src/HOL/Nat.thy
author wenzelm
Tue Jun 10 19:15:21 2008 +0200 (2008-06-10)
changeset 27129 336807f865ce
parent 27104 791607529f6d
child 27213 2c7a628ccdcf
permissions -rw-r--r--
added nat_induct_tac (works without context);
clasohm@923
     1
(*  Title:      HOL/Nat.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@21243
     3
    Author:     Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
clasohm@923
     4
wenzelm@9436
     5
Type "nat" is a linear order, and a datatype; arithmetic operators + -
wenzelm@9436
     6
and * (for div, mod and dvd, see theory Divides).
clasohm@923
     7
*)
clasohm@923
     8
berghofe@13449
     9
header {* Natural numbers *}
berghofe@13449
    10
nipkow@15131
    11
theory Nat
haftmann@26072
    12
imports Inductive Ring_and_Field
haftmann@23263
    13
uses
haftmann@23263
    14
  "~~/src/Tools/rat.ML"
haftmann@23263
    15
  "~~/src/Provers/Arith/cancel_sums.ML"
haftmann@23263
    16
  ("arith_data.ML")
wenzelm@24091
    17
  "~~/src/Provers/Arith/fast_lin_arith.ML"
wenzelm@24091
    18
  ("Tools/lin_arith.ML")
nipkow@15131
    19
begin
berghofe@13449
    20
berghofe@13449
    21
subsection {* Type @{text ind} *}
berghofe@13449
    22
berghofe@13449
    23
typedecl ind
berghofe@13449
    24
wenzelm@19573
    25
axiomatization
wenzelm@19573
    26
  Zero_Rep :: ind and
wenzelm@19573
    27
  Suc_Rep :: "ind => ind"
wenzelm@19573
    28
where
berghofe@13449
    29
  -- {* the axiom of infinity in 2 parts *}
wenzelm@19573
    30
  inj_Suc_Rep:          "inj Suc_Rep" and
paulson@14267
    31
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
wenzelm@19573
    32
berghofe@13449
    33
berghofe@13449
    34
subsection {* Type nat *}
berghofe@13449
    35
berghofe@13449
    36
text {* Type definition *}
berghofe@13449
    37
haftmann@26072
    38
inductive Nat :: "ind \<Rightarrow> bool"
berghofe@22262
    39
where
haftmann@26072
    40
    Zero_RepI: "Nat Zero_Rep"
haftmann@26072
    41
  | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"
berghofe@13449
    42
berghofe@13449
    43
global
berghofe@13449
    44
berghofe@13449
    45
typedef (open Nat)
haftmann@27104
    46
  nat = Nat
haftmann@27104
    47
  by (rule exI, unfold mem_def, rule Nat.Zero_RepI)
berghofe@13449
    48
haftmann@26072
    49
constdefs
haftmann@27104
    50
  Suc ::   "nat => nat"
haftmann@27104
    51
  Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
berghofe@13449
    52
berghofe@13449
    53
local
berghofe@13449
    54
haftmann@25510
    55
instantiation nat :: zero
haftmann@25510
    56
begin
haftmann@25510
    57
haftmann@25510
    58
definition Zero_nat_def [code func del]:
haftmann@25510
    59
  "0 = Abs_Nat Zero_Rep"
haftmann@25510
    60
haftmann@25510
    61
instance ..
haftmann@25510
    62
haftmann@25510
    63
end
haftmann@24995
    64
haftmann@27104
    65
lemma Suc_not_Zero: "Suc m \<noteq> 0"
wenzelm@27129
    66
  apply (simp add: Zero_nat_def Suc_def Abs_Nat_inject [unfolded mem_def]
wenzelm@27129
    67
    Rep_Nat [unfolded mem_def] Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def])
wenzelm@27129
    68
  done
berghofe@13449
    69
haftmann@27104
    70
lemma Zero_not_Suc: "0 \<noteq> Suc m"
berghofe@13449
    71
  by (rule not_sym, rule Suc_not_Zero not_sym)
berghofe@13449
    72
haftmann@27104
    73
rep_datatype "0 \<Colon> nat" Suc
wenzelm@27129
    74
  apply (unfold Zero_nat_def Suc_def)
wenzelm@27129
    75
     apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
wenzelm@27129
    76
     apply (erule Rep_Nat [unfolded mem_def, THEN Nat.induct])
wenzelm@27129
    77
     apply (iprover elim: Abs_Nat_inverse [unfolded mem_def, THEN subst])
wenzelm@27129
    78
    apply (simp_all add: Abs_Nat_inject [unfolded mem_def] Rep_Nat [unfolded mem_def]
wenzelm@27129
    79
      Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def]
wenzelm@27129
    80
      Suc_Rep_not_Zero_Rep [unfolded mem_def, symmetric]
wenzelm@27129
    81
      inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject)
wenzelm@27129
    82
  done
berghofe@13449
    83
haftmann@27104
    84
lemma nat_induct [case_names 0 Suc, induct type: nat]:
haftmann@27104
    85
  -- {* for backward compatibility -- naming of variables differs *}
haftmann@27104
    86
  fixes n
haftmann@27104
    87
  assumes "P 0"
haftmann@27104
    88
    and "\<And>n. P n \<Longrightarrow> P (Suc n)"
haftmann@27104
    89
  shows "P n"
haftmann@27104
    90
  using assms by (rule nat.induct) 
haftmann@21411
    91
wenzelm@27129
    92
ML {*
wenzelm@27129
    93
  fun nat_induct_tac n = res_inst_tac [("n", n)] @{thm nat_induct}
wenzelm@27129
    94
*}
wenzelm@27129
    95
haftmann@21411
    96
declare nat.exhaust [case_names 0 Suc, cases type: nat]
berghofe@13449
    97
wenzelm@21672
    98
lemmas nat_rec_0 = nat.recs(1)
wenzelm@21672
    99
  and nat_rec_Suc = nat.recs(2)
wenzelm@21672
   100
wenzelm@21672
   101
lemmas nat_case_0 = nat.cases(1)
wenzelm@21672
   102
  and nat_case_Suc = nat.cases(2)
haftmann@27104
   103
   
haftmann@24995
   104
haftmann@24995
   105
text {* Injectiveness and distinctness lemmas *}
haftmann@24995
   106
haftmann@27104
   107
lemma inj_Suc[simp]: "inj_on Suc N"
haftmann@27104
   108
  by (simp add: inj_on_def)
haftmann@27104
   109
haftmann@26072
   110
lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R"
nipkow@25162
   111
by (rule notE, rule Suc_not_Zero)
haftmann@24995
   112
haftmann@26072
   113
lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R"
nipkow@25162
   114
by (rule Suc_neq_Zero, erule sym)
haftmann@24995
   115
haftmann@26072
   116
lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y"
nipkow@25162
   117
by (rule inj_Suc [THEN injD])
haftmann@24995
   118
paulson@14267
   119
lemma n_not_Suc_n: "n \<noteq> Suc n"
nipkow@25162
   120
by (induct n) simp_all
berghofe@13449
   121
haftmann@26072
   122
lemma Suc_n_not_n: "Suc n \<noteq> n"
nipkow@25162
   123
by (rule not_sym, rule n_not_Suc_n)
berghofe@13449
   124
berghofe@13449
   125
text {* A special form of induction for reasoning
berghofe@13449
   126
  about @{term "m < n"} and @{term "m - n"} *}
berghofe@13449
   127
haftmann@26072
   128
lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
berghofe@13449
   129
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
paulson@14208
   130
  apply (rule_tac x = m in spec)
paulson@15251
   131
  apply (induct n)
berghofe@13449
   132
  prefer 2
berghofe@13449
   133
  apply (rule allI)
nipkow@17589
   134
  apply (induct_tac x, iprover+)
berghofe@13449
   135
  done
berghofe@13449
   136
haftmann@24995
   137
haftmann@24995
   138
subsection {* Arithmetic operators *}
haftmann@24995
   139
haftmann@26072
   140
instantiation nat :: "{minus, comm_monoid_add}"
haftmann@25571
   141
begin
haftmann@24995
   142
haftmann@25571
   143
primrec plus_nat
haftmann@25571
   144
where
haftmann@25571
   145
  add_0:      "0 + n = (n\<Colon>nat)"
haftmann@25571
   146
  | add_Suc:  "Suc m + n = Suc (m + n)"
haftmann@24995
   147
haftmann@26072
   148
lemma add_0_right [simp]: "m + 0 = (m::nat)"
haftmann@26072
   149
  by (induct m) simp_all
haftmann@26072
   150
haftmann@26072
   151
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
haftmann@26072
   152
  by (induct m) simp_all
haftmann@26072
   153
haftmann@26072
   154
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
haftmann@26072
   155
  by simp
haftmann@26072
   156
haftmann@25571
   157
primrec minus_nat
haftmann@25571
   158
where
haftmann@25571
   159
  diff_0:     "m - 0 = (m\<Colon>nat)"
haftmann@25571
   160
  | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
haftmann@24995
   161
haftmann@26072
   162
declare diff_Suc [simp del, code del]
haftmann@26072
   163
haftmann@26072
   164
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
haftmann@26072
   165
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   166
haftmann@26072
   167
lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n"
haftmann@26072
   168
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   169
haftmann@26072
   170
instance proof
haftmann@26072
   171
  fix n m q :: nat
haftmann@26072
   172
  show "(n + m) + q = n + (m + q)" by (induct n) simp_all
haftmann@26072
   173
  show "n + m = m + n" by (induct n) simp_all
haftmann@26072
   174
  show "0 + n = n" by simp
haftmann@26072
   175
qed
haftmann@26072
   176
haftmann@26072
   177
end
haftmann@26072
   178
haftmann@26072
   179
instantiation nat :: comm_semiring_1_cancel
haftmann@26072
   180
begin
haftmann@26072
   181
haftmann@26072
   182
definition
haftmann@26072
   183
  One_nat_def [simp]: "1 = Suc 0"
haftmann@26072
   184
haftmann@25571
   185
primrec times_nat
haftmann@25571
   186
where
haftmann@25571
   187
  mult_0:     "0 * n = (0\<Colon>nat)"
haftmann@25571
   188
  | mult_Suc: "Suc m * n = n + (m * n)"
haftmann@25571
   189
haftmann@26072
   190
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
haftmann@26072
   191
  by (induct m) simp_all
haftmann@26072
   192
haftmann@26072
   193
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
haftmann@26072
   194
  by (induct m) (simp_all add: add_left_commute)
haftmann@26072
   195
haftmann@26072
   196
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
haftmann@26072
   197
  by (induct m) (simp_all add: add_assoc)
haftmann@26072
   198
haftmann@26072
   199
instance proof
haftmann@26072
   200
  fix n m q :: nat
haftmann@26072
   201
  show "0 \<noteq> (1::nat)" by simp
haftmann@26072
   202
  show "1 * n = n" by simp
haftmann@26072
   203
  show "n * m = m * n" by (induct n) simp_all
haftmann@26072
   204
  show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib)
haftmann@26072
   205
  show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib)
haftmann@26072
   206
  assume "n + m = n + q" thus "m = q" by (induct n) simp_all
haftmann@26072
   207
qed
haftmann@25571
   208
haftmann@25571
   209
end
haftmann@24995
   210
haftmann@26072
   211
subsubsection {* Addition *}
haftmann@26072
   212
haftmann@26072
   213
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
haftmann@26072
   214
  by (rule add_assoc)
haftmann@26072
   215
haftmann@26072
   216
lemma nat_add_commute: "m + n = n + (m::nat)"
haftmann@26072
   217
  by (rule add_commute)
haftmann@26072
   218
haftmann@26072
   219
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
haftmann@26072
   220
  by (rule add_left_commute)
haftmann@26072
   221
haftmann@26072
   222
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
haftmann@26072
   223
  by (rule add_left_cancel)
haftmann@26072
   224
haftmann@26072
   225
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
haftmann@26072
   226
  by (rule add_right_cancel)
haftmann@26072
   227
haftmann@26072
   228
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
haftmann@26072
   229
haftmann@26072
   230
lemma add_is_0 [iff]:
haftmann@26072
   231
  fixes m n :: nat
haftmann@26072
   232
  shows "(m + n = 0) = (m = 0 & n = 0)"
haftmann@26072
   233
  by (cases m) simp_all
haftmann@26072
   234
haftmann@26072
   235
lemma add_is_1:
haftmann@26072
   236
  "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
haftmann@26072
   237
  by (cases m) simp_all
haftmann@26072
   238
haftmann@26072
   239
lemma one_is_add:
haftmann@26072
   240
  "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
haftmann@26072
   241
  by (rule trans, rule eq_commute, rule add_is_1)
haftmann@26072
   242
haftmann@26072
   243
lemma add_eq_self_zero:
haftmann@26072
   244
  fixes m n :: nat
haftmann@26072
   245
  shows "m + n = m \<Longrightarrow> n = 0"
haftmann@26072
   246
  by (induct m) simp_all
haftmann@26072
   247
haftmann@26072
   248
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
haftmann@26072
   249
  apply (induct k)
haftmann@26072
   250
   apply simp
haftmann@26072
   251
  apply(drule comp_inj_on[OF _ inj_Suc])
haftmann@26072
   252
  apply (simp add:o_def)
haftmann@26072
   253
  done
haftmann@26072
   254
haftmann@26072
   255
haftmann@26072
   256
subsubsection {* Difference *}
haftmann@26072
   257
haftmann@26072
   258
lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0"
haftmann@26072
   259
  by (induct m) simp_all
haftmann@26072
   260
haftmann@26072
   261
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
haftmann@26072
   262
  by (induct i j rule: diff_induct) simp_all
haftmann@26072
   263
haftmann@26072
   264
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
haftmann@26072
   265
  by (simp add: diff_diff_left)
haftmann@26072
   266
haftmann@26072
   267
lemma diff_commute: "(i::nat) - j - k = i - k - j"
haftmann@26072
   268
  by (simp add: diff_diff_left add_commute)
haftmann@26072
   269
haftmann@26072
   270
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
haftmann@26072
   271
  by (induct n) simp_all
haftmann@26072
   272
haftmann@26072
   273
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
haftmann@26072
   274
  by (simp add: diff_add_inverse add_commute [of m n])
haftmann@26072
   275
haftmann@26072
   276
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
haftmann@26072
   277
  by (induct k) simp_all
haftmann@26072
   278
haftmann@26072
   279
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
haftmann@26072
   280
  by (simp add: diff_cancel add_commute)
haftmann@26072
   281
haftmann@26072
   282
lemma diff_add_0: "n - (n + m) = (0::nat)"
haftmann@26072
   283
  by (induct n) simp_all
haftmann@26072
   284
haftmann@26072
   285
text {* Difference distributes over multiplication *}
haftmann@26072
   286
haftmann@26072
   287
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
haftmann@26072
   288
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
haftmann@26072
   289
haftmann@26072
   290
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
haftmann@26072
   291
by (simp add: diff_mult_distrib mult_commute [of k])
haftmann@26072
   292
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
haftmann@26072
   293
haftmann@26072
   294
haftmann@26072
   295
subsubsection {* Multiplication *}
haftmann@26072
   296
haftmann@26072
   297
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
haftmann@26072
   298
  by (rule mult_assoc)
haftmann@26072
   299
haftmann@26072
   300
lemma nat_mult_commute: "m * n = n * (m::nat)"
haftmann@26072
   301
  by (rule mult_commute)
haftmann@26072
   302
haftmann@26072
   303
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
haftmann@26072
   304
  by (rule right_distrib)
haftmann@26072
   305
haftmann@26072
   306
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
haftmann@26072
   307
  by (induct m) auto
haftmann@26072
   308
haftmann@26072
   309
lemmas nat_distrib =
haftmann@26072
   310
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
haftmann@26072
   311
haftmann@26072
   312
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
haftmann@26072
   313
  apply (induct m)
haftmann@26072
   314
   apply simp
haftmann@26072
   315
  apply (induct n)
haftmann@26072
   316
   apply auto
haftmann@26072
   317
  done
haftmann@26072
   318
haftmann@26072
   319
lemma one_eq_mult_iff [simp,noatp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
haftmann@26072
   320
  apply (rule trans)
haftmann@26072
   321
  apply (rule_tac [2] mult_eq_1_iff, fastsimp)
haftmann@26072
   322
  done
haftmann@26072
   323
haftmann@26072
   324
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
haftmann@26072
   325
proof -
haftmann@26072
   326
  have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n"
haftmann@26072
   327
  proof (induct n arbitrary: m)
haftmann@26072
   328
    case 0 then show "m = 0" by simp
haftmann@26072
   329
  next
haftmann@26072
   330
    case (Suc n) then show "m = Suc n"
haftmann@26072
   331
      by (cases m) (simp_all add: eq_commute [of "0"])
haftmann@26072
   332
  qed
haftmann@26072
   333
  then show ?thesis by auto
haftmann@26072
   334
qed
haftmann@26072
   335
haftmann@26072
   336
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
haftmann@26072
   337
  by (simp add: mult_commute)
haftmann@26072
   338
haftmann@26072
   339
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
haftmann@26072
   340
  by (subst mult_cancel1) simp
haftmann@26072
   341
haftmann@24995
   342
haftmann@24995
   343
subsection {* Orders on @{typ nat} *}
haftmann@24995
   344
haftmann@26072
   345
subsubsection {* Operation definition *}
haftmann@24995
   346
haftmann@26072
   347
instantiation nat :: linorder
haftmann@25510
   348
begin
haftmann@25510
   349
haftmann@26072
   350
primrec less_eq_nat where
haftmann@26072
   351
  "(0\<Colon>nat) \<le> n \<longleftrightarrow> True"
haftmann@26072
   352
  | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"
haftmann@26072
   353
haftmann@26072
   354
declare less_eq_nat.simps [simp del, code del]
haftmann@26072
   355
lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps)
haftmann@26072
   356
lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps)
haftmann@26072
   357
haftmann@26072
   358
definition less_nat where
haftmann@26072
   359
  less_eq_Suc_le [code func del]: "n < m \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   360
haftmann@26072
   361
lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m"
haftmann@26072
   362
  by (simp add: less_eq_nat.simps(2))
haftmann@26072
   363
haftmann@26072
   364
lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n"
haftmann@26072
   365
  unfolding less_eq_Suc_le ..
haftmann@26072
   366
haftmann@26072
   367
lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0"
haftmann@26072
   368
  by (induct n) (simp_all add: less_eq_nat.simps(2))
haftmann@26072
   369
haftmann@26072
   370
lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)"
haftmann@26072
   371
  by (simp add: less_eq_Suc_le)
haftmann@26072
   372
haftmann@26072
   373
lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False"
haftmann@26072
   374
  by simp
haftmann@26072
   375
haftmann@26072
   376
lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n"
haftmann@26072
   377
  by (simp add: less_eq_Suc_le)
haftmann@26072
   378
haftmann@26072
   379
lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n"
haftmann@26072
   380
  by (simp add: less_eq_Suc_le)
haftmann@26072
   381
haftmann@26072
   382
lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n"
haftmann@26072
   383
  by (induct m arbitrary: n)
haftmann@26072
   384
    (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   385
haftmann@26072
   386
lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n"
haftmann@26072
   387
  by (cases n) (auto intro: le_SucI)
haftmann@26072
   388
haftmann@26072
   389
lemma less_SucI: "m < n \<Longrightarrow> m < Suc n"
haftmann@26072
   390
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@24995
   391
haftmann@26072
   392
lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n"
haftmann@26072
   393
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@25510
   394
wenzelm@26315
   395
instance
wenzelm@26315
   396
proof
haftmann@26072
   397
  fix n m :: nat
haftmann@26072
   398
  have less_imp_le: "n < m \<Longrightarrow> n \<le> m"
haftmann@26072
   399
    unfolding less_eq_Suc_le by (erule Suc_leD)
haftmann@26072
   400
  have irrefl: "\<not> m < m" by (induct m) auto
haftmann@26072
   401
  have strict: "n \<le> m \<Longrightarrow> n \<noteq> m \<Longrightarrow> n < m"
haftmann@26072
   402
  proof (induct n arbitrary: m)
haftmann@26072
   403
    case 0 then show ?case
haftmann@26072
   404
      by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   405
  next
haftmann@26072
   406
    case (Suc n) then show ?case
haftmann@26072
   407
      by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   408
  qed
haftmann@26072
   409
  show "n < m \<longleftrightarrow> n \<le> m \<and> n \<noteq> m"
haftmann@26072
   410
    by (auto simp add: irrefl intro: less_imp_le strict)
haftmann@26072
   411
next
haftmann@26072
   412
  fix n :: nat show "n \<le> n" by (induct n) simp_all
haftmann@26072
   413
next
haftmann@26072
   414
  fix n m :: nat assume "n \<le> m" and "m \<le> n"
haftmann@26072
   415
  then show "n = m"
haftmann@26072
   416
    by (induct n arbitrary: m)
haftmann@26072
   417
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   418
next
haftmann@26072
   419
  fix n m q :: nat assume "n \<le> m" and "m \<le> q"
haftmann@26072
   420
  then show "n \<le> q"
haftmann@26072
   421
  proof (induct n arbitrary: m q)
haftmann@26072
   422
    case 0 show ?case by simp
haftmann@26072
   423
  next
haftmann@26072
   424
    case (Suc n) then show ?case
haftmann@26072
   425
      by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   426
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   427
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   428
  qed
haftmann@26072
   429
next
haftmann@26072
   430
  fix n m :: nat show "n \<le> m \<or> m \<le> n"
haftmann@26072
   431
    by (induct n arbitrary: m)
haftmann@26072
   432
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   433
qed
haftmann@25510
   434
haftmann@25510
   435
end
berghofe@13449
   436
haftmann@26072
   437
subsubsection {* Introduction properties *}
berghofe@13449
   438
haftmann@26072
   439
lemma lessI [iff]: "n < Suc n"
haftmann@26072
   440
  by (simp add: less_Suc_eq_le)
berghofe@13449
   441
haftmann@26072
   442
lemma zero_less_Suc [iff]: "0 < Suc n"
haftmann@26072
   443
  by (simp add: less_Suc_eq_le)
berghofe@13449
   444
berghofe@13449
   445
berghofe@13449
   446
subsubsection {* Elimination properties *}
berghofe@13449
   447
berghofe@13449
   448
lemma less_not_refl: "~ n < (n::nat)"
haftmann@26072
   449
  by (rule order_less_irrefl)
berghofe@13449
   450
wenzelm@26335
   451
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)"
wenzelm@26335
   452
  by (rule not_sym) (rule less_imp_neq) 
berghofe@13449
   453
paulson@14267
   454
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
haftmann@26072
   455
  by (rule less_imp_neq)
berghofe@13449
   456
wenzelm@26335
   457
lemma less_irrefl_nat: "(n::nat) < n ==> R"
wenzelm@26335
   458
  by (rule notE, rule less_not_refl)
berghofe@13449
   459
berghofe@13449
   460
lemma less_zeroE: "(n::nat) < 0 ==> R"
haftmann@26072
   461
  by (rule notE) (rule not_less0)
berghofe@13449
   462
berghofe@13449
   463
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
haftmann@26072
   464
  unfolding less_Suc_eq_le le_less ..
berghofe@13449
   465
haftmann@26072
   466
lemma less_one [iff, noatp]: "(n < (1::nat)) = (n = 0)"
haftmann@26072
   467
  by (simp add: less_Suc_eq)
berghofe@13449
   468
berghofe@13449
   469
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
haftmann@26072
   470
  by (simp add: less_Suc_eq)
berghofe@13449
   471
berghofe@13449
   472
lemma Suc_mono: "m < n ==> Suc m < Suc n"
haftmann@26072
   473
  by simp
berghofe@13449
   474
nipkow@14302
   475
text {* "Less than" is antisymmetric, sort of *}
nipkow@14302
   476
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
haftmann@26072
   477
  unfolding not_less less_Suc_eq_le by (rule antisym)
nipkow@14302
   478
paulson@14267
   479
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
haftmann@26072
   480
  by (rule linorder_neq_iff)
berghofe@13449
   481
berghofe@13449
   482
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
berghofe@13449
   483
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
berghofe@13449
   484
  shows "P n m"
berghofe@13449
   485
  apply (rule less_linear [THEN disjE])
berghofe@13449
   486
  apply (erule_tac [2] disjE)
berghofe@13449
   487
  apply (erule lessCase)
berghofe@13449
   488
  apply (erule sym [THEN eqCase])
berghofe@13449
   489
  apply (erule major)
berghofe@13449
   490
  done
berghofe@13449
   491
berghofe@13449
   492
berghofe@13449
   493
subsubsection {* Inductive (?) properties *}
berghofe@13449
   494
paulson@14267
   495
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
haftmann@26072
   496
  unfolding less_eq_Suc_le [of m] le_less by simp 
berghofe@13449
   497
haftmann@26072
   498
lemma lessE:
haftmann@26072
   499
  assumes major: "i < k"
haftmann@26072
   500
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
haftmann@26072
   501
  shows P
haftmann@26072
   502
proof -
haftmann@26072
   503
  from major have "\<exists>j. i \<le> j \<and> k = Suc j"
haftmann@26072
   504
    unfolding less_eq_Suc_le by (induct k) simp_all
haftmann@26072
   505
  then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i"
haftmann@26072
   506
    by (clarsimp simp add: less_le)
haftmann@26072
   507
  with p1 p2 show P by auto
haftmann@26072
   508
qed
haftmann@26072
   509
haftmann@26072
   510
lemma less_SucE: assumes major: "m < Suc n"
haftmann@26072
   511
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
haftmann@26072
   512
  apply (rule major [THEN lessE])
haftmann@26072
   513
  apply (rule eq, blast)
haftmann@26072
   514
  apply (rule less, blast)
berghofe@13449
   515
  done
berghofe@13449
   516
berghofe@13449
   517
lemma Suc_lessE: assumes major: "Suc i < k"
berghofe@13449
   518
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
berghofe@13449
   519
  apply (rule major [THEN lessE])
berghofe@13449
   520
  apply (erule lessI [THEN minor])
paulson@14208
   521
  apply (erule Suc_lessD [THEN minor], assumption)
berghofe@13449
   522
  done
berghofe@13449
   523
berghofe@13449
   524
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
haftmann@26072
   525
  by simp
berghofe@13449
   526
berghofe@13449
   527
lemma less_trans_Suc:
berghofe@13449
   528
  assumes le: "i < j" shows "j < k ==> Suc i < k"
paulson@14208
   529
  apply (induct k, simp_all)
berghofe@13449
   530
  apply (insert le)
berghofe@13449
   531
  apply (simp add: less_Suc_eq)
berghofe@13449
   532
  apply (blast dest: Suc_lessD)
berghofe@13449
   533
  done
berghofe@13449
   534
berghofe@13449
   535
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
haftmann@26072
   536
lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
haftmann@26072
   537
  unfolding not_less less_Suc_eq_le ..
berghofe@13449
   538
haftmann@26072
   539
lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   540
  unfolding not_le Suc_le_eq ..
wenzelm@21243
   541
haftmann@24995
   542
text {* Properties of "less than or equal" *}
berghofe@13449
   543
paulson@14267
   544
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
haftmann@26072
   545
  unfolding less_Suc_eq_le .
berghofe@13449
   546
paulson@14267
   547
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
haftmann@26072
   548
  unfolding not_le less_Suc_eq_le ..
berghofe@13449
   549
paulson@14267
   550
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
haftmann@26072
   551
  by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)
berghofe@13449
   552
paulson@14267
   553
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
haftmann@26072
   554
  by (drule le_Suc_eq [THEN iffD1], iprover+)
berghofe@13449
   555
paulson@14267
   556
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
haftmann@26072
   557
  unfolding Suc_le_eq .
berghofe@13449
   558
berghofe@13449
   559
text {* Stronger version of @{text Suc_leD} *}
paulson@14267
   560
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
haftmann@26072
   561
  unfolding Suc_le_eq .
berghofe@13449
   562
wenzelm@26315
   563
lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)"
haftmann@26072
   564
  unfolding less_eq_Suc_le by (rule Suc_leD)
berghofe@13449
   565
paulson@14267
   566
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
wenzelm@26315
   567
lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq
berghofe@13449
   568
berghofe@13449
   569
paulson@14267
   570
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
berghofe@13449
   571
paulson@14267
   572
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
haftmann@26072
   573
  unfolding le_less .
berghofe@13449
   574
paulson@14267
   575
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
haftmann@26072
   576
  by (rule le_less)
berghofe@13449
   577
wenzelm@22718
   578
text {* Useful with @{text blast}. *}
paulson@14267
   579
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
haftmann@26072
   580
  by auto
berghofe@13449
   581
paulson@14267
   582
lemma le_refl: "n \<le> (n::nat)"
haftmann@26072
   583
  by simp
berghofe@13449
   584
paulson@14267
   585
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
haftmann@26072
   586
  by (rule order_trans)
berghofe@13449
   587
paulson@14267
   588
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
haftmann@26072
   589
  by (rule antisym)
berghofe@13449
   590
paulson@14267
   591
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
haftmann@26072
   592
  by (rule less_le)
berghofe@13449
   593
paulson@14267
   594
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
haftmann@26072
   595
  unfolding less_le ..
berghofe@13449
   596
haftmann@26072
   597
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
haftmann@26072
   598
  by (rule linear)
paulson@14341
   599
wenzelm@22718
   600
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
nipkow@15921
   601
haftmann@26072
   602
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
haftmann@26072
   603
  unfolding less_Suc_eq_le by auto
berghofe@13449
   604
haftmann@26072
   605
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
haftmann@26072
   606
  unfolding not_less by (rule le_less_Suc_eq)
berghofe@13449
   607
berghofe@13449
   608
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
berghofe@13449
   609
wenzelm@22718
   610
text {* These two rules ease the use of primitive recursion.
paulson@14341
   611
NOTE USE OF @{text "=="} *}
berghofe@13449
   612
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
nipkow@25162
   613
by simp
berghofe@13449
   614
berghofe@13449
   615
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
nipkow@25162
   616
by simp
berghofe@13449
   617
paulson@14267
   618
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   619
by (cases n) simp_all
nipkow@25162
   620
nipkow@25162
   621
lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   622
by (cases n) simp_all
berghofe@13449
   623
wenzelm@22718
   624
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"
nipkow@25162
   625
by (cases n) simp_all
berghofe@13449
   626
nipkow@25162
   627
lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"
nipkow@25162
   628
by (cases n) simp_all
nipkow@25140
   629
berghofe@13449
   630
text {* This theorem is useful with @{text blast} *}
berghofe@13449
   631
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
nipkow@25162
   632
by (rule neq0_conv[THEN iffD1], iprover)
berghofe@13449
   633
paulson@14267
   634
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
nipkow@25162
   635
by (fast intro: not0_implies_Suc)
berghofe@13449
   636
paulson@24286
   637
lemma not_gr0 [iff,noatp]: "!!n::nat. (~ (0 < n)) = (n = 0)"
nipkow@25134
   638
using neq0_conv by blast
berghofe@13449
   639
paulson@14267
   640
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
nipkow@25162
   641
by (induct m') simp_all
berghofe@13449
   642
berghofe@13449
   643
text {* Useful in certain inductive arguments *}
paulson@14267
   644
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
nipkow@25162
   645
by (cases m) simp_all
berghofe@13449
   646
berghofe@13449
   647
haftmann@26072
   648
subsubsection {* @{term min} and @{term max} *}
berghofe@13449
   649
haftmann@25076
   650
lemma mono_Suc: "mono Suc"
nipkow@25162
   651
by (rule monoI) simp
haftmann@25076
   652
berghofe@13449
   653
lemma min_0L [simp]: "min 0 n = (0::nat)"
nipkow@25162
   654
by (rule min_leastL) simp
berghofe@13449
   655
berghofe@13449
   656
lemma min_0R [simp]: "min n 0 = (0::nat)"
nipkow@25162
   657
by (rule min_leastR) simp
berghofe@13449
   658
berghofe@13449
   659
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
nipkow@25162
   660
by (simp add: mono_Suc min_of_mono)
berghofe@13449
   661
paulson@22191
   662
lemma min_Suc1:
paulson@22191
   663
   "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"
nipkow@25162
   664
by (simp split: nat.split)
paulson@22191
   665
paulson@22191
   666
lemma min_Suc2:
paulson@22191
   667
   "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"
nipkow@25162
   668
by (simp split: nat.split)
paulson@22191
   669
berghofe@13449
   670
lemma max_0L [simp]: "max 0 n = (n::nat)"
nipkow@25162
   671
by (rule max_leastL) simp
berghofe@13449
   672
berghofe@13449
   673
lemma max_0R [simp]: "max n 0 = (n::nat)"
nipkow@25162
   674
by (rule max_leastR) simp
berghofe@13449
   675
berghofe@13449
   676
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
nipkow@25162
   677
by (simp add: mono_Suc max_of_mono)
berghofe@13449
   678
paulson@22191
   679
lemma max_Suc1:
paulson@22191
   680
   "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"
nipkow@25162
   681
by (simp split: nat.split)
paulson@22191
   682
paulson@22191
   683
lemma max_Suc2:
paulson@22191
   684
   "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"
nipkow@25162
   685
by (simp split: nat.split)
paulson@22191
   686
berghofe@13449
   687
haftmann@26072
   688
subsubsection {* Monotonicity of Addition *}
berghofe@13449
   689
haftmann@26072
   690
lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n"
haftmann@26072
   691
by (simp add: diff_Suc split: nat.split)
berghofe@13449
   692
paulson@14331
   693
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
nipkow@25162
   694
by (induct k) simp_all
berghofe@13449
   695
paulson@14331
   696
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
nipkow@25162
   697
by (induct k) simp_all
berghofe@13449
   698
nipkow@25162
   699
lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)"
nipkow@25162
   700
by(auto dest:gr0_implies_Suc)
berghofe@13449
   701
paulson@14341
   702
text {* strict, in 1st argument *}
paulson@14341
   703
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
nipkow@25162
   704
by (induct k) simp_all
paulson@14341
   705
paulson@14341
   706
text {* strict, in both arguments *}
paulson@14341
   707
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
paulson@14341
   708
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
paulson@15251
   709
  apply (induct j, simp_all)
paulson@14341
   710
  done
paulson@14341
   711
paulson@14341
   712
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
paulson@14341
   713
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
paulson@14341
   714
  apply (induct n)
paulson@14341
   715
  apply (simp_all add: order_le_less)
wenzelm@22718
   716
  apply (blast elim!: less_SucE
paulson@14341
   717
               intro!: add_0_right [symmetric] add_Suc_right [symmetric])
paulson@14341
   718
  done
paulson@14341
   719
paulson@14341
   720
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
nipkow@25134
   721
lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j"
nipkow@25134
   722
apply(auto simp: gr0_conv_Suc)
nipkow@25134
   723
apply (induct_tac m)
nipkow@25134
   724
apply (simp_all add: add_less_mono)
nipkow@25134
   725
done
paulson@14341
   726
nipkow@14740
   727
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
obua@14738
   728
instance nat :: ordered_semidom
paulson@14341
   729
proof
paulson@14341
   730
  fix i j k :: nat
paulson@14348
   731
  show "0 < (1::nat)" by simp
paulson@14267
   732
  show "i \<le> j ==> k + i \<le> k + j" by simp
paulson@14267
   733
  show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
paulson@14267
   734
qed
paulson@14267
   735
paulson@14267
   736
lemma nat_mult_1: "(1::nat) * n = n"
nipkow@25162
   737
by simp
paulson@14267
   738
paulson@14267
   739
lemma nat_mult_1_right: "n * (1::nat) = n"
nipkow@25162
   740
by simp
paulson@14267
   741
paulson@14267
   742
krauss@26748
   743
subsubsection {* Additional theorems about @{term "op \<le>"} *}
krauss@26748
   744
krauss@26748
   745
text {* Complete induction, aka course-of-values induction *}
krauss@26748
   746
krauss@26748
   747
lemma less_induct [case_names less]:
krauss@26748
   748
  fixes P :: "nat \<Rightarrow> bool"
krauss@26748
   749
  assumes step: "\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x"
krauss@26748
   750
  shows "P a"
krauss@26748
   751
proof - 
krauss@26748
   752
  have "\<And>z. z\<le>a \<Longrightarrow> P z"
krauss@26748
   753
  proof (induct a)
krauss@26748
   754
    case (0 z)
krauss@26748
   755
    have "P 0" by (rule step) auto
krauss@26748
   756
    thus ?case using 0 by auto
krauss@26748
   757
  next
krauss@26748
   758
    case (Suc x z)
krauss@26748
   759
    then have "z \<le> x \<or> z = Suc x" by (simp add: le_Suc_eq)
krauss@26748
   760
    thus ?case
krauss@26748
   761
    proof
krauss@26748
   762
      assume "z \<le> x" thus "P z" by (rule Suc(1))
krauss@26748
   763
    next
krauss@26748
   764
      assume z: "z = Suc x"
krauss@26748
   765
      show "P z"
krauss@26748
   766
        by (rule step) (rule Suc(1), simp add: z le_simps)
krauss@26748
   767
    qed
krauss@26748
   768
  qed
krauss@26748
   769
  thus ?thesis by auto
krauss@26748
   770
qed
krauss@26748
   771
krauss@26748
   772
lemma nat_less_induct:
krauss@26748
   773
  assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
krauss@26748
   774
  using assms less_induct by blast
krauss@26748
   775
krauss@26748
   776
lemma measure_induct_rule [case_names less]:
krauss@26748
   777
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   778
  assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
krauss@26748
   779
  shows "P a"
krauss@26748
   780
by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step)
krauss@26748
   781
krauss@26748
   782
text {* old style induction rules: *}
krauss@26748
   783
lemma measure_induct:
krauss@26748
   784
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   785
  shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
krauss@26748
   786
  by (rule measure_induct_rule [of f P a]) iprover
krauss@26748
   787
krauss@26748
   788
lemma full_nat_induct:
krauss@26748
   789
  assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
krauss@26748
   790
  shows "P n"
krauss@26748
   791
  by (rule less_induct) (auto intro: step simp:le_simps)
paulson@14267
   792
paulson@19870
   793
text{*An induction rule for estabilishing binary relations*}
wenzelm@22718
   794
lemma less_Suc_induct:
paulson@19870
   795
  assumes less:  "i < j"
paulson@19870
   796
     and  step:  "!!i. P i (Suc i)"
paulson@19870
   797
     and  trans: "!!i j k. P i j ==> P j k ==> P i k"
paulson@19870
   798
  shows "P i j"
paulson@19870
   799
proof -
wenzelm@22718
   800
  from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add)
wenzelm@22718
   801
  have "P i (Suc (i + k))"
paulson@19870
   802
  proof (induct k)
wenzelm@22718
   803
    case 0
wenzelm@22718
   804
    show ?case by (simp add: step)
paulson@19870
   805
  next
paulson@19870
   806
    case (Suc k)
wenzelm@22718
   807
    thus ?case by (auto intro: assms)
paulson@19870
   808
  qed
wenzelm@22718
   809
  thus "P i j" by (simp add: j)
paulson@19870
   810
qed
paulson@19870
   811
krauss@26748
   812
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
krauss@26748
   813
  apply (rule nat_less_induct)
krauss@26748
   814
  apply (case_tac n)
krauss@26748
   815
  apply (case_tac [2] nat)
krauss@26748
   816
  apply (blast intro: less_trans)+
krauss@26748
   817
  done
krauss@26748
   818
krauss@26748
   819
text {* The method of infinite descent, frequently used in number theory.
krauss@26748
   820
Provided by Roelof Oosterhuis.
krauss@26748
   821
$P(n)$ is true for all $n\in\mathbb{N}$ if
krauss@26748
   822
\begin{itemize}
krauss@26748
   823
  \item case ``0'': given $n=0$ prove $P(n)$,
krauss@26748
   824
  \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists
krauss@26748
   825
        a smaller integer $m$ such that $\neg P(m)$.
krauss@26748
   826
\end{itemize} *}
krauss@26748
   827
krauss@26748
   828
text{* A compact version without explicit base case: *}
krauss@26748
   829
lemma infinite_descent:
krauss@26748
   830
  "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow>  \<exists>m<n. \<not>  P m \<rbrakk> \<Longrightarrow>  P n"
krauss@26748
   831
by (induct n rule: less_induct, auto)
krauss@26748
   832
krauss@26748
   833
lemma infinite_descent0[case_names 0 smaller]: 
krauss@26748
   834
  "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n"
krauss@26748
   835
by (rule infinite_descent) (case_tac "n>0", auto)
krauss@26748
   836
krauss@26748
   837
text {*
krauss@26748
   838
Infinite descent using a mapping to $\mathbb{N}$:
krauss@26748
   839
$P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
krauss@26748
   840
\begin{itemize}
krauss@26748
   841
\item case ``0'': given $V(x)=0$ prove $P(x)$,
krauss@26748
   842
\item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$.
krauss@26748
   843
\end{itemize}
krauss@26748
   844
NB: the proof also shows how to use the previous lemma. *}
krauss@26748
   845
krauss@26748
   846
corollary infinite_descent0_measure [case_names 0 smaller]:
krauss@26748
   847
  assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x"
krauss@26748
   848
    and   A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)"
krauss@26748
   849
  shows "P x"
krauss@26748
   850
proof -
krauss@26748
   851
  obtain n where "n = V x" by auto
krauss@26748
   852
  moreover have "\<And>x. V x = n \<Longrightarrow> P x"
krauss@26748
   853
  proof (induct n rule: infinite_descent0)
krauss@26748
   854
    case 0 -- "i.e. $V(x) = 0$"
krauss@26748
   855
    with A0 show "P x" by auto
krauss@26748
   856
  next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$"
krauss@26748
   857
    case (smaller n)
krauss@26748
   858
    then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
krauss@26748
   859
    with A1 obtain y where "V y < V x \<and> \<not> P y" by auto
krauss@26748
   860
    with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto
krauss@26748
   861
    then show ?case by auto
krauss@26748
   862
  qed
krauss@26748
   863
  ultimately show "P x" by auto
krauss@26748
   864
qed
krauss@26748
   865
krauss@26748
   866
text{* Again, without explicit base case: *}
krauss@26748
   867
lemma infinite_descent_measure:
krauss@26748
   868
assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x"
krauss@26748
   869
proof -
krauss@26748
   870
  from assms obtain n where "n = V x" by auto
krauss@26748
   871
  moreover have "!!x. V x = n \<Longrightarrow> P x"
krauss@26748
   872
  proof (induct n rule: infinite_descent, auto)
krauss@26748
   873
    fix x assume "\<not> P x"
krauss@26748
   874
    with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto
krauss@26748
   875
  qed
krauss@26748
   876
  ultimately show "P x" by auto
krauss@26748
   877
qed
krauss@26748
   878
paulson@14267
   879
text {* A [clumsy] way of lifting @{text "<"}
paulson@14267
   880
  monotonicity to @{text "\<le>"} monotonicity *}
paulson@14267
   881
lemma less_mono_imp_le_mono:
nipkow@24438
   882
  "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)"
nipkow@24438
   883
by (simp add: order_le_less) (blast)
nipkow@24438
   884
paulson@14267
   885
paulson@14267
   886
text {* non-strict, in 1st argument *}
paulson@14267
   887
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
nipkow@24438
   888
by (rule add_right_mono)
paulson@14267
   889
paulson@14267
   890
text {* non-strict, in both arguments *}
paulson@14267
   891
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
nipkow@24438
   892
by (rule add_mono)
paulson@14267
   893
paulson@14267
   894
lemma le_add2: "n \<le> ((m + n)::nat)"
nipkow@24438
   895
by (insert add_right_mono [of 0 m n], simp)
berghofe@13449
   896
paulson@14267
   897
lemma le_add1: "n \<le> ((n + m)::nat)"
nipkow@24438
   898
by (simp add: add_commute, rule le_add2)
berghofe@13449
   899
berghofe@13449
   900
lemma less_add_Suc1: "i < Suc (i + m)"
nipkow@24438
   901
by (rule le_less_trans, rule le_add1, rule lessI)
berghofe@13449
   902
berghofe@13449
   903
lemma less_add_Suc2: "i < Suc (m + i)"
nipkow@24438
   904
by (rule le_less_trans, rule le_add2, rule lessI)
berghofe@13449
   905
paulson@14267
   906
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
nipkow@24438
   907
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
berghofe@13449
   908
paulson@14267
   909
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
nipkow@24438
   910
by (rule le_trans, assumption, rule le_add1)
berghofe@13449
   911
paulson@14267
   912
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
nipkow@24438
   913
by (rule le_trans, assumption, rule le_add2)
berghofe@13449
   914
berghofe@13449
   915
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
nipkow@24438
   916
by (rule less_le_trans, assumption, rule le_add1)
berghofe@13449
   917
berghofe@13449
   918
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
nipkow@24438
   919
by (rule less_le_trans, assumption, rule le_add2)
berghofe@13449
   920
berghofe@13449
   921
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
nipkow@24438
   922
apply (rule le_less_trans [of _ "i+j"])
nipkow@24438
   923
apply (simp_all add: le_add1)
nipkow@24438
   924
done
berghofe@13449
   925
berghofe@13449
   926
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
nipkow@24438
   927
apply (rule notI)
wenzelm@26335
   928
apply (drule add_lessD1)
wenzelm@26335
   929
apply (erule less_irrefl [THEN notE])
nipkow@24438
   930
done
berghofe@13449
   931
berghofe@13449
   932
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
krauss@26748
   933
by (simp add: add_commute)
berghofe@13449
   934
paulson@14267
   935
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
nipkow@24438
   936
apply (rule order_trans [of _ "m+k"])
nipkow@24438
   937
apply (simp_all add: le_add1)
nipkow@24438
   938
done
berghofe@13449
   939
paulson@14267
   940
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
nipkow@24438
   941
apply (simp add: add_commute)
nipkow@24438
   942
apply (erule add_leD1)
nipkow@24438
   943
done
berghofe@13449
   944
paulson@14267
   945
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
nipkow@24438
   946
by (blast dest: add_leD1 add_leD2)
berghofe@13449
   947
berghofe@13449
   948
text {* needs @{text "!!k"} for @{text add_ac} to work *}
berghofe@13449
   949
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
nipkow@24438
   950
by (force simp del: add_Suc_right
berghofe@13449
   951
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
berghofe@13449
   952
berghofe@13449
   953
haftmann@26072
   954
subsubsection {* More results about difference *}
berghofe@13449
   955
berghofe@13449
   956
text {* Addition is the inverse of subtraction:
paulson@14267
   957
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
berghofe@13449
   958
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
nipkow@24438
   959
by (induct m n rule: diff_induct) simp_all
berghofe@13449
   960
paulson@14267
   961
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
nipkow@24438
   962
by (simp add: add_diff_inverse linorder_not_less)
berghofe@13449
   963
paulson@14267
   964
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
krauss@26748
   965
by (simp add: add_commute)
berghofe@13449
   966
paulson@14267
   967
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
nipkow@24438
   968
by (induct m n rule: diff_induct) simp_all
berghofe@13449
   969
berghofe@13449
   970
lemma diff_less_Suc: "m - n < Suc m"
nipkow@24438
   971
apply (induct m n rule: diff_induct)
nipkow@24438
   972
apply (erule_tac [3] less_SucE)
nipkow@24438
   973
apply (simp_all add: less_Suc_eq)
nipkow@24438
   974
done
berghofe@13449
   975
paulson@14267
   976
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
nipkow@24438
   977
by (induct m n rule: diff_induct) (simp_all add: le_SucI)
berghofe@13449
   978
haftmann@26072
   979
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
haftmann@26072
   980
  by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n])
haftmann@26072
   981
berghofe@13449
   982
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
nipkow@24438
   983
by (rule le_less_trans, rule diff_le_self)
berghofe@13449
   984
berghofe@13449
   985
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
nipkow@24438
   986
by (cases n) (auto simp add: le_simps)
berghofe@13449
   987
paulson@14267
   988
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
nipkow@24438
   989
by (induct j k rule: diff_induct) simp_all
berghofe@13449
   990
paulson@14267
   991
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
nipkow@24438
   992
by (simp add: add_commute diff_add_assoc)
berghofe@13449
   993
paulson@14267
   994
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
nipkow@24438
   995
by (auto simp add: diff_add_inverse2)
berghofe@13449
   996
paulson@14267
   997
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
nipkow@24438
   998
by (induct m n rule: diff_induct) simp_all
berghofe@13449
   999
paulson@14267
  1000
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
nipkow@24438
  1001
by (rule iffD2, rule diff_is_0_eq)
berghofe@13449
  1002
berghofe@13449
  1003
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
nipkow@24438
  1004
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1005
wenzelm@22718
  1006
lemma less_imp_add_positive:
wenzelm@22718
  1007
  assumes "i < j"
wenzelm@22718
  1008
  shows "\<exists>k::nat. 0 < k & i + k = j"
wenzelm@22718
  1009
proof
wenzelm@22718
  1010
  from assms show "0 < j - i & i + (j - i) = j"
huffman@23476
  1011
    by (simp add: order_less_imp_le)
wenzelm@22718
  1012
qed
wenzelm@9436
  1013
haftmann@26072
  1014
text {* a nice rewrite for bounded subtraction *}
haftmann@26072
  1015
lemma nat_minus_add_max:
haftmann@26072
  1016
  fixes n m :: nat
haftmann@26072
  1017
  shows "n - m + m = max n m"
haftmann@26072
  1018
    by (simp add: max_def not_le order_less_imp_le)
berghofe@13449
  1019
haftmann@26072
  1020
lemma nat_diff_split:
haftmann@26072
  1021
  "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
haftmann@26072
  1022
    -- {* elimination of @{text -} on @{text nat} *}
haftmann@26072
  1023
by (cases "a < b")
haftmann@26072
  1024
  (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse
haftmann@26072
  1025
    not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero)
berghofe@13449
  1026
haftmann@26072
  1027
lemma nat_diff_split_asm:
haftmann@26072
  1028
  "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
haftmann@26072
  1029
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
haftmann@26072
  1030
by (auto split: nat_diff_split)
berghofe@13449
  1031
berghofe@13449
  1032
haftmann@26072
  1033
subsubsection {* Monotonicity of Multiplication *}
berghofe@13449
  1034
paulson@14267
  1035
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
nipkow@24438
  1036
by (simp add: mult_right_mono)
berghofe@13449
  1037
paulson@14267
  1038
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
nipkow@24438
  1039
by (simp add: mult_left_mono)
berghofe@13449
  1040
paulson@14267
  1041
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
paulson@14267
  1042
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
nipkow@24438
  1043
by (simp add: mult_mono)
berghofe@13449
  1044
berghofe@13449
  1045
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
nipkow@24438
  1046
by (simp add: mult_strict_right_mono)
berghofe@13449
  1047
paulson@14266
  1048
text{*Differs from the standard @{text zero_less_mult_iff} in that
paulson@14266
  1049
      there are no negative numbers.*}
paulson@14266
  1050
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
berghofe@13449
  1051
  apply (induct m)
wenzelm@22718
  1052
   apply simp
wenzelm@22718
  1053
  apply (case_tac n)
wenzelm@22718
  1054
   apply simp_all
berghofe@13449
  1055
  done
berghofe@13449
  1056
paulson@14267
  1057
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"
berghofe@13449
  1058
  apply (induct m)
wenzelm@22718
  1059
   apply simp
wenzelm@22718
  1060
  apply (case_tac n)
wenzelm@22718
  1061
   apply simp_all
berghofe@13449
  1062
  done
berghofe@13449
  1063
paulson@14341
  1064
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
berghofe@13449
  1065
  apply (safe intro!: mult_less_mono1)
paulson@14208
  1066
  apply (case_tac k, auto)
berghofe@13449
  1067
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
berghofe@13449
  1068
  apply (blast intro: mult_le_mono1)
berghofe@13449
  1069
  done
berghofe@13449
  1070
berghofe@13449
  1071
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
nipkow@24438
  1072
by (simp add: mult_commute [of k])
berghofe@13449
  1073
paulson@14267
  1074
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
nipkow@24438
  1075
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1076
paulson@14267
  1077
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
nipkow@24438
  1078
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1079
berghofe@13449
  1080
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
nipkow@24438
  1081
by (subst mult_less_cancel1) simp
berghofe@13449
  1082
paulson@14267
  1083
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
nipkow@24438
  1084
by (subst mult_le_cancel1) simp
berghofe@13449
  1085
haftmann@26072
  1086
lemma le_square: "m \<le> m * (m::nat)"
haftmann@26072
  1087
  by (cases m) (auto intro: le_add1)
haftmann@26072
  1088
haftmann@26072
  1089
lemma le_cube: "(m::nat) \<le> m * (m * m)"
haftmann@26072
  1090
  by (cases m) (auto intro: le_add1)
berghofe@13449
  1091
berghofe@13449
  1092
text {* Lemma for @{text gcd} *}
berghofe@13449
  1093
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
berghofe@13449
  1094
  apply (drule sym)
berghofe@13449
  1095
  apply (rule disjCI)
berghofe@13449
  1096
  apply (rule nat_less_cases, erule_tac [2] _)
paulson@25157
  1097
   apply (drule_tac [2] mult_less_mono2)
nipkow@25162
  1098
    apply (auto)
berghofe@13449
  1099
  done
wenzelm@9436
  1100
haftmann@26072
  1101
text {* the lattice order on @{typ nat} *}
haftmann@24995
  1102
haftmann@26072
  1103
instantiation nat :: distrib_lattice
haftmann@26072
  1104
begin
haftmann@24995
  1105
haftmann@26072
  1106
definition
haftmann@26072
  1107
  "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min"
haftmann@24995
  1108
haftmann@26072
  1109
definition
haftmann@26072
  1110
  "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max"
haftmann@24995
  1111
haftmann@26072
  1112
instance by intro_classes
haftmann@26072
  1113
  (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def
haftmann@26072
  1114
    intro: order_less_imp_le antisym elim!: order_trans order_less_trans)
haftmann@24995
  1115
haftmann@26072
  1116
end
haftmann@24995
  1117
haftmann@24995
  1118
haftmann@25193
  1119
subsection {* Embedding of the Naturals into any
haftmann@25193
  1120
  @{text semiring_1}: @{term of_nat} *}
haftmann@24196
  1121
haftmann@24196
  1122
context semiring_1
haftmann@24196
  1123
begin
haftmann@24196
  1124
haftmann@25559
  1125
primrec
haftmann@25559
  1126
  of_nat :: "nat \<Rightarrow> 'a"
haftmann@25559
  1127
where
haftmann@25559
  1128
  of_nat_0:     "of_nat 0 = 0"
haftmann@25559
  1129
  | of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
haftmann@25193
  1130
haftmann@25193
  1131
lemma of_nat_1 [simp]: "of_nat 1 = 1"
haftmann@25193
  1132
  by simp
haftmann@25193
  1133
haftmann@25193
  1134
lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
haftmann@25193
  1135
  by (induct m) (simp_all add: add_ac)
haftmann@25193
  1136
haftmann@25193
  1137
lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n"
haftmann@25193
  1138
  by (induct m) (simp_all add: add_ac left_distrib)
haftmann@25193
  1139
haftmann@25928
  1140
definition
haftmann@25928
  1141
  of_nat_aux :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
haftmann@25928
  1142
where
haftmann@25928
  1143
  [code func del]: "of_nat_aux n i = of_nat n + i"
haftmann@25928
  1144
haftmann@25928
  1145
lemma of_nat_aux_code [code]:
haftmann@25928
  1146
  "of_nat_aux 0 i = i"
haftmann@25928
  1147
  "of_nat_aux (Suc n) i = of_nat_aux n (i + 1)" -- {* tail recursive *}
haftmann@25928
  1148
  by (simp_all add: of_nat_aux_def add_ac)
haftmann@25928
  1149
haftmann@25928
  1150
lemma of_nat_code [code]:
haftmann@25928
  1151
  "of_nat n = of_nat_aux n 0"
haftmann@25928
  1152
  by (simp add: of_nat_aux_def)
haftmann@25928
  1153
haftmann@24196
  1154
end
haftmann@24196
  1155
haftmann@26072
  1156
text{*Class for unital semirings with characteristic zero.
haftmann@26072
  1157
 Includes non-ordered rings like the complex numbers.*}
haftmann@26072
  1158
haftmann@26072
  1159
class semiring_char_0 = semiring_1 +
haftmann@26072
  1160
  assumes of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
haftmann@26072
  1161
begin
haftmann@26072
  1162
haftmann@26072
  1163
text{*Special cases where either operand is zero*}
haftmann@26072
  1164
haftmann@26072
  1165
lemma of_nat_0_eq_iff [simp, noatp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
haftmann@26072
  1166
  by (rule of_nat_eq_iff [of 0, simplified])
haftmann@26072
  1167
haftmann@26072
  1168
lemma of_nat_eq_0_iff [simp, noatp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
haftmann@26072
  1169
  by (rule of_nat_eq_iff [of _ 0, simplified])
haftmann@26072
  1170
haftmann@26072
  1171
lemma inj_of_nat: "inj of_nat"
haftmann@26072
  1172
  by (simp add: inj_on_def)
haftmann@26072
  1173
haftmann@26072
  1174
end
haftmann@26072
  1175
haftmann@25193
  1176
context ordered_semidom
haftmann@25193
  1177
begin
haftmann@25193
  1178
haftmann@25193
  1179
lemma zero_le_imp_of_nat: "0 \<le> of_nat m"
haftmann@25193
  1180
  apply (induct m, simp_all)
haftmann@25193
  1181
  apply (erule order_trans)
haftmann@25193
  1182
  apply (rule ord_le_eq_trans [OF _ add_commute])
haftmann@25193
  1183
  apply (rule less_add_one [THEN less_imp_le])
haftmann@25193
  1184
  done
haftmann@25193
  1185
haftmann@25193
  1186
lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
haftmann@25193
  1187
  apply (induct m n rule: diff_induct, simp_all)
haftmann@25193
  1188
  apply (insert add_less_le_mono [OF zero_less_one zero_le_imp_of_nat], force)
haftmann@25193
  1189
  done
haftmann@25193
  1190
haftmann@25193
  1191
lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
haftmann@25193
  1192
  apply (induct m n rule: diff_induct, simp_all)
haftmann@25193
  1193
  apply (insert zero_le_imp_of_nat)
haftmann@25193
  1194
  apply (force simp add: not_less [symmetric])
haftmann@25193
  1195
  done
haftmann@25193
  1196
haftmann@25193
  1197
lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
haftmann@25193
  1198
  by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
haftmann@25193
  1199
haftmann@26072
  1200
lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
haftmann@26072
  1201
  by (simp add: not_less [symmetric] linorder_not_less [symmetric])
haftmann@25193
  1202
haftmann@26072
  1203
text{*Every @{text ordered_semidom} has characteristic zero.*}
haftmann@25193
  1204
haftmann@26072
  1205
subclass semiring_char_0
haftmann@26072
  1206
  by unfold_locales (simp add: eq_iff order_eq_iff)
haftmann@25193
  1207
haftmann@25193
  1208
text{*Special cases where either operand is zero*}
haftmann@25193
  1209
haftmann@25193
  1210
lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
haftmann@25193
  1211
  by (rule of_nat_le_iff [of 0, simplified])
haftmann@25193
  1212
haftmann@25193
  1213
lemma of_nat_le_0_iff [simp, noatp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
haftmann@25193
  1214
  by (rule of_nat_le_iff [of _ 0, simplified])
haftmann@25193
  1215
haftmann@26072
  1216
lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
haftmann@26072
  1217
  by (rule of_nat_less_iff [of 0, simplified])
haftmann@26072
  1218
haftmann@26072
  1219
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
haftmann@26072
  1220
  by (rule of_nat_less_iff [of _ 0, simplified])
haftmann@26072
  1221
haftmann@26072
  1222
end
haftmann@26072
  1223
haftmann@26072
  1224
context ring_1
haftmann@26072
  1225
begin
haftmann@26072
  1226
haftmann@26072
  1227
lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
haftmann@26072
  1228
  by (simp add: compare_rls of_nat_add [symmetric])
haftmann@26072
  1229
haftmann@26072
  1230
end
haftmann@26072
  1231
haftmann@26072
  1232
context ordered_idom
haftmann@26072
  1233
begin
haftmann@26072
  1234
haftmann@26072
  1235
lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n"
haftmann@26072
  1236
  unfolding abs_if by auto
haftmann@26072
  1237
haftmann@25193
  1238
end
haftmann@25193
  1239
haftmann@25193
  1240
lemma of_nat_id [simp]: "of_nat n = n"
haftmann@25193
  1241
  by (induct n) auto
haftmann@25193
  1242
haftmann@25193
  1243
lemma of_nat_eq_id [simp]: "of_nat = id"
haftmann@25193
  1244
  by (auto simp add: expand_fun_eq)
haftmann@25193
  1245
haftmann@25193
  1246
haftmann@26149
  1247
subsection {* The Set of Natural Numbers *}
haftmann@25193
  1248
haftmann@26072
  1249
context semiring_1
haftmann@25193
  1250
begin
haftmann@25193
  1251
haftmann@26072
  1252
definition
haftmann@26072
  1253
  Nats  :: "'a set" where
haftmann@27104
  1254
  [code func del]: "Nats = range of_nat"
haftmann@26072
  1255
haftmann@26072
  1256
notation (xsymbols)
haftmann@26072
  1257
  Nats  ("\<nat>")
haftmann@25193
  1258
haftmann@26072
  1259
lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
haftmann@26072
  1260
  by (simp add: Nats_def)
haftmann@26072
  1261
haftmann@26072
  1262
lemma Nats_0 [simp]: "0 \<in> \<nat>"
haftmann@26072
  1263
apply (simp add: Nats_def)
haftmann@26072
  1264
apply (rule range_eqI)
haftmann@26072
  1265
apply (rule of_nat_0 [symmetric])
haftmann@26072
  1266
done
haftmann@25193
  1267
haftmann@26072
  1268
lemma Nats_1 [simp]: "1 \<in> \<nat>"
haftmann@26072
  1269
apply (simp add: Nats_def)
haftmann@26072
  1270
apply (rule range_eqI)
haftmann@26072
  1271
apply (rule of_nat_1 [symmetric])
haftmann@26072
  1272
done
haftmann@25193
  1273
haftmann@26072
  1274
lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
haftmann@26072
  1275
apply (auto simp add: Nats_def)
haftmann@26072
  1276
apply (rule range_eqI)
haftmann@26072
  1277
apply (rule of_nat_add [symmetric])
haftmann@26072
  1278
done
haftmann@26072
  1279
haftmann@26072
  1280
lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
haftmann@26072
  1281
apply (auto simp add: Nats_def)
haftmann@26072
  1282
apply (rule range_eqI)
haftmann@26072
  1283
apply (rule of_nat_mult [symmetric])
haftmann@26072
  1284
done
haftmann@25193
  1285
haftmann@25193
  1286
end
haftmann@25193
  1287
haftmann@25193
  1288
wenzelm@21243
  1289
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
wenzelm@21243
  1290
haftmann@22845
  1291
lemma subst_equals:
haftmann@22845
  1292
  assumes 1: "t = s" and 2: "u = t"
haftmann@22845
  1293
  shows "u = s"
haftmann@22845
  1294
  using 2 1 by (rule trans)
haftmann@22845
  1295
wenzelm@21243
  1296
use "arith_data.ML"
haftmann@26101
  1297
declaration {* K ArithData.setup *}
wenzelm@24091
  1298
wenzelm@24091
  1299
use "Tools/lin_arith.ML"
wenzelm@24091
  1300
declaration {* K LinArith.setup *}
wenzelm@24091
  1301
wenzelm@21243
  1302
lemmas [arith_split] = nat_diff_split split_min split_max
wenzelm@21243
  1303
wenzelm@21243
  1304
text{*Subtraction laws, mostly by Clemens Ballarin*}
wenzelm@21243
  1305
wenzelm@21243
  1306
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
nipkow@24438
  1307
by arith
wenzelm@21243
  1308
wenzelm@21243
  1309
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
nipkow@24438
  1310
by arith
wenzelm@21243
  1311
wenzelm@21243
  1312
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
nipkow@24438
  1313
by arith
wenzelm@21243
  1314
wenzelm@21243
  1315
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
nipkow@24438
  1316
by arith
wenzelm@21243
  1317
wenzelm@21243
  1318
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
nipkow@24438
  1319
by arith
wenzelm@21243
  1320
wenzelm@21243
  1321
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
nipkow@24438
  1322
by arith
wenzelm@21243
  1323
wenzelm@21243
  1324
(*Replaces the previous diff_less and le_diff_less, which had the stronger
wenzelm@21243
  1325
  second premise n\<le>m*)
wenzelm@21243
  1326
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
nipkow@24438
  1327
by arith
wenzelm@21243
  1328
haftmann@26072
  1329
text {* Simplification of relational expressions involving subtraction *}
wenzelm@21243
  1330
wenzelm@21243
  1331
lemma diff_diff_eq: "[| k \<le> m;  k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
nipkow@24438
  1332
by (simp split add: nat_diff_split)
wenzelm@21243
  1333
wenzelm@21243
  1334
lemma eq_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
nipkow@24438
  1335
by (auto split add: nat_diff_split)
wenzelm@21243
  1336
wenzelm@21243
  1337
lemma less_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
nipkow@24438
  1338
by (auto split add: nat_diff_split)
wenzelm@21243
  1339
wenzelm@21243
  1340
lemma le_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
nipkow@24438
  1341
by (auto split add: nat_diff_split)
wenzelm@21243
  1342
wenzelm@21243
  1343
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
wenzelm@21243
  1344
wenzelm@21243
  1345
(* Monotonicity of subtraction in first argument *)
wenzelm@21243
  1346
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
nipkow@24438
  1347
by (simp split add: nat_diff_split)
wenzelm@21243
  1348
wenzelm@21243
  1349
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
nipkow@24438
  1350
by (simp split add: nat_diff_split)
wenzelm@21243
  1351
wenzelm@21243
  1352
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
nipkow@24438
  1353
by (simp split add: nat_diff_split)
wenzelm@21243
  1354
wenzelm@21243
  1355
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==>  m=n"
nipkow@24438
  1356
by (simp split add: nat_diff_split)
wenzelm@21243
  1357
bulwahn@26143
  1358
lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i"
bulwahn@26143
  1359
unfolding min_def by auto
bulwahn@26143
  1360
bulwahn@26143
  1361
lemma inj_on_diff_nat: 
bulwahn@26143
  1362
  assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)"
bulwahn@26143
  1363
  shows "inj_on (\<lambda>n. n - k) N"
bulwahn@26143
  1364
proof (rule inj_onI)
bulwahn@26143
  1365
  fix x y
bulwahn@26143
  1366
  assume a: "x \<in> N" "y \<in> N" "x - k = y - k"
bulwahn@26143
  1367
  with k_le_n have "x - k + k = y - k + k" by auto
bulwahn@26143
  1368
  with a k_le_n show "x = y" by auto
bulwahn@26143
  1369
qed
bulwahn@26143
  1370
haftmann@26072
  1371
text{*Rewriting to pull differences out*}
haftmann@26072
  1372
haftmann@26072
  1373
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
haftmann@26072
  1374
by arith
haftmann@26072
  1375
haftmann@26072
  1376
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
haftmann@26072
  1377
by arith
haftmann@26072
  1378
haftmann@26072
  1379
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
haftmann@26072
  1380
by arith
haftmann@26072
  1381
wenzelm@21243
  1382
text{*Lemmas for ex/Factorization*}
wenzelm@21243
  1383
wenzelm@21243
  1384
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
nipkow@24438
  1385
by (cases m) auto
wenzelm@21243
  1386
wenzelm@21243
  1387
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
nipkow@24438
  1388
by (cases m) auto
wenzelm@21243
  1389
wenzelm@21243
  1390
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
nipkow@24438
  1391
by (cases m) auto
wenzelm@21243
  1392
krauss@23001
  1393
text {* Specialized induction principles that work "backwards": *}
krauss@23001
  1394
krauss@23001
  1395
lemma inc_induct[consumes 1, case_names base step]:
krauss@23001
  1396
  assumes less: "i <= j"
krauss@23001
  1397
  assumes base: "P j"
krauss@23001
  1398
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1399
  shows "P i"
krauss@23001
  1400
  using less
krauss@23001
  1401
proof (induct d=="j - i" arbitrary: i)
krauss@23001
  1402
  case (0 i)
krauss@23001
  1403
  hence "i = j" by simp
krauss@23001
  1404
  with base show ?case by simp
krauss@23001
  1405
next
krauss@23001
  1406
  case (Suc d i)
krauss@23001
  1407
  hence "i < j" "P (Suc i)"
krauss@23001
  1408
    by simp_all
krauss@23001
  1409
  thus "P i" by (rule step)
krauss@23001
  1410
qed
krauss@23001
  1411
krauss@23001
  1412
lemma strict_inc_induct[consumes 1, case_names base step]:
krauss@23001
  1413
  assumes less: "i < j"
krauss@23001
  1414
  assumes base: "!!i. j = Suc i ==> P i"
krauss@23001
  1415
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1416
  shows "P i"
krauss@23001
  1417
  using less
krauss@23001
  1418
proof (induct d=="j - i - 1" arbitrary: i)
krauss@23001
  1419
  case (0 i)
krauss@23001
  1420
  with `i < j` have "j = Suc i" by simp
krauss@23001
  1421
  with base show ?case by simp
krauss@23001
  1422
next
krauss@23001
  1423
  case (Suc d i)
krauss@23001
  1424
  hence "i < j" "P (Suc i)"
krauss@23001
  1425
    by simp_all
krauss@23001
  1426
  thus "P i" by (rule step)
krauss@23001
  1427
qed
krauss@23001
  1428
krauss@23001
  1429
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
krauss@23001
  1430
  using inc_induct[of "k - i" k P, simplified] by blast
krauss@23001
  1431
krauss@23001
  1432
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
krauss@23001
  1433
  using inc_induct[of 0 k P] by blast
wenzelm@21243
  1434
haftmann@26072
  1435
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"
haftmann@26072
  1436
  by auto
wenzelm@21243
  1437
wenzelm@21243
  1438
(*The others are
wenzelm@21243
  1439
      i - j - k = i - (j + k),
wenzelm@21243
  1440
      k \<le> j ==> j - k + i = j + i - k,
wenzelm@21243
  1441
      k \<le> j ==> i + (j - k) = i + j - k *)
wenzelm@21243
  1442
lemmas add_diff_assoc = diff_add_assoc [symmetric]
wenzelm@21243
  1443
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
haftmann@26072
  1444
declare diff_diff_left [simp]  add_diff_assoc [simp] add_diff_assoc2[simp]
wenzelm@21243
  1445
wenzelm@21243
  1446
text{*At present we prove no analogue of @{text not_less_Least} or @{text
wenzelm@21243
  1447
Least_Suc}, since there appears to be no need.*}
wenzelm@21243
  1448
haftmann@26072
  1449
subsection {* size of a datatype value *}
haftmann@25193
  1450
haftmann@26072
  1451
class size = type +
krauss@26748
  1452
  fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
haftmann@23852
  1453
haftmann@25193
  1454
end