src/HOL/Nitpick.thy
author blanchet
Wed Oct 31 11:23:21 2012 +0100 (2012-10-31)
changeset 49989 34d0ac1bdac6
parent 48891 c0eafbd55de3
child 52641 c56b6fa636e8
permissions -rw-r--r--
moved "SAT" before "FunDef" and moved back all SAT-related ML files to where they belong
blanchet@33192
     1
(*  Title:      HOL/Nitpick.thy
blanchet@33192
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@35807
     3
    Copyright   2008, 2009, 2010
blanchet@33192
     4
blanchet@33192
     5
Nitpick: Yet another counterexample generator for Isabelle/HOL.
blanchet@33192
     6
*)
blanchet@33192
     7
blanchet@33192
     8
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
blanchet@33192
     9
blanchet@33192
    10
theory Nitpick
blanchet@49989
    11
imports Hilbert_Choice List Map Quotient Record Sledgehammer
wenzelm@46950
    12
keywords "nitpick" :: diag and "nitpick_params" :: thy_decl
blanchet@33192
    13
begin
blanchet@33192
    14
blanchet@33192
    15
typedecl bisim_iterator
blanchet@33192
    16
blanchet@33192
    17
axiomatization unknown :: 'a
blanchet@34938
    18
           and is_unknown :: "'a \<Rightarrow> bool"
blanchet@33192
    19
           and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
blanchet@33192
    20
           and bisim_iterator_max :: bisim_iterator
blanchet@34938
    21
           and Quot :: "'a \<Rightarrow> 'b"
blanchet@35671
    22
           and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@33192
    23
blanchet@35665
    24
datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)"
blanchet@33192
    25
datatype ('a, 'b) pair_box = PairBox 'a 'b
blanchet@34124
    26
blanchet@34124
    27
typedecl unsigned_bit
blanchet@34124
    28
typedecl signed_bit
blanchet@34124
    29
blanchet@34124
    30
datatype 'a word = Word "('a set)"
blanchet@33192
    31
blanchet@33192
    32
text {*
blanchet@33192
    33
Alternative definitions.
blanchet@33192
    34
*}
blanchet@33192
    35
blanchet@41797
    36
lemma Ex1_unfold [nitpick_unfold, no_atp]:
haftmann@45970
    37
"Ex1 P \<equiv> \<exists>x. {x. P x} = {x}"
blanchet@33192
    38
apply (rule eq_reflection)
nipkow@39302
    39
apply (simp add: Ex1_def set_eq_iff)
blanchet@33192
    40
apply (rule iffI)
blanchet@33192
    41
 apply (erule exE)
blanchet@33192
    42
 apply (erule conjE)
blanchet@33192
    43
 apply (rule_tac x = x in exI)
blanchet@33192
    44
 apply (rule allI)
blanchet@33192
    45
 apply (rename_tac y)
blanchet@33192
    46
 apply (erule_tac x = y in allE)
haftmann@45970
    47
by auto
blanchet@33192
    48
blanchet@41797
    49
lemma rtrancl_unfold [nitpick_unfold, no_atp]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
haftmann@45140
    50
  by (simp only: rtrancl_trancl_reflcl)
blanchet@33192
    51
blanchet@41797
    52
lemma rtranclp_unfold [nitpick_unfold, no_atp]:
blanchet@33192
    53
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
blanchet@33192
    54
by (rule eq_reflection) (auto dest: rtranclpD)
blanchet@33192
    55
blanchet@41797
    56
lemma tranclp_unfold [nitpick_unfold, no_atp]:
haftmann@45970
    57
"tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}"
haftmann@45970
    58
by (simp add: trancl_def)
blanchet@33192
    59
blanchet@47909
    60
lemma [nitpick_simp, no_atp]:
blanchet@47909
    61
"of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))"
wenzelm@47988
    62
by (cases n) auto
blanchet@47909
    63
blanchet@41046
    64
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
blanchet@41046
    65
"prod A B = {(a, b). a \<in> A \<and> b \<in> B}"
blanchet@41046
    66
haftmann@44278
    67
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@33192
    68
"refl' r \<equiv> \<forall>x. (x, x) \<in> r"
blanchet@33192
    69
haftmann@44278
    70
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@33192
    71
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
blanchet@33192
    72
haftmann@44278
    73
definition card' :: "'a set \<Rightarrow> nat" where
blanchet@39365
    74
"card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0"
blanchet@33192
    75
haftmann@44278
    76
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where
blanchet@39365
    77
"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"
blanchet@33192
    78
haftmann@44278
    79
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where
blanchet@33192
    80
"fold_graph' f z {} z" |
blanchet@33192
    81
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
blanchet@33192
    82
blanchet@33192
    83
text {*
blanchet@33192
    84
The following lemmas are not strictly necessary but they help the
blanchet@47909
    85
\textit{specialize} optimization.
blanchet@33192
    86
*}
blanchet@33192
    87
blanchet@36918
    88
lemma The_psimp [nitpick_psimp, no_atp]:
haftmann@45970
    89
  "P = (op =) x \<Longrightarrow> The P = x"
haftmann@45970
    90
  by auto
blanchet@33192
    91
blanchet@36918
    92
lemma Eps_psimp [nitpick_psimp, no_atp]:
blanchet@33192
    93
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
wenzelm@47988
    94
apply (cases "P (Eps P)")
blanchet@33192
    95
 apply auto
blanchet@33192
    96
apply (erule contrapos_np)
blanchet@33192
    97
by (rule someI)
blanchet@33192
    98
blanchet@41797
    99
lemma unit_case_unfold [nitpick_unfold, no_atp]:
blanchet@33192
   100
"unit_case x u \<equiv> x"
blanchet@33192
   101
apply (subgoal_tac "u = ()")
blanchet@33192
   102
 apply (simp only: unit.cases)
blanchet@33192
   103
by simp
blanchet@33192
   104
blanchet@33556
   105
declare unit.cases [nitpick_simp del]
blanchet@33556
   106
blanchet@41797
   107
lemma nat_case_unfold [nitpick_unfold, no_atp]:
blanchet@33192
   108
"nat_case x f n \<equiv> if n = 0 then x else f (n - 1)"
blanchet@33192
   109
apply (rule eq_reflection)
wenzelm@47988
   110
by (cases n) auto
blanchet@33192
   111
blanchet@33556
   112
declare nat.cases [nitpick_simp del]
blanchet@33556
   113
blanchet@36918
   114
lemma list_size_simp [nitpick_simp, no_atp]:
blanchet@33192
   115
"list_size f xs = (if xs = [] then 0
blanchet@33192
   116
                   else Suc (f (hd xs) + list_size f (tl xs)))"
blanchet@33192
   117
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
wenzelm@47988
   118
by (cases xs) auto
blanchet@33192
   119
blanchet@33192
   120
text {*
blanchet@33192
   121
Auxiliary definitions used to provide an alternative representation for
blanchet@33192
   122
@{text rat} and @{text real}.
blanchet@33192
   123
*}
blanchet@33192
   124
blanchet@33192
   125
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   126
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
blanchet@33192
   127
by auto
blanchet@33192
   128
termination
blanchet@33192
   129
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
blanchet@33192
   130
 apply auto
blanchet@33192
   131
 apply (metis mod_less_divisor xt1(9))
blanchet@33192
   132
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
blanchet@33192
   133
blanchet@33192
   134
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   135
"nat_lcm x y = x * y div (nat_gcd x y)"
blanchet@33192
   136
blanchet@33192
   137
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   138
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
blanchet@33192
   139
blanchet@33192
   140
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   141
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
blanchet@33192
   142
blanchet@33192
   143
definition Frac :: "int \<times> int \<Rightarrow> bool" where
blanchet@33192
   144
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
blanchet@33192
   145
blanchet@33192
   146
axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a"
blanchet@33192
   147
           and Rep_Frac :: "'a \<Rightarrow> int \<times> int"
blanchet@33192
   148
blanchet@33192
   149
definition zero_frac :: 'a where
blanchet@33192
   150
"zero_frac \<equiv> Abs_Frac (0, 1)"
blanchet@33192
   151
blanchet@33192
   152
definition one_frac :: 'a where
blanchet@33192
   153
"one_frac \<equiv> Abs_Frac (1, 1)"
blanchet@33192
   154
blanchet@33192
   155
definition num :: "'a \<Rightarrow> int" where
blanchet@33192
   156
"num \<equiv> fst o Rep_Frac"
blanchet@33192
   157
blanchet@33192
   158
definition denom :: "'a \<Rightarrow> int" where
blanchet@33192
   159
"denom \<equiv> snd o Rep_Frac"
blanchet@33192
   160
blanchet@33192
   161
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
blanchet@33192
   162
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
blanchet@33192
   163
                              else if a = 0 \<or> b = 0 then (0, 1)
blanchet@33192
   164
                              else let c = int_gcd a b in (a div c, b div c))"
blanchet@33192
   165
by pat_completeness auto
blanchet@33192
   166
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
blanchet@33192
   167
blanchet@33192
   168
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
blanchet@33192
   169
"frac a b \<equiv> Abs_Frac (norm_frac a b)"
blanchet@33192
   170
blanchet@33192
   171
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   172
[nitpick_simp]:
blanchet@33192
   173
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
blanchet@33192
   174
                    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
blanchet@33192
   175
blanchet@33192
   176
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   177
[nitpick_simp]:
blanchet@33192
   178
"times_frac q r = frac (num q * num r) (denom q * denom r)"
blanchet@33192
   179
blanchet@33192
   180
definition uminus_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   181
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
blanchet@33192
   182
blanchet@33192
   183
definition number_of_frac :: "int \<Rightarrow> 'a" where
blanchet@33192
   184
"number_of_frac n \<equiv> Abs_Frac (n, 1)"
blanchet@33192
   185
blanchet@33192
   186
definition inverse_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   187
"inverse_frac q \<equiv> frac (denom q) (num q)"
blanchet@33192
   188
blanchet@37397
   189
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@37397
   190
[nitpick_simp]:
blanchet@37397
   191
"less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0"
blanchet@37397
   192
blanchet@33192
   193
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@33192
   194
[nitpick_simp]:
blanchet@33192
   195
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
blanchet@33192
   196
blanchet@33192
   197
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
blanchet@33192
   198
"of_frac q \<equiv> of_int (num q) / of_int (denom q)"
blanchet@33192
   199
wenzelm@48891
   200
ML_file "Tools/Nitpick/kodkod.ML"
wenzelm@48891
   201
ML_file "Tools/Nitpick/kodkod_sat.ML"
wenzelm@48891
   202
ML_file "Tools/Nitpick/nitpick_util.ML"
wenzelm@48891
   203
ML_file "Tools/Nitpick/nitpick_hol.ML"
wenzelm@48891
   204
ML_file "Tools/Nitpick/nitpick_mono.ML"
wenzelm@48891
   205
ML_file "Tools/Nitpick/nitpick_preproc.ML"
wenzelm@48891
   206
ML_file "Tools/Nitpick/nitpick_scope.ML"
wenzelm@48891
   207
ML_file "Tools/Nitpick/nitpick_peephole.ML"
wenzelm@48891
   208
ML_file "Tools/Nitpick/nitpick_rep.ML"
wenzelm@48891
   209
ML_file "Tools/Nitpick/nitpick_nut.ML"
wenzelm@48891
   210
ML_file "Tools/Nitpick/nitpick_kodkod.ML"
wenzelm@48891
   211
ML_file "Tools/Nitpick/nitpick_model.ML"
wenzelm@48891
   212
ML_file "Tools/Nitpick/nitpick.ML"
wenzelm@48891
   213
ML_file "Tools/Nitpick/nitpick_isar.ML"
wenzelm@48891
   214
ML_file "Tools/Nitpick/nitpick_tests.ML"
blanchet@33192
   215
krauss@44016
   216
setup {*
krauss@44016
   217
  Nitpick_Isar.setup #>
krauss@44016
   218
  Nitpick_HOL.register_ersatz_global
krauss@44016
   219
    [(@{const_name card}, @{const_name card'}),
krauss@44016
   220
     (@{const_name setsum}, @{const_name setsum'}),
krauss@44016
   221
     (@{const_name fold_graph}, @{const_name fold_graph'}),
krauss@44016
   222
     (@{const_name wf}, @{const_name wf'})]
krauss@44016
   223
*}
blanchet@33561
   224
blanchet@39365
   225
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The
krauss@44013
   226
    FunBox PairBox Word prod refl' wf' card' setsum'
blanchet@41052
   227
    fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac
blanchet@41052
   228
    one_frac num denom norm_frac frac plus_frac times_frac uminus_frac
blanchet@39365
   229
    number_of_frac inverse_frac less_frac less_eq_frac of_frac
blanchet@46324
   230
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word
blanchet@41797
   231
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold
krauss@44013
   232
    prod_def refl'_def wf'_def card'_def setsum'_def
blanchet@41797
   233
    fold_graph'_def The_psimp Eps_psimp unit_case_unfold nat_case_unfold
blanchet@41046
   234
    list_size_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def
blanchet@41046
   235
    zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def
blanchet@41046
   236
    plus_frac_def times_frac_def uminus_frac_def number_of_frac_def
blanchet@41046
   237
    inverse_frac_def less_frac_def less_eq_frac_def of_frac_def
blanchet@33192
   238
blanchet@33192
   239
end