src/HOL/Relation.thy
author nipkow
Wed Aug 18 11:09:40 2004 +0200 (2004-08-18)
changeset 15140 322485b816ac
parent 15131 c69542757a4d
child 15177 e7616269fdca
permissions -rw-r--r--
import -> imports
wenzelm@10358
     1
(*  Title:      HOL/Relation.thy
nipkow@1128
     2
    ID:         $Id$
paulson@1983
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1983
     4
    Copyright   1996  University of Cambridge
nipkow@1128
     5
*)
nipkow@1128
     6
berghofe@12905
     7
header {* Relations *}
berghofe@12905
     8
nipkow@15131
     9
theory Relation
nipkow@15140
    10
imports Product_Type
nipkow@15131
    11
begin
paulson@5978
    12
wenzelm@12913
    13
subsection {* Definitions *}
wenzelm@12913
    14
paulson@5978
    15
constdefs
wenzelm@10358
    16
  converse :: "('a * 'b) set => ('b * 'a) set"    ("(_^-1)" [1000] 999)
wenzelm@10358
    17
  "r^-1 == {(y, x). (x, y) : r}"
wenzelm@10358
    18
syntax (xsymbols)
berghofe@12905
    19
  converse :: "('a * 'b) set => ('b * 'a) set"    ("(_\<inverse>)" [1000] 999)
paulson@7912
    20
wenzelm@10358
    21
constdefs
nipkow@12487
    22
  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"  (infixr "O" 60)
wenzelm@12913
    23
  "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
wenzelm@12913
    24
oheimb@11136
    25
  Image :: "[('a * 'b) set, 'a set] => 'b set"                (infixl "``" 90)
wenzelm@12913
    26
  "r `` s == {y. EX x:s. (x,y):r}"
paulson@7912
    27
berghofe@12905
    28
  Id    :: "('a * 'a) set"  -- {* the identity relation *}
wenzelm@12913
    29
  "Id == {p. EX x. p = (x,x)}"
paulson@7912
    30
berghofe@12905
    31
  diag  :: "'a set => ('a * 'a) set"  -- {* diagonal: identity over a set *}
paulson@13830
    32
  "diag A == \<Union>x\<in>A. {(x,x)}"
wenzelm@12913
    33
oheimb@11136
    34
  Domain :: "('a * 'b) set => 'a set"
wenzelm@12913
    35
  "Domain r == {x. EX y. (x,y):r}"
paulson@5978
    36
oheimb@11136
    37
  Range  :: "('a * 'b) set => 'b set"
wenzelm@12913
    38
  "Range r == Domain(r^-1)"
paulson@5978
    39
oheimb@11136
    40
  Field :: "('a * 'a) set => 'a set"
paulson@13830
    41
  "Field r == Domain r \<union> Range r"
paulson@10786
    42
berghofe@12905
    43
  refl   :: "['a set, ('a * 'a) set] => bool"  -- {* reflexivity over a set *}
wenzelm@12913
    44
  "refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
paulson@6806
    45
berghofe@12905
    46
  sym    :: "('a * 'a) set => bool"  -- {* symmetry predicate *}
wenzelm@12913
    47
  "sym r == ALL x y. (x,y): r --> (y,x): r"
paulson@6806
    48
berghofe@12905
    49
  antisym:: "('a * 'a) set => bool"  -- {* antisymmetry predicate *}
wenzelm@12913
    50
  "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
paulson@6806
    51
berghofe@12905
    52
  trans  :: "('a * 'a) set => bool"  -- {* transitivity predicate *}
wenzelm@12913
    53
  "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
paulson@5978
    54
oheimb@11136
    55
  single_valued :: "('a * 'b) set => bool"
wenzelm@12913
    56
  "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
berghofe@7014
    57
oheimb@11136
    58
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set"
wenzelm@12913
    59
  "inv_image r f == {(x, y). (f x, f y) : r}"
oheimb@11136
    60
paulson@6806
    61
syntax
berghofe@12905
    62
  reflexive :: "('a * 'a) set => bool"  -- {* reflexivity over a type *}
paulson@6806
    63
translations
paulson@6806
    64
  "reflexive" == "refl UNIV"
paulson@6806
    65
berghofe@12905
    66
wenzelm@12913
    67
subsection {* The identity relation *}
berghofe@12905
    68
berghofe@12905
    69
lemma IdI [intro]: "(a, a) : Id"
berghofe@12905
    70
  by (simp add: Id_def)
berghofe@12905
    71
berghofe@12905
    72
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
berghofe@12905
    73
  by (unfold Id_def) (rules elim: CollectE)
berghofe@12905
    74
berghofe@12905
    75
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
berghofe@12905
    76
  by (unfold Id_def) blast
berghofe@12905
    77
berghofe@12905
    78
lemma reflexive_Id: "reflexive Id"
berghofe@12905
    79
  by (simp add: refl_def)
berghofe@12905
    80
berghofe@12905
    81
lemma antisym_Id: "antisym Id"
berghofe@12905
    82
  -- {* A strange result, since @{text Id} is also symmetric. *}
berghofe@12905
    83
  by (simp add: antisym_def)
berghofe@12905
    84
berghofe@12905
    85
lemma trans_Id: "trans Id"
berghofe@12905
    86
  by (simp add: trans_def)
berghofe@12905
    87
berghofe@12905
    88
wenzelm@12913
    89
subsection {* Diagonal: identity over a set *}
berghofe@12905
    90
paulson@13812
    91
lemma diag_empty [simp]: "diag {} = {}"
paulson@13812
    92
  by (simp add: diag_def) 
paulson@13812
    93
berghofe@12905
    94
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A"
berghofe@12905
    95
  by (simp add: diag_def)
berghofe@12905
    96
berghofe@12905
    97
lemma diagI [intro!]: "a : A ==> (a, a) : diag A"
berghofe@12905
    98
  by (rule diag_eqI) (rule refl)
berghofe@12905
    99
berghofe@12905
   100
lemma diagE [elim!]:
berghofe@12905
   101
  "c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
wenzelm@12913
   102
  -- {* The general elimination rule. *}
berghofe@12905
   103
  by (unfold diag_def) (rules elim!: UN_E singletonE)
berghofe@12905
   104
berghofe@12905
   105
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)"
berghofe@12905
   106
  by blast
berghofe@12905
   107
wenzelm@12913
   108
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A"
berghofe@12905
   109
  by blast
berghofe@12905
   110
berghofe@12905
   111
berghofe@12905
   112
subsection {* Composition of two relations *}
berghofe@12905
   113
wenzelm@12913
   114
lemma rel_compI [intro]:
berghofe@12905
   115
  "(a, b) : s ==> (b, c) : r ==> (a, c) : r O s"
berghofe@12905
   116
  by (unfold rel_comp_def) blast
berghofe@12905
   117
wenzelm@12913
   118
lemma rel_compE [elim!]: "xz : r O s ==>
berghofe@12905
   119
  (!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r  ==> P) ==> P"
berghofe@12905
   120
  by (unfold rel_comp_def) (rules elim!: CollectE splitE exE conjE)
berghofe@12905
   121
berghofe@12905
   122
lemma rel_compEpair:
berghofe@12905
   123
  "(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P"
berghofe@12905
   124
  by (rules elim: rel_compE Pair_inject ssubst)
berghofe@12905
   125
berghofe@12905
   126
lemma R_O_Id [simp]: "R O Id = R"
berghofe@12905
   127
  by fast
berghofe@12905
   128
berghofe@12905
   129
lemma Id_O_R [simp]: "Id O R = R"
berghofe@12905
   130
  by fast
berghofe@12905
   131
berghofe@12905
   132
lemma O_assoc: "(R O S) O T = R O (S O T)"
berghofe@12905
   133
  by blast
berghofe@12905
   134
wenzelm@12913
   135
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
berghofe@12905
   136
  by (unfold trans_def) blast
berghofe@12905
   137
wenzelm@12913
   138
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
berghofe@12905
   139
  by blast
berghofe@12905
   140
berghofe@12905
   141
lemma rel_comp_subset_Sigma:
wenzelm@12913
   142
    "s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
berghofe@12905
   143
  by blast
berghofe@12905
   144
wenzelm@12913
   145
wenzelm@12913
   146
subsection {* Reflexivity *}
wenzelm@12913
   147
wenzelm@12913
   148
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r"
berghofe@12905
   149
  by (unfold refl_def) (rules intro!: ballI)
berghofe@12905
   150
berghofe@12905
   151
lemma reflD: "refl A r ==> a : A ==> (a, a) : r"
berghofe@12905
   152
  by (unfold refl_def) blast
berghofe@12905
   153
wenzelm@12913
   154
wenzelm@12913
   155
subsection {* Antisymmetry *}
berghofe@12905
   156
berghofe@12905
   157
lemma antisymI:
berghofe@12905
   158
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
berghofe@12905
   159
  by (unfold antisym_def) rules
berghofe@12905
   160
berghofe@12905
   161
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
berghofe@12905
   162
  by (unfold antisym_def) rules
berghofe@12905
   163
wenzelm@12913
   164
wenzelm@12913
   165
subsection {* Transitivity *}
berghofe@12905
   166
berghofe@12905
   167
lemma transI:
berghofe@12905
   168
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
berghofe@12905
   169
  by (unfold trans_def) rules
berghofe@12905
   170
berghofe@12905
   171
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
berghofe@12905
   172
  by (unfold trans_def) rules
berghofe@12905
   173
berghofe@12905
   174
wenzelm@12913
   175
subsection {* Converse *}
wenzelm@12913
   176
wenzelm@12913
   177
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
berghofe@12905
   178
  by (simp add: converse_def)
berghofe@12905
   179
nipkow@13343
   180
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
berghofe@12905
   181
  by (simp add: converse_def)
berghofe@12905
   182
nipkow@13343
   183
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
berghofe@12905
   184
  by (simp add: converse_def)
berghofe@12905
   185
berghofe@12905
   186
lemma converseE [elim!]:
berghofe@12905
   187
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
wenzelm@12913
   188
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
berghofe@12905
   189
  by (unfold converse_def) (rules elim!: CollectE splitE bexE)
berghofe@12905
   190
berghofe@12905
   191
lemma converse_converse [simp]: "(r^-1)^-1 = r"
berghofe@12905
   192
  by (unfold converse_def) blast
berghofe@12905
   193
berghofe@12905
   194
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
berghofe@12905
   195
  by blast
berghofe@12905
   196
berghofe@12905
   197
lemma converse_Id [simp]: "Id^-1 = Id"
berghofe@12905
   198
  by blast
berghofe@12905
   199
wenzelm@12913
   200
lemma converse_diag [simp]: "(diag A)^-1 = diag A"
berghofe@12905
   201
  by blast
berghofe@12905
   202
berghofe@12905
   203
lemma refl_converse: "refl A r ==> refl A (converse r)"
berghofe@12905
   204
  by (unfold refl_def) blast
berghofe@12905
   205
berghofe@12905
   206
lemma antisym_converse: "antisym (converse r) = antisym r"
berghofe@12905
   207
  by (unfold antisym_def) blast
berghofe@12905
   208
berghofe@12905
   209
lemma trans_converse: "trans (converse r) = trans r"
berghofe@12905
   210
  by (unfold trans_def) blast
berghofe@12905
   211
wenzelm@12913
   212
berghofe@12905
   213
subsection {* Domain *}
berghofe@12905
   214
berghofe@12905
   215
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
berghofe@12905
   216
  by (unfold Domain_def) blast
berghofe@12905
   217
berghofe@12905
   218
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
berghofe@12905
   219
  by (rules intro!: iffD2 [OF Domain_iff])
berghofe@12905
   220
berghofe@12905
   221
lemma DomainE [elim!]:
berghofe@12905
   222
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
berghofe@12905
   223
  by (rules dest!: iffD1 [OF Domain_iff])
berghofe@12905
   224
berghofe@12905
   225
lemma Domain_empty [simp]: "Domain {} = {}"
berghofe@12905
   226
  by blast
berghofe@12905
   227
berghofe@12905
   228
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
berghofe@12905
   229
  by blast
berghofe@12905
   230
berghofe@12905
   231
lemma Domain_Id [simp]: "Domain Id = UNIV"
berghofe@12905
   232
  by blast
berghofe@12905
   233
berghofe@12905
   234
lemma Domain_diag [simp]: "Domain (diag A) = A"
berghofe@12905
   235
  by blast
berghofe@12905
   236
paulson@13830
   237
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
berghofe@12905
   238
  by blast
berghofe@12905
   239
paulson@13830
   240
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
berghofe@12905
   241
  by blast
berghofe@12905
   242
wenzelm@12913
   243
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
berghofe@12905
   244
  by blast
berghofe@12905
   245
paulson@13830
   246
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
berghofe@12905
   247
  by blast
berghofe@12905
   248
wenzelm@12913
   249
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
berghofe@12905
   250
  by blast
berghofe@12905
   251
berghofe@12905
   252
berghofe@12905
   253
subsection {* Range *}
berghofe@12905
   254
berghofe@12905
   255
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
berghofe@12905
   256
  by (simp add: Domain_def Range_def)
berghofe@12905
   257
berghofe@12905
   258
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
berghofe@12905
   259
  by (unfold Range_def) (rules intro!: converseI DomainI)
berghofe@12905
   260
berghofe@12905
   261
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
berghofe@12905
   262
  by (unfold Range_def) (rules elim!: DomainE dest!: converseD)
berghofe@12905
   263
berghofe@12905
   264
lemma Range_empty [simp]: "Range {} = {}"
berghofe@12905
   265
  by blast
berghofe@12905
   266
berghofe@12905
   267
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
berghofe@12905
   268
  by blast
berghofe@12905
   269
berghofe@12905
   270
lemma Range_Id [simp]: "Range Id = UNIV"
berghofe@12905
   271
  by blast
berghofe@12905
   272
berghofe@12905
   273
lemma Range_diag [simp]: "Range (diag A) = A"
berghofe@12905
   274
  by auto
berghofe@12905
   275
paulson@13830
   276
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
berghofe@12905
   277
  by blast
berghofe@12905
   278
paulson@13830
   279
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
berghofe@12905
   280
  by blast
berghofe@12905
   281
wenzelm@12913
   282
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
berghofe@12905
   283
  by blast
berghofe@12905
   284
paulson@13830
   285
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
berghofe@12905
   286
  by blast
berghofe@12905
   287
berghofe@12905
   288
berghofe@12905
   289
subsection {* Image of a set under a relation *}
berghofe@12905
   290
wenzelm@12913
   291
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
berghofe@12905
   292
  by (simp add: Image_def)
berghofe@12905
   293
wenzelm@12913
   294
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
berghofe@12905
   295
  by (simp add: Image_def)
berghofe@12905
   296
wenzelm@12913
   297
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
berghofe@12905
   298
  by (rule Image_iff [THEN trans]) simp
berghofe@12905
   299
wenzelm@12913
   300
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A"
berghofe@12905
   301
  by (unfold Image_def) blast
berghofe@12905
   302
berghofe@12905
   303
lemma ImageE [elim!]:
wenzelm@12913
   304
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
berghofe@12905
   305
  by (unfold Image_def) (rules elim!: CollectE bexE)
berghofe@12905
   306
berghofe@12905
   307
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
berghofe@12905
   308
  -- {* This version's more effective when we already have the required @{text a} *}
berghofe@12905
   309
  by blast
berghofe@12905
   310
berghofe@12905
   311
lemma Image_empty [simp]: "R``{} = {}"
berghofe@12905
   312
  by blast
berghofe@12905
   313
berghofe@12905
   314
lemma Image_Id [simp]: "Id `` A = A"
berghofe@12905
   315
  by blast
berghofe@12905
   316
paulson@13830
   317
lemma Image_diag [simp]: "diag A `` B = A \<inter> B"
paulson@13830
   318
  by blast
paulson@13830
   319
paulson@13830
   320
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
berghofe@12905
   321
  by blast
berghofe@12905
   322
paulson@13830
   323
lemma Image_Int_eq:
paulson@13830
   324
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
paulson@13830
   325
  by (simp add: single_valued_def, blast) 
berghofe@12905
   326
paulson@13830
   327
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
berghofe@12905
   328
  by blast
berghofe@12905
   329
paulson@13812
   330
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
paulson@13812
   331
  by blast
paulson@13812
   332
wenzelm@12913
   333
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
berghofe@12905
   334
  by (rules intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
berghofe@12905
   335
paulson@13830
   336
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
berghofe@12905
   337
  -- {* NOT suitable for rewriting *}
berghofe@12905
   338
  by blast
berghofe@12905
   339
wenzelm@12913
   340
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
berghofe@12905
   341
  by blast
berghofe@12905
   342
paulson@13830
   343
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
paulson@13830
   344
  by blast
paulson@13830
   345
paulson@13830
   346
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
berghofe@12905
   347
  by blast
berghofe@12905
   348
paulson@13830
   349
text{*Converse inclusion requires some assumptions*}
paulson@13830
   350
lemma Image_INT_eq:
paulson@13830
   351
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
paulson@13830
   352
apply (rule equalityI)
paulson@13830
   353
 apply (rule Image_INT_subset) 
paulson@13830
   354
apply  (simp add: single_valued_def, blast)
paulson@13830
   355
done
berghofe@12905
   356
wenzelm@12913
   357
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
berghofe@12905
   358
  by blast
berghofe@12905
   359
berghofe@12905
   360
wenzelm@12913
   361
subsection {* Single valued relations *}
wenzelm@12913
   362
wenzelm@12913
   363
lemma single_valuedI:
berghofe@12905
   364
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
berghofe@12905
   365
  by (unfold single_valued_def)
berghofe@12905
   366
berghofe@12905
   367
lemma single_valuedD:
berghofe@12905
   368
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
berghofe@12905
   369
  by (simp add: single_valued_def)
berghofe@12905
   370
berghofe@12905
   371
berghofe@12905
   372
subsection {* Graphs given by @{text Collect} *}
berghofe@12905
   373
berghofe@12905
   374
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
berghofe@12905
   375
  by auto
berghofe@12905
   376
berghofe@12905
   377
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
berghofe@12905
   378
  by auto
berghofe@12905
   379
berghofe@12905
   380
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
berghofe@12905
   381
  by auto
berghofe@12905
   382
berghofe@12905
   383
wenzelm@12913
   384
subsection {* Inverse image *}
berghofe@12905
   385
wenzelm@12913
   386
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
berghofe@12905
   387
  apply (unfold trans_def inv_image_def)
berghofe@12905
   388
  apply (simp (no_asm))
berghofe@12905
   389
  apply blast
berghofe@12905
   390
  done
berghofe@12905
   391
nipkow@1128
   392
end