src/ZF/Tools/inductive_package.ML
author wenzelm
Tue, 18 Nov 2008 18:25:42 +0100
changeset 28839 32d498cf7595
parent 28678 d93980a6c3cb
child 28965 1de908189869
permissions -rw-r--r--
eliminated rewrite_tac/fold_tac, which are not well-formed tactics due to change of main conclusion; eliminated obsolete alias rewtac for rewrite_goals_tac;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
12191
2c383ee7ff16 case_names;
wenzelm
parents: 12183
diff changeset
     1
(*  Title:      ZF/Tools/inductive_package.ML
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     2
    ID:         $Id$
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     4
    Copyright   1994  University of Cambridge
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     5
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     6
Fixedpoint definition module -- for Inductive/Coinductive Definitions
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     7
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     8
The functor will be instantiated for normal sums/products (inductive defs)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
     9
                         and non-standard sums/products (coinductive defs)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    10
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    11
Sums are used only for mutual recursion;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    12
Products are used only to derive "streamlined" induction rules for relations
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    13
*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    14
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    15
type inductive_result =
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    16
   {defs       : thm list,             (*definitions made in thy*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    17
    bnd_mono   : thm,                  (*monotonicity for the lfp definition*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    18
    dom_subset : thm,                  (*inclusion of recursive set in dom*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    19
    intrs      : thm list,             (*introduction rules*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    20
    elim       : thm,                  (*case analysis theorem*)
6141
a6922171b396 removal of the (thm list) argument of mk_cases
paulson
parents: 6093
diff changeset
    21
    mk_cases   : string -> thm,        (*generates case theorems*)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    22
    induct     : thm,                  (*main induction rule*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    23
    mutual_induct : thm};              (*mutual induction rule*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    24
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    25
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    26
(*Functor's result signature*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    27
signature INDUCTIVE_PACKAGE =
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    28
sig
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    29
  (*Insert definitions for the recursive sets, which
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    30
     must *already* be declared as constants in parent theory!*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    31
  val add_inductive_i: bool -> term list * term ->
28083
103d9282a946 explicit type Name.binding for higher-specification elements;
wenzelm
parents: 27691
diff changeset
    32
    ((Name.binding * term) * attribute list) list ->
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    33
    thm list * thm list * thm list * thm list -> theory -> theory * inductive_result
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    34
  val add_inductive: string list * string ->
28083
103d9282a946 explicit type Name.binding for higher-specification elements;
wenzelm
parents: 27691
diff changeset
    35
    ((Name.binding * string) * Attrib.src list) list ->
26336
a0e2b706ce73 renamed datatype thmref to Facts.ref, tuned interfaces;
wenzelm
parents: 26287
diff changeset
    36
    (Facts.ref * Attrib.src list) list * (Facts.ref * Attrib.src list) list *
a0e2b706ce73 renamed datatype thmref to Facts.ref, tuned interfaces;
wenzelm
parents: 26287
diff changeset
    37
    (Facts.ref * Attrib.src list) list * (Facts.ref * Attrib.src list) list ->
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    38
    theory -> theory * inductive_result
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    39
end;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    40
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    41
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    42
(*Declares functions to add fixedpoint/constructor defs to a theory.
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    43
  Recursive sets must *already* be declared as constants.*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    44
functor Add_inductive_def_Fun
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    45
    (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU val coind: bool)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    46
 : INDUCTIVE_PACKAGE =
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    47
struct
12183
c10cea75dd56 adapted primrec/datatype to Isar;
wenzelm
parents: 12175
diff changeset
    48
16855
7563d0eb3414 no open Logic;
wenzelm
parents: 16457
diff changeset
    49
open Ind_Syntax;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    50
12227
c654c2c03f1d actually store "coinduct" rule;
wenzelm
parents: 12191
diff changeset
    51
val co_prefix = if coind then "co" else "";
c654c2c03f1d actually store "coinduct" rule;
wenzelm
parents: 12191
diff changeset
    52
7695
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    53
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    54
(* utils *)
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    55
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    56
(*make distinct individual variables a1, a2, a3, ..., an. *)
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    57
fun mk_frees a [] = []
12902
a23dc0b7566f Symbol.bump_string;
wenzelm
parents: 12876
diff changeset
    58
  | mk_frees a (T::Ts) = Free(a,T) :: mk_frees (Symbol.bump_string a) Ts;
7695
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    59
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    60
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    61
(* add_inductive(_i) *)
6d7f9f30e6df mk_frees, assume_read moved here;
wenzelm
parents: 7570
diff changeset
    62
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    63
(*internal version, accepting terms*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    64
fun add_inductive_i verbose (rec_tms, dom_sum)
28083
103d9282a946 explicit type Name.binding for higher-specification elements;
wenzelm
parents: 27691
diff changeset
    65
  raw_intr_specs (monos, con_defs, type_intrs, type_elims) thy =
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    66
let
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents: 25985
diff changeset
    67
  val _ = Theory.requires thy "Inductive_ZF" "(co)inductive definitions";
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
    68
  val ctxt = ProofContext.init thy;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    69
28083
103d9282a946 explicit type Name.binding for higher-specification elements;
wenzelm
parents: 27691
diff changeset
    70
  val intr_specs = map (apfst (apfst Name.name_of)) raw_intr_specs;
12191
2c383ee7ff16 case_names;
wenzelm
parents: 12183
diff changeset
    71
  val (intr_names, intr_tms) = split_list (map fst intr_specs);
2c383ee7ff16 case_names;
wenzelm
parents: 12183
diff changeset
    72
  val case_names = RuleCases.case_names intr_names;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    73
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    74
  (*recT and rec_params should agree for all mutually recursive components*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    75
  val rec_hds = map head_of rec_tms;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    76
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    77
  val dummy = assert_all is_Const rec_hds
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    78
          (fn t => "Recursive set not previously declared as constant: " ^
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
    79
                   Syntax.string_of_term ctxt t);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    80
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    81
  (*Now we know they are all Consts, so get their names, type and params*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    82
  val rec_names = map (#1 o dest_Const) rec_hds
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    83
  and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    84
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    85
  val rec_base_names = map Sign.base_name rec_names;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    86
  val dummy = assert_all Syntax.is_identifier rec_base_names
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    87
    (fn a => "Base name of recursive set not an identifier: " ^ a);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    88
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    89
  local (*Checking the introduction rules*)
20342
wenzelm
parents: 20071
diff changeset
    90
    val intr_sets = map (#2 o rule_concl_msg thy) intr_tms;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    91
    fun intr_ok set =
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    92
        case head_of set of Const(a,recT) => a mem rec_names | _ => false;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    93
  in
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    94
    val dummy =  assert_all intr_ok intr_sets
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
    95
       (fn t => "Conclusion of rule does not name a recursive set: " ^
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
    96
                Syntax.string_of_term ctxt t);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    97
  end;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    98
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
    99
  val dummy = assert_all is_Free rec_params
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   100
      (fn t => "Param in recursion term not a free variable: " ^
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   101
               Syntax.string_of_term ctxt t);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   102
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   103
  (*** Construct the fixedpoint definition ***)
20071
8f3e1ddb50e6 replaced Term.variant(list) by Name.variant(_list);
wenzelm
parents: 20046
diff changeset
   104
  val mk_variant = Name.variant (foldr add_term_names [] intr_tms);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   105
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   106
  val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   107
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   108
  fun dest_tprop (Const("Trueprop",_) $ P) = P
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   109
    | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   110
                            Syntax.string_of_term ctxt Q);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   111
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   112
  (*Makes a disjunct from an introduction rule*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   113
  fun fp_part intr = (*quantify over rule's free vars except parameters*)
16855
7563d0eb3414 no open Logic;
wenzelm
parents: 16457
diff changeset
   114
    let val prems = map dest_tprop (Logic.strip_imp_prems intr)
15570
8d8c70b41bab Move towards standard functions.
skalberg
parents: 15531
diff changeset
   115
        val dummy = List.app (fn rec_hd => List.app (chk_prem rec_hd) prems) rec_hds
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   116
        val exfrees = term_frees intr \\ rec_params
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   117
        val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr))
15574
b1d1b5bfc464 Removed practically all references to Library.foldr.
skalberg
parents: 15570
diff changeset
   118
    in foldr FOLogic.mk_exists
23419
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   119
             (BalancedTree.make FOLogic.mk_conj (zeq::prems)) exfrees
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   120
    end;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   121
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   122
  (*The Part(A,h) terms -- compose injections to make h*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   123
  fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   124
    | mk_Part h         = @{const Part} $ Free(X',iT) $ Abs(w',iT,h);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   125
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   126
  (*Access to balanced disjoint sums via injections*)
23419
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   127
  val parts = map mk_Part
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   128
    (BalancedTree.accesses {left = fn t => Su.inl $ t, right = fn t => Su.inr $ t, init = Bound 0}
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   129
      (length rec_tms));
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   130
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   131
  (*replace each set by the corresponding Part(A,h)*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   132
  val part_intrs = map (subst_free (rec_tms ~~ parts) o fp_part) intr_tms;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   133
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   134
  val fp_abs = absfree(X', iT,
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   135
                   mk_Collect(z', dom_sum,
23419
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   136
                              BalancedTree.make FOLogic.mk_disj part_intrs));
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   137
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   138
  val fp_rhs = Fp.oper $ dom_sum $ fp_abs
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   139
22567
1565d476a9e2 removed assert/deny (avoid clash with Alice keywords and confusion due to strict evaluation);
wenzelm
parents: 22101
diff changeset
   140
  val dummy = List.app (fn rec_hd => (Logic.occs (rec_hd, fp_rhs) andalso
1565d476a9e2 removed assert/deny (avoid clash with Alice keywords and confusion due to strict evaluation);
wenzelm
parents: 22101
diff changeset
   141
                             error "Illegal occurrence of recursion operator"; ()))
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   142
           rec_hds;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   143
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   144
  (*** Make the new theory ***)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   145
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   146
  (*A key definition:
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   147
    If no mutual recursion then it equals the one recursive set.
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   148
    If mutual recursion then it differs from all the recursive sets. *)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   149
  val big_rec_base_name = space_implode "_" rec_base_names;
20342
wenzelm
parents: 20071
diff changeset
   150
  val big_rec_name = Sign.intern_const thy big_rec_base_name;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   151
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   152
21962
279b129498b6 removed conditional combinator;
wenzelm
parents: 21350
diff changeset
   153
  val _ =
279b129498b6 removed conditional combinator;
wenzelm
parents: 21350
diff changeset
   154
    if verbose then
279b129498b6 removed conditional combinator;
wenzelm
parents: 21350
diff changeset
   155
      writeln ((if coind then "Coind" else "Ind") ^ "uctive definition " ^ quote big_rec_name)
279b129498b6 removed conditional combinator;
wenzelm
parents: 21350
diff changeset
   156
    else ();
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   157
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   158
  (*Big_rec... is the union of the mutually recursive sets*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   159
  val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   160
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   161
  (*The individual sets must already be declared*)
24255
d86dbde1000c PrimitiveDefs.mk_defpair;
wenzelm
parents: 23419
diff changeset
   162
  val axpairs = map PrimitiveDefs.mk_defpair
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   163
        ((big_rec_tm, fp_rhs) ::
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   164
         (case parts of
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   165
             [_] => []                        (*no mutual recursion*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   166
           | _ => rec_tms ~~          (*define the sets as Parts*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   167
                  map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   168
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   169
  (*tracing: print the fixedpoint definition*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   170
  val dummy = if !Ind_Syntax.trace then
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   171
              writeln (cat_lines (map (Syntax.string_of_term ctxt o #2) axpairs))
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   172
          else ()
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   173
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   174
  (*add definitions of the inductive sets*)
18377
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   175
  val (_, thy1) =
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   176
    thy
24712
64ed05609568 proper Sign operations instead of Theory aliases;
wenzelm
parents: 24255
diff changeset
   177
    |> Sign.add_path big_rec_base_name
27691
ce171cbd4b93 PureThy: dropped note_thmss_qualified, dropped _i suffix
haftmann
parents: 27354
diff changeset
   178
    |> PureThy.add_defs false (map Thm.no_attributes axpairs);
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   179
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   180
  val ctxt1 = ProofContext.init thy1;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   181
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   182
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   183
  (*fetch fp definitions from the theory*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   184
  val big_rec_def::part_rec_defs =
28678
d93980a6c3cb Thm.get_def;
wenzelm
parents: 28083
diff changeset
   185
    map (Thm.get_def thy1)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   186
        (case rec_names of [_] => rec_names
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   187
                         | _   => big_rec_base_name::rec_names);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   188
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   189
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   190
  (********)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   191
  val dummy = writeln "  Proving monotonicity...";
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   192
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   193
  val bnd_mono =
20342
wenzelm
parents: 20071
diff changeset
   194
    Goal.prove_global thy1 [] [] (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs))
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   195
      (fn _ => EVERY
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   196
        [rtac (@{thm Collect_subset} RS @{thm bnd_monoI}) 1,
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   197
         REPEAT (ares_tac (@{thms basic_monos} @ monos) 1)]);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   198
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   199
  val dom_subset = standard (big_rec_def RS Fp.subs);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   200
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   201
  val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   202
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   203
  (********)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   204
  val dummy = writeln "  Proving the introduction rules...";
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   205
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   206
  (*Mutual recursion?  Helps to derive subset rules for the
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   207
    individual sets.*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   208
  val Part_trans =
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   209
      case rec_names of
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   210
           [_] => asm_rl
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   211
         | _   => standard (@{thm Part_subset} RS @{thm subset_trans});
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   212
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   213
  (*To type-check recursive occurrences of the inductive sets, possibly
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   214
    enclosed in some monotonic operator M.*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   215
  val rec_typechecks =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   216
     [dom_subset] RL (asm_rl :: ([Part_trans] RL monos))
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   217
     RL [@{thm subsetD}];
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   218
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   219
  (*Type-checking is hardest aspect of proof;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   220
    disjIn selects the correct disjunct after unfolding*)
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   221
  fun intro_tacsf disjIn =
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   222
    [DETERM (stac unfold 1),
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   223
     REPEAT (resolve_tac [@{thm Part_eqI}, @{thm CollectI}] 1),
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   224
     (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   225
     rtac disjIn 2,
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   226
     (*Not ares_tac, since refl must be tried before equality assumptions;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   227
       backtracking may occur if the premises have extra variables!*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   228
     DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2),
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   229
     (*Now solve the equations like Tcons(a,f) = Inl(?b4)*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   230
     rewrite_goals_tac con_defs,
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   231
     REPEAT (rtac @{thm refl} 2),
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   232
     (*Typechecking; this can fail*)
6172
8a505e0694d0 standard spelling: type-checking
paulson
parents: 6141
diff changeset
   233
     if !Ind_Syntax.trace then print_tac "The type-checking subgoal:"
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   234
     else all_tac,
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   235
     REPEAT (FIRSTGOAL (        dresolve_tac rec_typechecks
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   236
                        ORELSE' eresolve_tac (asm_rl::@{thm PartE}::@{thm SigmaE2}::
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   237
                                              type_elims)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   238
                        ORELSE' hyp_subst_tac)),
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   239
     if !Ind_Syntax.trace then print_tac "The subgoal after monos, type_elims:"
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   240
     else all_tac,
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   241
     DEPTH_SOLVE (swap_res_tac (@{thm SigmaI}::@{thm subsetI}::type_intrs) 1)];
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   242
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   243
  (*combines disjI1 and disjI2 to get the corresponding nested disjunct...*)
23419
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   244
  val mk_disj_rls = BalancedTree.accesses
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   245
    {left = fn rl => rl RS @{thm disjI1},
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   246
     right = fn rl => rl RS @{thm disjI2},
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   247
     init = @{thm asm_rl}};
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   248
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   249
  val intrs =
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   250
    (intr_tms, map intro_tacsf (mk_disj_rls (length intr_tms)))
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   251
    |> ListPair.map (fn (t, tacs) =>
20342
wenzelm
parents: 20071
diff changeset
   252
      Goal.prove_global thy1 [] [] t
20046
9c8909fc5865 Goal.prove_global;
wenzelm
parents: 18728
diff changeset
   253
        (fn _ => EVERY (rewrite_goals_tac part_rec_defs :: tacs)))
26928
ca87aff1ad2d structure Display: less pervasive operations;
wenzelm
parents: 26712
diff changeset
   254
    handle MetaSimplifier.SIMPLIFIER (msg, thm) => (Display.print_thm thm; error msg);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   255
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   256
  (********)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   257
  val dummy = writeln "  Proving the elimination rule...";
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   258
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   259
  (*Breaks down logical connectives in the monotonic function*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   260
  val basic_elim_tac =
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   261
      REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   262
                ORELSE' bound_hyp_subst_tac))
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   263
      THEN prune_params_tac
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   264
          (*Mutual recursion: collapse references to Part(D,h)*)
28839
32d498cf7595 eliminated rewrite_tac/fold_tac, which are not well-formed tactics due to change of main conclusion;
wenzelm
parents: 28678
diff changeset
   265
      THEN (PRIMITIVE (fold_rule part_rec_defs));
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   266
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   267
  (*Elimination*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   268
  val elim = rule_by_tactic basic_elim_tac
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   269
                 (unfold RS Ind_Syntax.equals_CollectD)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   270
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   271
  (*Applies freeness of the given constructors, which *must* be unfolded by
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   272
      the given defs.  Cannot simply use the local con_defs because
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   273
      con_defs=[] for inference systems.
12175
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   274
    Proposition A should have the form t:Si where Si is an inductive set*)
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   275
  fun make_cases ss A =
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   276
    rule_by_tactic
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   277
      (basic_elim_tac THEN ALLGOALS (asm_full_simp_tac ss) THEN basic_elim_tac)
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   278
      (Thm.assume A RS elim)
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   279
      |> Drule.standard';
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   280
  fun mk_cases a = make_cases (*delayed evaluation of body!*)
27261
5b3101338f42 eliminated old Sign.read_term/Thm.read_cterm etc.;
wenzelm
parents: 26928
diff changeset
   281
    (simpset ())
5b3101338f42 eliminated old Sign.read_term/Thm.read_cterm etc.;
wenzelm
parents: 26928
diff changeset
   282
    let val thy = Thm.theory_of_thm elim in cterm_of thy (Syntax.read_prop_global thy a) end;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   283
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   284
  fun induction_rules raw_induct thy =
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   285
   let
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   286
     val dummy = writeln "  Proving the induction rule...";
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   287
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   288
     (*** Prove the main induction rule ***)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   289
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   290
     val pred_name = "P";            (*name for predicate variables*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   291
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   292
     (*Used to make induction rules;
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   293
        ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   294
        prem is a premise of an intr rule*)
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   295
     fun add_induct_prem ind_alist (prem as Const (@{const_name Trueprop}, _) $
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   296
                      (Const (@{const_name mem}, _) $ t $ X), iprems) =
17314
04e21a27c0ad introduces some modern-style AList operations
haftmann
parents: 17057
diff changeset
   297
          (case AList.lookup (op aconv) ind_alist X of
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15461
diff changeset
   298
               SOME pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15461
diff changeset
   299
             | NONE => (*possibly membership in M(rec_tm), for M monotone*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   300
                 let fun mk_sb (rec_tm,pred) =
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   301
                             (rec_tm, @{const Collect} $ rec_tm $ pred)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   302
                 in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   303
       | add_induct_prem ind_alist (prem,iprems) = prem :: iprems;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   304
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   305
     (*Make a premise of the induction rule.*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   306
     fun induct_prem ind_alist intr =
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   307
       let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
15574
b1d1b5bfc464 Removed practically all references to Library.foldr.
skalberg
parents: 15570
diff changeset
   308
           val iprems = foldr (add_induct_prem ind_alist) []
b1d1b5bfc464 Removed practically all references to Library.foldr.
skalberg
parents: 15570
diff changeset
   309
                              (Logic.strip_imp_prems intr)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   310
           val (t,X) = Ind_Syntax.rule_concl intr
17314
04e21a27c0ad introduces some modern-style AList operations
haftmann
parents: 17057
diff changeset
   311
           val (SOME pred) = AList.lookup (op aconv) ind_alist X
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   312
           val concl = FOLogic.mk_Trueprop (pred $ t)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   313
       in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   314
       handle Bind => error"Recursion term not found in conclusion";
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   315
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   316
     (*Minimizes backtracking by delivering the correct premise to each goal.
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   317
       Intro rules with extra Vars in premises still cause some backtracking *)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   318
     fun ind_tac [] 0 = all_tac
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   319
       | ind_tac(prem::prems) i =
13747
bf308fcfd08e Better treatment of equality in premises of inductive definitions. Less
paulson
parents: 13627
diff changeset
   320
             DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN ind_tac prems (i-1);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   321
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   322
     val pred = Free(pred_name, Ind_Syntax.iT --> FOLogic.oT);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   323
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   324
     val ind_prems = map (induct_prem (map (rpair pred) rec_tms))
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   325
                         intr_tms;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   326
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   327
     val dummy = if !Ind_Syntax.trace then
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   328
                 (writeln "ind_prems = ";
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   329
                  List.app (writeln o Syntax.string_of_term ctxt1) ind_prems;
26928
ca87aff1ad2d structure Display: less pervasive operations;
wenzelm
parents: 26712
diff changeset
   330
                  writeln "raw_induct = "; Display.print_thm raw_induct)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   331
             else ();
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   332
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   333
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   334
     (*We use a MINIMAL simpset. Even FOL_ss contains too many simpules.
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   335
       If the premises get simplified, then the proofs could fail.*)
17892
62c397c17d18 Simplifier.theory_context;
wenzelm
parents: 17314
diff changeset
   336
     val min_ss = Simplifier.theory_context thy empty_ss
12725
7ede865e1fe5 renamed forall_elim_vars_safe to gen_all;
wenzelm
parents: 12720
diff changeset
   337
           setmksimps (map mk_eq o ZF_atomize o gen_all)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   338
           setSolver (mk_solver "minimal"
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   339
                      (fn prems => resolve_tac (triv_rls@prems)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   340
                                   ORELSE' assume_tac
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   341
                                   ORELSE' etac FalseE));
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   342
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   343
     val quant_induct =
20342
wenzelm
parents: 20071
diff changeset
   344
       Goal.prove_global thy1 [] ind_prems
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   345
         (FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp (big_rec_tm, pred)))
26712
e2dcda7b0401 adapted to ProofContext.revert_skolem: extra Name.clean required;
wenzelm
parents: 26336
diff changeset
   346
         (fn {prems, ...} => EVERY
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   347
           [rewrite_goals_tac part_rec_defs,
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   348
            rtac (@{thm impI} RS @{thm allI}) 1,
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   349
            DETERM (etac raw_induct 1),
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   350
            (*Push Part inside Collect*)
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   351
            full_simp_tac (min_ss addsimps [@{thm Part_Collect}]) 1,
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   352
            (*This CollectE and disjE separates out the introduction rules*)
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   353
            REPEAT (FIRSTGOAL (eresolve_tac [@{thm CollectE}, @{thm disjE}])),
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   354
            (*Now break down the individual cases.  No disjE here in case
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   355
              some premise involves disjunction.*)
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   356
            REPEAT (FIRSTGOAL (eresolve_tac [@{thm CollectE}, @{thm exE}, @{thm conjE}]
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   357
                               ORELSE' bound_hyp_subst_tac)),
20046
9c8909fc5865 Goal.prove_global;
wenzelm
parents: 18728
diff changeset
   358
            ind_tac (rev (map (rewrite_rule part_rec_defs) prems)) (length prems)]);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   359
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   360
     val dummy = if !Ind_Syntax.trace then
26928
ca87aff1ad2d structure Display: less pervasive operations;
wenzelm
parents: 26712
diff changeset
   361
                 (writeln "quant_induct = "; Display.print_thm quant_induct)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   362
             else ();
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   363
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   364
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   365
     (*** Prove the simultaneous induction rule ***)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   366
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   367
     (*Make distinct predicates for each inductive set*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   368
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   369
     (*The components of the element type, several if it is a product*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   370
     val elem_type = CP.pseudo_type dom_sum;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   371
     val elem_factors = CP.factors elem_type;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   372
     val elem_frees = mk_frees "za" elem_factors;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   373
     val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   374
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   375
     (*Given a recursive set and its domain, return the "fsplit" predicate
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   376
       and a conclusion for the simultaneous induction rule.
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   377
       NOTE.  This will not work for mutually recursive predicates.  Previously
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   378
       a summand 'domt' was also an argument, but this required the domain of
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   379
       mutual recursion to invariably be a disjoint sum.*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   380
     fun mk_predpair rec_tm =
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   381
       let val rec_name = (#1 o dest_Const o head_of) rec_tm
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   382
           val pfree = Free(pred_name ^ "_" ^ Sign.base_name rec_name,
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   383
                            elem_factors ---> FOLogic.oT)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   384
           val qconcl =
15574
b1d1b5bfc464 Removed practically all references to Library.foldr.
skalberg
parents: 15570
diff changeset
   385
             foldr FOLogic.mk_all
b1d1b5bfc464 Removed practically all references to Library.foldr.
skalberg
parents: 15570
diff changeset
   386
               (FOLogic.imp $
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   387
                (@{const mem} $ elem_tuple $ rec_tm)
15574
b1d1b5bfc464 Removed practically all references to Library.foldr.
skalberg
parents: 15570
diff changeset
   388
                      $ (list_comb (pfree, elem_frees))) elem_frees
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   389
       in  (CP.ap_split elem_type FOLogic.oT pfree,
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   390
            qconcl)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   391
       end;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   392
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   393
     val (preds,qconcls) = split_list (map mk_predpair rec_tms);
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   394
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   395
     (*Used to form simultaneous induction lemma*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   396
     fun mk_rec_imp (rec_tm,pred) =
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   397
         FOLogic.imp $ (@{const mem} $ Bound 0 $ rec_tm) $
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   398
                          (pred $ Bound 0);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   399
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   400
     (*To instantiate the main induction rule*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   401
     val induct_concl =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   402
         FOLogic.mk_Trueprop
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   403
           (Ind_Syntax.mk_all_imp
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   404
            (big_rec_tm,
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   405
             Abs("z", Ind_Syntax.iT,
23419
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   406
                 BalancedTree.make FOLogic.mk_conj
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   407
                 (ListPair.map mk_rec_imp (rec_tms, preds)))))
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   408
     and mutual_induct_concl =
23419
8c30dd4b3b22 BalancedTree;
wenzelm
parents: 22675
diff changeset
   409
      FOLogic.mk_Trueprop(BalancedTree.make FOLogic.mk_conj qconcls);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   410
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   411
     val dummy = if !Ind_Syntax.trace then
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   412
                 (writeln ("induct_concl = " ^
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   413
                           Syntax.string_of_term ctxt1 induct_concl);
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   414
                  writeln ("mutual_induct_concl = " ^
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   415
                           Syntax.string_of_term ctxt1 mutual_induct_concl))
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   416
             else ();
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   417
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   418
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   419
     val lemma_tac = FIRST' [eresolve_tac [@{thm asm_rl}, @{thm conjE}, @{thm PartE}, @{thm mp}],
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   420
                             resolve_tac [@{thm allI}, @{thm impI}, @{thm conjI}, @{thm Part_eqI}],
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   421
                             dresolve_tac [@{thm spec}, @{thm mp}, Pr.fsplitD]];
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   422
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   423
     val need_mutual = length rec_names > 1;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   424
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   425
     val lemma = (*makes the link between the two induction rules*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   426
       if need_mutual then
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   427
          (writeln "  Proving the mutual induction rule...";
20342
wenzelm
parents: 20071
diff changeset
   428
           Goal.prove_global thy1 [] []
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   429
             (Logic.mk_implies (induct_concl, mutual_induct_concl))
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   430
             (fn _ => EVERY
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   431
               [rewrite_goals_tac part_rec_defs,
20046
9c8909fc5865 Goal.prove_global;
wenzelm
parents: 18728
diff changeset
   432
                REPEAT (rewrite_goals_tac [Pr.split_eq] THEN lemma_tac 1)]))
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   433
       else (writeln "  [ No mutual induction rule needed ]"; @{thm TrueI});
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   434
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   435
     val dummy = if !Ind_Syntax.trace then
26928
ca87aff1ad2d structure Display: less pervasive operations;
wenzelm
parents: 26712
diff changeset
   436
                 (writeln "lemma = "; Display.print_thm lemma)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   437
             else ();
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   438
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   439
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   440
     (*Mutual induction follows by freeness of Inl/Inr.*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   441
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   442
     (*Simplification largely reduces the mutual induction rule to the
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   443
       standard rule*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   444
     val mut_ss =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   445
         min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff];
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   446
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   447
     val all_defs = con_defs @ part_rec_defs;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   448
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   449
     (*Removes Collects caused by M-operators in the intro rules.  It is very
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   450
       hard to simplify
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   451
         list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))})
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   452
       where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   453
       Instead the following rules extract the relevant conjunct.
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   454
     *)
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   455
     val cmonos = [@{thm subset_refl} RS @{thm Collect_mono}] RL monos
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   456
                   RLN (2,[@{thm rev_subsetD}]);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   457
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   458
     (*Minimizes backtracking by delivering the correct premise to each goal*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   459
     fun mutual_ind_tac [] 0 = all_tac
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   460
       | mutual_ind_tac(prem::prems) i =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   461
           DETERM
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   462
            (SELECT_GOAL
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   463
               (
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   464
                (*Simplify the assumptions and goal by unfolding Part and
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   465
                  using freeness of the Sum constructors; proves all but one
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   466
                  conjunct by contradiction*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   467
                rewrite_goals_tac all_defs  THEN
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 24867
diff changeset
   468
                simp_tac (mut_ss addsimps [@{thm Part_iff}]) 1  THEN
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   469
                IF_UNSOLVED (*simp_tac may have finished it off!*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   470
                  ((*simplify assumptions*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   471
                   (*some risk of excessive simplification here -- might have
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   472
                     to identify the bare minimum set of rewrites*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   473
                   full_simp_tac
26287
df8e5362cff9 proper antiquotations;
wenzelm
parents: 26189
diff changeset
   474
                      (mut_ss addsimps @{thms conj_simps} @ @{thms imp_simps} @ @{thms quant_simps}) 1
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   475
                   THEN
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   476
                   (*unpackage and use "prem" in the corresponding place*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   477
                   REPEAT (rtac impI 1)  THEN
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   478
                   rtac (rewrite_rule all_defs prem) 1  THEN
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   479
                   (*prem must not be REPEATed below: could loop!*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   480
                   DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE'
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   481
                                           eresolve_tac (conjE::mp::cmonos))))
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   482
               ) i)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   483
            THEN mutual_ind_tac prems (i-1);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   484
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   485
     val mutual_induct_fsplit =
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   486
       if need_mutual then
20342
wenzelm
parents: 20071
diff changeset
   487
         Goal.prove_global thy1 [] (map (induct_prem (rec_tms~~preds)) intr_tms)
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   488
           mutual_induct_concl
26712
e2dcda7b0401 adapted to ProofContext.revert_skolem: extra Name.clean required;
wenzelm
parents: 26336
diff changeset
   489
           (fn {prems, ...} => EVERY
17985
d5d576b72371 avoid legacy goals;
wenzelm
parents: 17959
diff changeset
   490
             [rtac (quant_induct RS lemma) 1,
20046
9c8909fc5865 Goal.prove_global;
wenzelm
parents: 18728
diff changeset
   491
              mutual_ind_tac (rev prems) (length prems)])
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   492
       else TrueI;
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   493
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   494
     (** Uncurrying the predicate in the ordinary induction rule **)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   495
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   496
     (*instantiate the variable to a tuple, if it is non-trivial, in order to
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   497
       allow the predicate to be "opened up".
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   498
       The name "x.1" comes from the "RS spec" !*)
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   499
     val inst =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   500
         case elem_frees of [_] => I
20342
wenzelm
parents: 20071
diff changeset
   501
            | _ => instantiate ([], [(cterm_of thy1 (Var(("x",1), Ind_Syntax.iT)),
wenzelm
parents: 20071
diff changeset
   502
                                      cterm_of thy1 elem_tuple)]);
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   503
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   504
     (*strip quantifier and the implication*)
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   505
     val induct0 = inst (quant_induct RS spec RSN (2, @{thm rev_mp}));
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   506
26189
9808cca5c54d misc cleanup of embedded ML code;
wenzelm
parents: 26056
diff changeset
   507
     val Const (@{const_name Trueprop}, _) $ (pred_var $ _) = concl_of induct0
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   508
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   509
     val induct = CP.split_rule_var(pred_var, elem_type-->FOLogic.oT, induct0)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   510
                  |> standard
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   511
     and mutual_induct = CP.remove_split mutual_induct_fsplit
8438
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   512
18377
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   513
     val ([induct', mutual_induct'], thy') =
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   514
       thy
18643
89a7978f90e1 generic attributes;
wenzelm
parents: 18418
diff changeset
   515
       |> PureThy.add_thms [((co_prefix ^ "induct", induct),
24861
cc669ca5f382 tuned Induct interface: prefer pred'' over set'';
wenzelm
parents: 24830
diff changeset
   516
             [case_names, Induct.induct_pred big_rec_name]),
18643
89a7978f90e1 generic attributes;
wenzelm
parents: 18418
diff changeset
   517
           (("mutual_induct", mutual_induct), [case_names])];
12227
c654c2c03f1d actually store "coinduct" rule;
wenzelm
parents: 12191
diff changeset
   518
    in ((thy', induct'), mutual_induct')
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   519
    end;  (*of induction_rules*)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   520
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   521
  val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct)
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   522
12227
c654c2c03f1d actually store "coinduct" rule;
wenzelm
parents: 12191
diff changeset
   523
  val ((thy2, induct), mutual_induct) =
c654c2c03f1d actually store "coinduct" rule;
wenzelm
parents: 12191
diff changeset
   524
    if not coind then induction_rules raw_induct thy1
18377
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   525
    else
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   526
      (thy1
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   527
      |> PureThy.add_thms [((co_prefix ^ "induct", raw_induct), [])]
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   528
      |> apfst hd |> Library.swap, TrueI)
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   529
  and defs = big_rec_def :: part_rec_defs
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   530
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   531
18377
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   532
  val (([bnd_mono', dom_subset', elim'], [defs', intrs']), thy3) =
8438
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   533
    thy2
12183
c10cea75dd56 adapted primrec/datatype to Isar;
wenzelm
parents: 12175
diff changeset
   534
    |> IndCases.declare big_rec_name make_cases
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   535
    |> PureThy.add_thms
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   536
      [(("bnd_mono", bnd_mono), []),
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   537
       (("dom_subset", dom_subset), []),
24861
cc669ca5f382 tuned Induct interface: prefer pred'' over set'';
wenzelm
parents: 24830
diff changeset
   538
       (("cases", elim), [case_names, Induct.cases_pred big_rec_name])]
18377
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   539
    ||>> (PureThy.add_thmss o map Thm.no_attributes)
8438
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   540
        [("defs", defs),
12175
5cf58a1799a7 rearranged inductive package for Isar;
wenzelm
parents: 12132
diff changeset
   541
         ("intros", intrs)];
18377
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   542
  val (intrs'', thy4) =
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   543
    thy3
0e1d025d57b3 oriented result pairs in PureThy
haftmann
parents: 18358
diff changeset
   544
    |> PureThy.add_thms ((intr_names ~~ intrs') ~~ map #2 intr_specs)
24712
64ed05609568 proper Sign operations instead of Theory aliases;
wenzelm
parents: 24255
diff changeset
   545
    ||> Sign.parent_path;
8438
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   546
  in
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   547
    (thy4,
8438
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   548
      {defs = defs',
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   549
       bnd_mono = bnd_mono',
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   550
       dom_subset = dom_subset',
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   551
       intrs = intrs'',
8438
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   552
       elim = elim',
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   553
       mk_cases = mk_cases,
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   554
       induct = induct,
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   555
       mutual_induct = mutual_induct})
b8389b4fca9c adapted to new PureThy.add_thms etc.;
wenzelm
parents: 7695
diff changeset
   556
  end;
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   557
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   558
(*source version*)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   559
fun add_inductive (srec_tms, sdom_sum) intr_srcs
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   560
    (raw_monos, raw_con_defs, raw_type_intrs, raw_type_elims) thy =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   561
  let
24726
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   562
    val ctxt = ProofContext.init thy;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   563
    val read_terms = map (Syntax.parse_term ctxt #> TypeInfer.constrain Ind_Syntax.iT)
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   564
      #> Syntax.check_terms ctxt;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   565
18728
6790126ab5f6 simplified type attribute;
wenzelm
parents: 18643
diff changeset
   566
    val intr_atts = map (map (Attrib.attribute thy) o snd) intr_srcs;
17937
dfc9d3e54213 removed add_inductive_x;
wenzelm
parents: 17892
diff changeset
   567
    val sintrs = map fst intr_srcs ~~ intr_atts;
24726
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   568
    val rec_tms = read_terms srec_tms;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   569
    val dom_sum = singleton read_terms sdom_sum;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   570
    val intr_tms = Syntax.read_props ctxt (map (snd o fst) sintrs);
17937
dfc9d3e54213 removed add_inductive_x;
wenzelm
parents: 17892
diff changeset
   571
    val intr_specs = (map (fst o fst) sintrs ~~ intr_tms) ~~ map snd sintrs;
24726
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   572
    val monos = Attrib.eval_thms ctxt raw_monos;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   573
    val con_defs = Attrib.eval_thms ctxt raw_con_defs;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   574
    val type_intrs = Attrib.eval_thms ctxt raw_type_intrs;
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   575
    val type_elims = Attrib.eval_thms ctxt raw_type_elims;
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   576
  in
18418
bf448d999b7e re-arranged tuples (theory * 'a) to ('a * theory) in Pure
haftmann
parents: 18377
diff changeset
   577
    thy
24726
fcf13a91cda2 Attrib.eval_thms;
wenzelm
parents: 24712
diff changeset
   578
    |> add_inductive_i true (rec_tms, dom_sum) intr_specs (monos, con_defs, type_intrs, type_elims)
18418
bf448d999b7e re-arranged tuples (theory * 'a) to ('a * theory) in Pure
haftmann
parents: 18377
diff changeset
   579
  end;
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   580
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   581
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   582
(* outer syntax *)
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   583
17057
0934ac31985f OuterKeyword;
wenzelm
parents: 16855
diff changeset
   584
local structure P = OuterParse and K = OuterKeyword in
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   585
27354
wenzelm
parents: 27261
diff changeset
   586
val _ = List.app OuterKeyword.keyword
24867
e5b55d7be9bb simplified interfaces for outer syntax;
wenzelm
parents: 24861
diff changeset
   587
  ["domains", "intros", "monos", "con_defs", "type_intros", "type_elims"];
e5b55d7be9bb simplified interfaces for outer syntax;
wenzelm
parents: 24861
diff changeset
   588
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   589
fun mk_ind (((((doms, intrs), monos), con_defs), type_intrs), type_elims) =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   590
  #1 o add_inductive doms (map P.triple_swap intrs) (monos, con_defs, type_intrs, type_elims);
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   591
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   592
val ind_decl =
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   593
  (P.$$$ "domains" |-- P.!!! (P.enum1 "+" P.term --
25985
8d69087f6a4b avoid redundant escaping of Isabelle symbols;
wenzelm
parents: 24893
diff changeset
   594
      ((P.$$$ "\<subseteq>" || P.$$$ "<=") |-- P.term))) --
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   595
  (P.$$$ "intros" |--
22101
6d13239d5f52 moved parts of OuterParse to SpecParse;
wenzelm
parents: 21962
diff changeset
   596
    P.!!! (Scan.repeat1 (SpecParse.opt_thm_name ":" -- P.prop))) --
6d13239d5f52 moved parts of OuterParse to SpecParse;
wenzelm
parents: 21962
diff changeset
   597
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) [] --
6d13239d5f52 moved parts of OuterParse to SpecParse;
wenzelm
parents: 21962
diff changeset
   598
  Scan.optional (P.$$$ "con_defs" |-- P.!!! SpecParse.xthms1) [] --
6d13239d5f52 moved parts of OuterParse to SpecParse;
wenzelm
parents: 21962
diff changeset
   599
  Scan.optional (P.$$$ "type_intros" |-- P.!!! SpecParse.xthms1) [] --
6d13239d5f52 moved parts of OuterParse to SpecParse;
wenzelm
parents: 21962
diff changeset
   600
  Scan.optional (P.$$$ "type_elims" |-- P.!!! SpecParse.xthms1) []
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   601
  >> (Toplevel.theory o mk_ind);
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   602
24867
e5b55d7be9bb simplified interfaces for outer syntax;
wenzelm
parents: 24861
diff changeset
   603
val _ = OuterSyntax.command (co_prefix ^ "inductive")
12227
c654c2c03f1d actually store "coinduct" rule;
wenzelm
parents: 12191
diff changeset
   604
  ("define " ^ co_prefix ^ "inductive sets") K.thy_decl ind_decl;
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   605
6051
7d457fc538e7 revised inductive definition package
paulson
parents:
diff changeset
   606
end;
12132
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   607
1ef58b332ca9 support co/inductive definitions in new-style theories;
wenzelm
parents: 11680
diff changeset
   608
end;
15705
b5edb9dcec9a *** MESSAGE REFERS TO PREVIOUS VERSION ***
wenzelm
parents: 15703
diff changeset
   609