src/HOL/Library/RBT.thy
author paulson <lp15@cam.ac.uk>
Mon Feb 22 14:37:56 2016 +0000 (2016-02-22)
changeset 62379 340738057c8c
parent 61260 e6f03fae14d5
child 63194 0b7bdb75f451
permissions -rw-r--r--
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
kuncar@48622
     1
(*  Title:      HOL/Library/RBT.thy
kuncar@48622
     2
    Author:     Lukas Bulwahn and Ondrej Kuncar
kuncar@48622
     3
*)
haftmann@35617
     4
wenzelm@60500
     5
section \<open>Abstract type of RBT trees\<close>
haftmann@35617
     6
kuncar@48622
     7
theory RBT 
kuncar@53013
     8
imports Main RBT_Impl
haftmann@35617
     9
begin
haftmann@35617
    10
wenzelm@60500
    11
subsection \<open>Type definition\<close>
haftmann@35617
    12
wenzelm@61260
    13
typedef (overloaded) ('a, 'b) rbt = "{t :: ('a::linorder, 'b) RBT_Impl.rbt. is_rbt t}"
haftmann@36147
    14
  morphisms impl_of RBT
kuncar@48622
    15
proof -
kuncar@48622
    16
  have "RBT_Impl.Empty \<in> ?rbt" by simp
kuncar@48622
    17
  then show ?thesis ..
haftmann@35617
    18
qed
haftmann@35617
    19
haftmann@39380
    20
lemma rbt_eq_iff:
haftmann@39380
    21
  "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2"
haftmann@39380
    22
  by (simp add: impl_of_inject)
haftmann@39380
    23
haftmann@39380
    24
lemma rbt_eqI:
haftmann@39380
    25
  "impl_of t1 = impl_of t2 \<Longrightarrow> t1 = t2"
haftmann@39380
    26
  by (simp add: rbt_eq_iff)
haftmann@39380
    27
haftmann@36147
    28
lemma is_rbt_impl_of [simp, intro]:
haftmann@36147
    29
  "is_rbt (impl_of t)"
haftmann@36147
    30
  using impl_of [of t] by simp
haftmann@35617
    31
haftmann@39380
    32
lemma RBT_impl_of [simp, code abstype]:
haftmann@36147
    33
  "RBT (impl_of t) = t"
haftmann@36147
    34
  by (simp add: impl_of_inverse)
haftmann@35617
    35
wenzelm@60500
    36
subsection \<open>Primitive operations\<close>
haftmann@35617
    37
kuncar@48622
    38
setup_lifting type_definition_rbt
haftmann@35617
    39
wenzelm@61076
    40
lift_definition lookup :: "('a::linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b" is "rbt_lookup" .
haftmann@35617
    41
wenzelm@61076
    42
lift_definition empty :: "('a::linorder, 'b) rbt" is RBT_Impl.Empty 
kuncar@48622
    43
by (simp add: empty_def)
haftmann@35617
    44
wenzelm@61076
    45
lift_definition insert :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_insert" 
kuncar@48622
    46
by simp
haftmann@35617
    47
wenzelm@61076
    48
lift_definition delete :: "'a::linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_delete" 
kuncar@48622
    49
by simp
haftmann@35617
    50
wenzelm@61076
    51
lift_definition entries :: "('a::linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" is RBT_Impl.entries .
kuncar@55565
    52
wenzelm@61076
    53
lift_definition keys :: "('a::linorder, 'b) rbt \<Rightarrow> 'a list" is RBT_Impl.keys .
haftmann@35617
    54
wenzelm@61076
    55
lift_definition bulkload :: "('a::linorder \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" is "rbt_bulkload" ..
haftmann@35617
    56
wenzelm@61076
    57
lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is rbt_map_entry
kuncar@48622
    58
by simp
haftmann@35617
    59
wenzelm@61076
    60
lift_definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> ('a, 'c) rbt" is RBT_Impl.map
kuncar@48622
    61
by simp
haftmann@35617
    62
wenzelm@61076
    63
lift_definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a::linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"  is RBT_Impl.fold .
haftmann@35617
    64
wenzelm@61076
    65
lift_definition union :: "('a::linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_union"
kuncar@48622
    66
by (simp add: rbt_union_is_rbt)
haftmann@35617
    67
kuncar@48622
    68
lift_definition foldi :: "('c \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a :: linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"
kuncar@55565
    69
  is RBT_Impl.foldi .
haftmann@35617
    70
wenzelm@60500
    71
subsection \<open>Derived operations\<close>
haftmann@35617
    72
wenzelm@61076
    73
definition is_empty :: "('a::linorder, 'b) rbt \<Rightarrow> bool" where
haftmann@36147
    74
  [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)"
haftmann@35617
    75
haftmann@35617
    76
wenzelm@60500
    77
subsection \<open>Abstract lookup properties\<close>
haftmann@35617
    78
haftmann@36147
    79
lemma lookup_RBT:
Andreas@47450
    80
  "is_rbt t \<Longrightarrow> lookup (RBT t) = rbt_lookup t"
haftmann@36147
    81
  by (simp add: lookup_def RBT_inverse)
haftmann@35617
    82
haftmann@36147
    83
lemma lookup_impl_of:
Andreas@47450
    84
  "rbt_lookup (impl_of t) = lookup t"
kuncar@48622
    85
  by transfer (rule refl)
haftmann@35617
    86
haftmann@36147
    87
lemma entries_impl_of:
haftmann@36147
    88
  "RBT_Impl.entries (impl_of t) = entries t"
kuncar@48622
    89
  by transfer (rule refl)
haftmann@35617
    90
haftmann@36147
    91
lemma keys_impl_of:
haftmann@36147
    92
  "RBT_Impl.keys (impl_of t) = keys t"
kuncar@48622
    93
  by transfer (rule refl)
haftmann@36111
    94
kuncar@49927
    95
lemma lookup_keys: 
kuncar@49927
    96
  "dom (lookup t) = set (keys t)" 
kuncar@49927
    97
  by transfer (simp add: rbt_lookup_keys)
kuncar@49927
    98
haftmann@35617
    99
lemma lookup_empty [simp]:
haftmann@35617
   100
  "lookup empty = Map.empty"
nipkow@39302
   101
  by (simp add: empty_def lookup_RBT fun_eq_iff)
haftmann@35617
   102
haftmann@36147
   103
lemma lookup_insert [simp]:
haftmann@36147
   104
  "lookup (insert k v t) = (lookup t)(k \<mapsto> v)"
kuncar@48622
   105
  by transfer (rule rbt_lookup_rbt_insert)
haftmann@35617
   106
haftmann@35617
   107
lemma lookup_delete [simp]:
haftmann@35617
   108
  "lookup (delete k t) = (lookup t)(k := None)"
kuncar@48622
   109
  by transfer (simp add: rbt_lookup_rbt_delete restrict_complement_singleton_eq)
haftmann@35617
   110
haftmann@35617
   111
lemma map_of_entries [simp]:
haftmann@35617
   112
  "map_of (entries t) = lookup t"
kuncar@48622
   113
  by transfer (simp add: map_of_entries)
haftmann@35617
   114
haftmann@36111
   115
lemma entries_lookup:
haftmann@36111
   116
  "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
kuncar@48622
   117
  by transfer (simp add: entries_rbt_lookup)
haftmann@36111
   118
haftmann@35617
   119
lemma lookup_bulkload [simp]:
haftmann@35617
   120
  "lookup (bulkload xs) = map_of xs"
kuncar@48622
   121
  by transfer (rule rbt_lookup_rbt_bulkload)
haftmann@35617
   122
haftmann@35617
   123
lemma lookup_map_entry [simp]:
blanchet@55466
   124
  "lookup (map_entry k f t) = (lookup t)(k := map_option f (lookup t k))"
kuncar@48622
   125
  by transfer (rule rbt_lookup_rbt_map_entry)
haftmann@35617
   126
haftmann@35617
   127
lemma lookup_map [simp]:
blanchet@55466
   128
  "lookup (map f t) k = map_option (f k) (lookup t k)"
kuncar@48622
   129
  by transfer (rule rbt_lookup_map)
haftmann@35617
   130
haftmann@35617
   131
lemma fold_fold:
blanchet@55414
   132
  "fold f t = List.fold (case_prod f) (entries t)"
kuncar@48622
   133
  by transfer (rule RBT_Impl.fold_def)
kuncar@48622
   134
kuncar@48622
   135
lemma impl_of_empty:
kuncar@48622
   136
  "impl_of empty = RBT_Impl.Empty"
kuncar@48622
   137
  by transfer (rule refl)
haftmann@35617
   138
haftmann@36111
   139
lemma is_empty_empty [simp]:
haftmann@36111
   140
  "is_empty t \<longleftrightarrow> t = empty"
kuncar@48622
   141
  unfolding is_empty_def by transfer (simp split: rbt.split)
haftmann@36111
   142
haftmann@36111
   143
lemma RBT_lookup_empty [simp]: (*FIXME*)
Andreas@47450
   144
  "rbt_lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty"
nipkow@39302
   145
  by (cases t) (auto simp add: fun_eq_iff)
haftmann@36111
   146
haftmann@36111
   147
lemma lookup_empty_empty [simp]:
haftmann@36111
   148
  "lookup t = Map.empty \<longleftrightarrow> t = empty"
kuncar@48622
   149
  by transfer (rule RBT_lookup_empty)
haftmann@36111
   150
haftmann@36111
   151
lemma sorted_keys [iff]:
haftmann@36111
   152
  "sorted (keys t)"
kuncar@48622
   153
  by transfer (simp add: RBT_Impl.keys_def rbt_sorted_entries)
haftmann@36111
   154
haftmann@36111
   155
lemma distinct_keys [iff]:
haftmann@36111
   156
  "distinct (keys t)"
kuncar@48622
   157
  by transfer (simp add: RBT_Impl.keys_def distinct_entries)
kuncar@48622
   158
kuncar@48622
   159
lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))"
kuncar@48622
   160
  by transfer simp
kuncar@48622
   161
kuncar@48622
   162
lemma lookup_union: "lookup (union s t) = lookup s ++ lookup t"
kuncar@48622
   163
  by transfer (simp add: rbt_lookup_rbt_union)
kuncar@48622
   164
kuncar@48622
   165
lemma lookup_in_tree: "(lookup t k = Some v) = ((k, v) \<in> set (entries t))"
kuncar@48622
   166
  by transfer (simp add: rbt_lookup_in_tree)
kuncar@48622
   167
kuncar@48622
   168
lemma keys_entries: "(k \<in> set (keys t)) = (\<exists>v. (k, v) \<in> set (entries t))"
kuncar@48622
   169
  by transfer (simp add: keys_entries)
kuncar@48622
   170
kuncar@48622
   171
lemma fold_def_alt:
blanchet@55414
   172
  "fold f t = List.fold (case_prod f) (entries t)"
kuncar@48622
   173
  by transfer (auto simp: RBT_Impl.fold_def)
kuncar@48622
   174
kuncar@48622
   175
lemma distinct_entries: "distinct (List.map fst (entries t))"
kuncar@48622
   176
  by transfer (simp add: distinct_entries)
kuncar@48622
   177
kuncar@48622
   178
lemma non_empty_keys: "t \<noteq> empty \<Longrightarrow> keys t \<noteq> []"
kuncar@48622
   179
  by transfer (simp add: non_empty_rbt_keys)
kuncar@48622
   180
kuncar@48622
   181
lemma keys_def_alt:
kuncar@48622
   182
  "keys t = List.map fst (entries t)"
kuncar@48622
   183
  by transfer (simp add: RBT_Impl.keys_def)
haftmann@36111
   184
wenzelm@60500
   185
subsection \<open>Quickcheck generators\<close>
bulwahn@45928
   186
bulwahn@46565
   187
quickcheck_generator rbt predicate: is_rbt constructors: empty, insert
haftmann@36111
   188
wenzelm@60500
   189
subsection \<open>Hide implementation details\<close>
kuncar@56019
   190
kuncar@56019
   191
lifting_update rbt.lifting
kuncar@56019
   192
lifting_forget rbt.lifting
kuncar@56019
   193
kuncar@56019
   194
hide_const (open) impl_of empty lookup keys entries bulkload delete map fold union insert map_entry foldi 
kuncar@56019
   195
  is_empty
kuncar@56019
   196
hide_fact (open) empty_def lookup_def keys_def entries_def bulkload_def delete_def map_def fold_def 
kuncar@56019
   197
  union_def insert_def map_entry_def foldi_def is_empty_def
kuncar@56019
   198
haftmann@35617
   199
end