 < r pow n"
paulson@14468
   179
apply (simp add: hypreal_zero_def, cases n, cases r)
paulson@14348
   180
apply (auto elim!: FreeUltrafilterNat_subset zero_less_power
paulson@14348
   181
                   simp add: hyperpow hypreal_less hypreal_le)
paulson@14348
   182
done
paulson@14348
   183
paulson@14348
   184
lemma hyperpow_ge_zero: "(0::hypreal) \<le> r ==> 0 \<le> r pow n"
paulson@14468
   185
apply (simp add: hypreal_zero_def, cases n, cases r)
paulson@14348
   186
apply (auto elim!: FreeUltrafilterNat_subset zero_le_power 
paulson@14348
   187
            simp add: hyperpow hypreal_le)
paulson@14348
   188
done
paulson@14348
   189
paulson@14348
   190
lemma hyperpow_le: "[|(0::hypreal) < x; x \<le> y|] ==> x pow n \<le> y pow n"
paulson@14468
   191
apply (simp add: hypreal_zero_def, cases n, cases x, cases y)
paulson@14348
   192
apply (auto simp add: hyperpow hypreal_le hypreal_less)
paulson@14371
   193
apply (erule FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset], assumption)
paulson@14348
   194
apply (auto intro: power_mono)
paulson@14348
   195
done
paulson@14348
   196
paulson@15003
   197
lemma hyperpow_eq_one [simp]: "1 pow n = (1::hypreal)"
paulson@14468
   198
apply (cases n)
paulson@14348
   199
apply (auto simp add: hypreal_one_def hyperpow)
paulson@14348
   200
done
paulson@14348
   201
paulson@15003
   202
lemma hrabs_hyperpow_minus_one [simp]: "abs(-1 pow n) = (1::hypreal)"
paulson@14348
   203
apply (subgoal_tac "abs ((- (1::hypreal)) pow n) = (1::hypreal) ")
paulson@14348
   204
apply simp
paulson@14468
   205
apply (cases n)
paulson@14348
   206
apply (auto simp add: hypreal_one_def hyperpow hypreal_minus hypreal_hrabs)
paulson@14348
   207
done
paulson@14348
   208
paulson@14348
   209
lemma hyperpow_mult: "(r * s) pow n = (r pow n) * (s pow n)"
paulson@14468
   210
apply (cases n, cases r, cases s)
paulson@14348
   211
apply (auto simp add: hyperpow hypreal_mult power_mult_distrib)
paulson@14348
   212
done
paulson@14348
   213
paulson@15003
   214
lemma hyperpow_two_le [simp]: "0 \<le> r pow (1 + 1)"
paulson@14371
   215
by (auto simp add: hyperpow_two zero_le_mult_iff)
paulson@14348
   216
paulson@14371
   217
lemma hrabs_hyperpow_two [simp]: "abs(x pow (1 + 1)) = x pow (1 + 1)"
paulson@15003
   218
by (simp add: abs_if hyperpow_two_le linorder_not_less)
paulson@14348
   219
paulson@15003
   220
lemma hyperpow_two_hrabs [simp]: "abs(x) pow (1 + 1)  = x pow (1 + 1)"
paulson@15003
   221
by (simp add: hyperpow_hrabs)
paulson@14348
   222
paulson@15003
   223
lemma hyperpow_two_gt_one: "1 < r ==> 1 < r pow (1 + 1)"
paulson@14348
   224
apply (auto simp add: hyperpow_two)
paulson@14348
   225
apply (rule_tac y = "1*1" in order_le_less_trans)
paulson@14371
   226
apply (rule_tac [2] hypreal_mult_less_mono, auto)
paulson@14348
   227
done
paulson@14348
   228
paulson@14348
   229
lemma hyperpow_two_ge_one:
paulson@15003
   230
     "1 \<le> r ==> 1 \<le> r pow (1 + 1)"
paulson@15003
   231
by (auto dest!: order_le_imp_less_or_eq intro: hyperpow_two_gt_one order_less_imp_le)
paulson@14348
   232
paulson@15003
   233
lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n"
paulson@14348
   234
apply (rule_tac y = "1 pow n" in order_trans)
paulson@14371
   235
apply (rule_tac [2] hyperpow_le, auto)
paulson@14348
   236
done
paulson@14348
   237
paulson@15003
   238
lemma hyperpow_minus_one2 [simp]:
paulson@14348
   239
     "-1 pow ((1 + 1)*n) = (1::hypreal)"
paulson@14348
   240
apply (subgoal_tac " (- ((1::hypreal))) pow ((1 + 1)*n) = (1::hypreal) ")
paulson@14348
   241
apply simp
paulson@14468
   242
apply (simp only: hypreal_one_def, cases n)
paulson@14435
   243
apply (auto simp add: nat_mult_2 [symmetric] hyperpow hypnat_add hypreal_minus
paulson@14371
   244
                      left_distrib)
paulson@14348
   245
done
paulson@14348
   246
paulson@14348
   247
lemma hyperpow_less_le:
paulson@14348
   248
     "[|(0::hypreal) \<le> r; r \<le> 1; n < N|] ==> r pow N \<le> r pow n"
paulson@14468
   249
apply (cases n, cases N, cases r)
paulson@14348
   250
apply (auto simp add: hyperpow hypreal_le hypreal_less hypnat_less 
paulson@14348
   251
            hypreal_zero_def hypreal_one_def)
paulson@14348
   252
apply (erule FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset])
paulson@14371
   253
apply (erule FreeUltrafilterNat_Int, assumption)
paulson@14348
   254
apply (auto intro: power_decreasing)
paulson@14348
   255
done
paulson@14348
   256
paulson@14348
   257
lemma hyperpow_SHNat_le:
paulson@14348
   258
     "[| 0 \<le> r;  r \<le> (1::hypreal);  N \<in> HNatInfinite |]
paulson@14348
   259
      ==> ALL n: Nats. r pow N \<le> r pow n"
paulson@14348
   260
by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff)
paulson@14348
   261
paulson@14348
   262
lemma hyperpow_realpow:
paulson@14348
   263
      "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)"
paulson@15003
   264
by (simp add: hypreal_of_real_def hypnat_of_nat_eq hyperpow)
paulson@14348
   265
paulson@15003
   266
lemma hyperpow_SReal [simp]:
paulson@15003
   267
     "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> Reals"
paulson@15003
   268
by (simp del: hypreal_of_real_power add: hyperpow_realpow SReal_def)
paulson@14348
   269
paulson@15003
   270
paulson@15003
   271
lemma hyperpow_zero_HNatInfinite [simp]:
paulson@15003
   272
     "N \<in> HNatInfinite ==> (0::hypreal) pow N = 0"
paulson@14371
   273
by (drule HNatInfinite_is_Suc, auto)
paulson@14348
   274
paulson@14348
   275
lemma hyperpow_le_le:
paulson@14348
   276
     "[| (0::hypreal) \<le> r; r \<le> 1; n \<le> N |] ==> r pow N \<le> r pow n"
paulson@14371
   277
apply (drule order_le_less [of n, THEN iffD1])
paulson@14348
   278
apply (auto intro: hyperpow_less_le)
paulson@14348
   279
done
paulson@14348
   280
paulson@14348
   281
lemma hyperpow_Suc_le_self2:
paulson@14348
   282
     "[| (0::hypreal) \<le> r; r < 1 |] ==> r pow (n + (1::hypnat)) \<le> r"
paulson@14348
   283
apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le)
paulson@14348
   284
apply auto
paulson@14348
   285
done
paulson@14348
   286
paulson@14348
   287
lemma lemma_Infinitesimal_hyperpow:
paulson@14348
   288
     "[| x \<in> Infinitesimal; 0 < N |] ==> abs (x pow N) \<le> abs x"
paulson@14348
   289
apply (unfold Infinitesimal_def)
paulson@14348
   290
apply (auto intro!: hyperpow_Suc_le_self2 
paulson@14348
   291
          simp add: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero)
paulson@14348
   292
done
paulson@14348
   293
paulson@14348
   294
lemma Infinitesimal_hyperpow:
paulson@14348
   295
     "[| x \<in> Infinitesimal; 0 < N |] ==> x pow N \<in> Infinitesimal"
paulson@14348
   296
apply (rule hrabs_le_Infinitesimal)
paulson@14371
   297
apply (rule_tac [2] lemma_Infinitesimal_hyperpow, auto)
paulson@14348
   298
done
paulson@14348
   299
paulson@14348
   300
lemma hrealpow_hyperpow_Infinitesimal_iff:
paulson@14348
   301
     "(x ^ n \<in> Infinitesimal) = (x pow (hypnat_of_nat n) \<in> Infinitesimal)"
paulson@14468
   302
apply (cases x)
paulson@14378
   303
apply (simp add: hrealpow hyperpow hypnat_of_nat_eq)
paulson@14348
   304
done
paulson@14348
   305
paulson@14348
   306
lemma Infinitesimal_hrealpow:
paulson@14348
   307
     "[| x \<in> Infinitesimal; 0 < n |] ==> x ^ n \<in> Infinitesimal"
paulson@14348
   308
by (force intro!: Infinitesimal_hyperpow
paulson@14348
   309
          simp add: hrealpow_hyperpow_Infinitesimal_iff 
paulson@14371
   310
                    hypnat_of_nat_less_iff [symmetric] hypnat_of_nat_zero
paulson@14371
   311
          simp del: hypnat_of_nat_less_iff)
paulson@14348
   312
paulson@14348
   313
ML
paulson@14348
   314
{*
paulson@14348
   315
val hrealpow_two = thm "hrealpow_two";
paulson@14348
   316
val hrealpow_two_le = thm "hrealpow_two_le";
paulson@14348
   317
val hrealpow_two_le_add_order = thm "hrealpow_two_le_add_order";
paulson@14348
   318
val hrealpow_two_le_add_order2 = thm "hrealpow_two_le_add_order2";
paulson@14348
   319
val hypreal_add_nonneg_eq_0_iff = thm "hypreal_add_nonneg_eq_0_iff";
paulson@14348
   320
val hypreal_three_squares_add_zero_iff = thm "hypreal_three_squares_add_zero_iff";
paulson@14348
   321
val hrealpow_three_squares_add_zero_iff = thm "hrealpow_three_squares_add_zero_iff";
paulson@14348
   322
val hrabs_hrealpow_two = thm "hrabs_hrealpow_two";
paulson@14348
   323
val two_hrealpow_ge_one = thm "two_hrealpow_ge_one";
paulson@14348
   324
val two_hrealpow_gt = thm "two_hrealpow_gt";
paulson@14348
   325
val hrealpow = thm "hrealpow";
paulson@14348
   326
val hrealpow_sum_square_expand = thm "hrealpow_sum_square_expand";
paulson@14348
   327
val hypreal_of_real_power = thm "hypreal_of_real_power";
paulson@14348
   328
val power_hypreal_of_real_number_of = thm "power_hypreal_of_real_number_of";
paulson@14348
   329
val hrealpow_HFinite = thm "hrealpow_HFinite";
paulson@14348
   330
val hyperpow_congruent = thm "hyperpow_congruent";
paulson@14348
   331
val hyperpow = thm "hyperpow";
paulson@14348
   332
val hyperpow_zero = thm "hyperpow_zero";
paulson@14348
   333
val hyperpow_not_zero = thm "hyperpow_not_zero";
paulson@14348
   334
val hyperpow_inverse = thm "hyperpow_inverse";
paulson@14348
   335
val hyperpow_hrabs = thm "hyperpow_hrabs";
paulson@14348
   336
val hyperpow_add = thm "hyperpow_add";
paulson@14348
   337
val hyperpow_one = thm "hyperpow_one";
paulson@14348
   338
val hyperpow_two = thm "hyperpow_two";
paulson@14348
   339
val hyperpow_gt_zero = thm "hyperpow_gt_zero";
paulson@14348
   340
val hyperpow_ge_zero = thm "hyperpow_ge_zero";
paulson@14348
   341
val hyperpow_le = thm "hyperpow_le";
paulson@14348
   342
val hyperpow_eq_one = thm "hyperpow_eq_one";
paulson@14348
   343
val hrabs_hyperpow_minus_one = thm "hrabs_hyperpow_minus_one";
paulson@14348
   344
val hyperpow_mult = thm "hyperpow_mult";
paulson@14348
   345
val hyperpow_two_le = thm "hyperpow_two_le";
paulson@14348
   346
val hrabs_hyperpow_two = thm "hrabs_hyperpow_two";
paulson@14348
   347
val hyperpow_two_hrabs = thm "hyperpow_two_hrabs";
paulson@14348
   348
val hyperpow_two_gt_one = thm "hyperpow_two_gt_one";
paulson@14348
   349
val hyperpow_two_ge_one = thm "hyperpow_two_ge_one";
paulson@14348
   350
val two_hyperpow_ge_one = thm "two_hyperpow_ge_one";
paulson@14348
   351
val hyperpow_minus_one2 = thm "hyperpow_minus_one2";
paulson@14348
   352
val hyperpow_less_le = thm "hyperpow_less_le";
paulson@14348
   353
val hyperpow_SHNat_le = thm "hyperpow_SHNat_le";
paulson@14348
   354
val hyperpow_realpow = thm "hyperpow_realpow";
paulson@14348
   355
val hyperpow_SReal = thm "hyperpow_SReal";
paulson@14348
   356
val hyperpow_zero_HNatInfinite = thm "hyperpow_zero_HNatInfinite";
paulson@14348
   357
val hyperpow_le_le = thm "hyperpow_le_le";
paulson@14348
   358
val hyperpow_Suc_le_self2 = thm "hyperpow_Suc_le_self2";
paulson@14348
   359
val lemma_Infinitesimal_hyperpow = thm "lemma_Infinitesimal_hyperpow";
paulson@14348
   360
val Infinitesimal_hyperpow = thm "Infinitesimal_hyperpow";
paulson@14348
   361
val hrealpow_hyperpow_Infinitesimal_iff = thm "hrealpow_hyperpow_Infinitesimal_iff";
paulson@14348
   362
val Infinitesimal_hrealpow = thm "Infinitesimal_hrealpow";
paulson@14348
   363
*}
paulson@14348
   364
paulson@10751
   365
end