src/Pure/meta_simplifier.ML
author wenzelm
Fri Oct 21 18:14:46 2005 +0200 (2005-10-21)
changeset 17966 34e420fa03ad
parent 17897 1733b4680fde
child 18208 dbdcf366db53
permissions -rw-r--r--
moved various simplification tactics and rules to simplifier.ML;
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
berghofe@10413
     2
    ID:         $Id$
wenzelm@11672
     3
    Author:     Tobias Nipkow and Stefan Berghofer
berghofe@10413
     4
wenzelm@11672
     5
Meta-level Simplification.
berghofe@10413
     6
*)
berghofe@10413
     7
skalberg@15006
     8
infix 4
wenzelm@15023
     9
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
    10
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    11
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    12
wenzelm@11672
    13
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    14
sig
wenzelm@15023
    15
  val debug_simp: bool ref
wenzelm@11672
    16
  val trace_simp: bool ref
nipkow@13828
    17
  val simp_depth_limit: int ref
nipkow@16042
    18
  val trace_simp_depth_limit: int ref
wenzelm@15023
    19
  type rrule
wenzelm@16807
    20
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    21
  type cong
wenzelm@15023
    22
  type simpset
wenzelm@15023
    23
  type proc
wenzelm@17614
    24
  type solver
wenzelm@17614
    25
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
wenzelm@17614
    26
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
skalberg@15006
    27
  val rep_ss: simpset ->
wenzelm@15023
    28
   {rules: rrule Net.net,
wenzelm@15023
    29
    prems: thm list,
wenzelm@17882
    30
    bounds: int * ((string * typ) * string) list,
wenzelm@17882
    31
    context: Context.proof option} *
wenzelm@15023
    32
   {congs: (string * cong) list * string list,
wenzelm@15023
    33
    procs: proc Net.net,
wenzelm@15023
    34
    mk_rews:
wenzelm@15023
    35
     {mk: thm -> thm list,
wenzelm@15023
    36
      mk_cong: thm -> thm,
wenzelm@15023
    37
      mk_sym: thm -> thm option,
wenzelm@15023
    38
      mk_eq_True: thm -> thm option},
wenzelm@15023
    39
    termless: term * term -> bool,
skalberg@15006
    40
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
    41
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
    42
    solvers: solver list * solver list}
skalberg@15006
    43
  val print_ss: simpset -> unit
wenzelm@15023
    44
  val empty_ss: simpset
wenzelm@15023
    45
  val merge_ss: simpset * simpset -> simpset
wenzelm@15023
    46
  type simproc
wenzelm@15023
    47
  val mk_simproc: string -> cterm list ->
wenzelm@16458
    48
    (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    49
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    50
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    51
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    52
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    53
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    54
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    55
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    56
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    57
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    58
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    59
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    60
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    61
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    62
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    63
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    64
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    65
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    66
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    67
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    68
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    69
  val delloop: simpset * string -> simpset
wenzelm@15023
    70
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    71
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    72
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    73
  val addSolver: simpset * solver -> simpset
skalberg@15006
    74
end;
skalberg@15006
    75
berghofe@10413
    76
signature META_SIMPLIFIER =
berghofe@10413
    77
sig
wenzelm@11672
    78
  include BASIC_META_SIMPLIFIER
berghofe@10413
    79
  exception SIMPLIFIER of string * thm
wenzelm@17966
    80
  val solver: simpset -> solver -> int -> tactic
wenzelm@15023
    81
  val clear_ss: simpset -> simpset
wenzelm@15023
    82
  exception SIMPROC_FAIL of string * exn
wenzelm@16458
    83
  val simproc_i: theory -> string -> term list
wenzelm@16458
    84
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
    85
  val simproc: theory -> string -> string list
wenzelm@16458
    86
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@17882
    87
  val inherit_context: simpset -> simpset -> simpset
wenzelm@17882
    88
  val the_context: simpset -> Context.proof
wenzelm@17897
    89
  val context: Context.proof -> simpset -> simpset
wenzelm@17897
    90
  val theory_context: theory  -> simpset -> simpset
wenzelm@17723
    91
  val debug_bounds: bool ref
wenzelm@17966
    92
  val set_solvers: solver list -> simpset -> simpset
wenzelm@11672
    93
  val rewrite_cterm: bool * bool * bool ->
wenzelm@15023
    94
    (simpset -> thm -> thm option) -> simpset -> cterm -> thm
wenzelm@15023
    95
  val rewrite_aux: (simpset -> thm -> thm option) -> bool -> thm list -> cterm -> thm
wenzelm@15023
    96
  val simplify_aux: (simpset -> thm -> thm option) -> bool -> thm list -> thm -> thm
wenzelm@16458
    97
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
    98
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
    99
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   100
  val rewrite_goals_rule_aux: (simpset -> thm -> thm option) -> thm list -> thm -> thm
wenzelm@15023
   101
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   102
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
berghofe@10413
   103
end;
berghofe@10413
   104
wenzelm@15023
   105
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   106
struct
berghofe@10413
   107
wenzelm@15023
   108
wenzelm@15023
   109
(** datatype simpset **)
wenzelm@15023
   110
wenzelm@15023
   111
(* rewrite rules *)
berghofe@10413
   112
berghofe@13607
   113
type rrule = {thm: thm, name: string, lhs: term, elhs: cterm, fo: bool, perm: bool};
wenzelm@15023
   114
wenzelm@15023
   115
(*thm: the rewrite rule;
wenzelm@15023
   116
  name: name of theorem from which rewrite rule was extracted;
wenzelm@15023
   117
  lhs: the left-hand side;
wenzelm@15023
   118
  elhs: the etac-contracted lhs;
wenzelm@15023
   119
  fo: use first-order matching;
wenzelm@15023
   120
  perm: the rewrite rule is permutative;
wenzelm@15023
   121
wenzelm@12603
   122
Remarks:
berghofe@10413
   123
  - elhs is used for matching,
wenzelm@15023
   124
    lhs only for preservation of bound variable names;
berghofe@10413
   125
  - fo is set iff
berghofe@10413
   126
    either elhs is first-order (no Var is applied),
wenzelm@15023
   127
      in which case fo-matching is complete,
berghofe@10413
   128
    or elhs is not a pattern,
wenzelm@15023
   129
      in which case there is nothing better to do;*)
berghofe@10413
   130
berghofe@10413
   131
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@15023
   132
  Drule.eq_thm_prop (thm1, thm2);
wenzelm@15023
   133
wenzelm@15023
   134
wenzelm@15023
   135
(* congruences *)
wenzelm@15023
   136
wenzelm@15023
   137
type cong = {thm: thm, lhs: cterm};
berghofe@10413
   138
wenzelm@12603
   139
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) =
wenzelm@15023
   140
  Drule.eq_thm_prop (thm1, thm2);
berghofe@10413
   141
berghofe@10413
   142
wenzelm@17614
   143
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   144
wenzelm@15023
   145
(*A simpset contains data required during conversion:
berghofe@10413
   146
    rules: discrimination net of rewrite rules;
wenzelm@15023
   147
    prems: current premises;
berghofe@15249
   148
    bounds: maximal index of bound variables already used
wenzelm@15023
   149
      (for generating new names when rewriting under lambda abstractions);
berghofe@10413
   150
    congs: association list of congruence rules and
berghofe@10413
   151
           a list of `weak' congruence constants.
berghofe@10413
   152
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   153
    procs: discrimination net of simplification procedures
berghofe@10413
   154
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   155
    mk_rews:
wenzelm@15023
   156
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   157
      mk_cong: prepare congruence rules;
wenzelm@15023
   158
      mk_sym: turn == around;
wenzelm@15023
   159
      mk_eq_True: turn P into P == True;
wenzelm@15023
   160
    termless: relation for ordered rewriting;*)
skalberg@15011
   161
wenzelm@15023
   162
type mk_rews =
wenzelm@15023
   163
 {mk: thm -> thm list,
wenzelm@15023
   164
  mk_cong: thm -> thm,
wenzelm@15023
   165
  mk_sym: thm -> thm option,
wenzelm@15023
   166
  mk_eq_True: thm -> thm option};
wenzelm@15023
   167
wenzelm@15023
   168
datatype simpset =
wenzelm@15023
   169
  Simpset of
wenzelm@15023
   170
   {rules: rrule Net.net,
berghofe@10413
   171
    prems: thm list,
wenzelm@17882
   172
    bounds: int * ((string * typ) * string) list,
wenzelm@17882
   173
    context: Context.proof option} *
wenzelm@15023
   174
   {congs: (string * cong) list * string list,
wenzelm@15023
   175
    procs: proc Net.net,
wenzelm@15023
   176
    mk_rews: mk_rews,
nipkow@11504
   177
    termless: term * term -> bool,
skalberg@15011
   178
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   179
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   180
    solvers: solver list * solver list}
wenzelm@15023
   181
and proc =
wenzelm@15023
   182
  Proc of
wenzelm@15023
   183
   {name: string,
wenzelm@15023
   184
    lhs: cterm,
wenzelm@16458
   185
    proc: theory -> simpset -> term -> thm option,
wenzelm@17614
   186
    id: stamp}
wenzelm@17614
   187
and solver =
wenzelm@17614
   188
  Solver of
wenzelm@17614
   189
   {name: string,
wenzelm@17614
   190
    solver: simpset -> int -> tactic,
wenzelm@15023
   191
    id: stamp};
wenzelm@15023
   192
wenzelm@15023
   193
wenzelm@15023
   194
fun rep_ss (Simpset args) = args;
berghofe@10413
   195
wenzelm@17882
   196
fun make_ss1 (rules, prems, bounds, context) =
wenzelm@17882
   197
  {rules = rules, prems = prems, bounds = bounds, context = context};
wenzelm@15023
   198
wenzelm@17882
   199
fun map_ss1 f {rules, prems, bounds, context} =
wenzelm@17882
   200
  make_ss1 (f (rules, prems, bounds, context));
berghofe@10413
   201
wenzelm@15023
   202
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   203
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   204
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   205
wenzelm@15023
   206
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   207
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   208
wenzelm@15023
   209
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   210
wenzelm@17882
   211
fun map_simpset f (Simpset ({rules, prems, bounds, context},
wenzelm@15023
   212
    {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers})) =
wenzelm@17882
   213
  make_simpset (f ((rules, prems, bounds, context),
wenzelm@15023
   214
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers)));
berghofe@10413
   215
wenzelm@15023
   216
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   217
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   218
wenzelm@17614
   219
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   220
wenzelm@17614
   221
wenzelm@17614
   222
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   223
wenzelm@17614
   224
fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   225
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
wenzelm@17614
   226
wenzelm@17614
   227
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   228
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   229
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   230
val merge_solvers = gen_merge_lists eq_solver;
wenzelm@17614
   231
wenzelm@15023
   232
wenzelm@16985
   233
(* diagnostics *)
wenzelm@16985
   234
wenzelm@16985
   235
exception SIMPLIFIER of string * thm;
wenzelm@16985
   236
wenzelm@16985
   237
val debug_simp = ref false;
wenzelm@16985
   238
val trace_simp = ref false;
wenzelm@16985
   239
val simp_depth = ref 0;
wenzelm@16985
   240
val simp_depth_limit = ref 100;
wenzelm@16985
   241
val trace_simp_depth_limit = ref 100;
wenzelm@16985
   242
wenzelm@16985
   243
local
wenzelm@16985
   244
wenzelm@16985
   245
fun println a =
wenzelm@16985
   246
  if ! simp_depth > ! trace_simp_depth_limit then ()
wenzelm@16985
   247
  else tracing (enclose "[" "]" (string_of_int (! simp_depth)) ^ a);
wenzelm@16985
   248
wenzelm@16985
   249
fun prnt warn a = if warn then warning a else println a;
wenzelm@16985
   250
wenzelm@16985
   251
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   252
  let
wenzelm@16985
   253
    val used = Term.add_term_names (t, []);
wenzelm@17614
   254
    val xs = rev (Term.variantlist (rev (map #2 bs), used));
wenzelm@17614
   255
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
wenzelm@16985
   256
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   257
wenzelm@17705
   258
in
wenzelm@17705
   259
wenzelm@17705
   260
fun print_term warn a ss thy t = prnt warn (a ^ "\n" ^
wenzelm@16985
   261
  Sign.string_of_term thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   262
wenzelm@16985
   263
fun debug warn a = if ! debug_simp then prnt warn a else ();
wenzelm@16985
   264
fun trace warn a = if ! trace_simp then prnt warn a else ();
wenzelm@16985
   265
wenzelm@17705
   266
fun debug_term warn a ss thy t = if ! debug_simp then print_term warn a ss thy t else ();
wenzelm@17705
   267
fun trace_term warn a ss thy t = if ! trace_simp then print_term warn a ss thy t else ();
wenzelm@16985
   268
wenzelm@16985
   269
fun trace_cterm warn a ss ct =
wenzelm@17705
   270
  if ! trace_simp then print_term warn a ss (Thm.theory_of_cterm ct) (Thm.term_of ct) else ();
wenzelm@16985
   271
wenzelm@16985
   272
fun trace_thm a ss th =
wenzelm@17705
   273
  if ! trace_simp then print_term false a ss (Thm.theory_of_thm th) (Thm.full_prop_of th) else ();
wenzelm@16985
   274
wenzelm@16985
   275
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   276
  if ! trace_simp then
wenzelm@17705
   277
    print_term false (if name = "" then a else a ^ " " ^ quote name ^ ":") ss
wenzelm@16985
   278
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   279
  else ();
wenzelm@16985
   280
wenzelm@17705
   281
fun warn_thm a ss th = print_term true a ss (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   282
wenzelm@16985
   283
end;
wenzelm@16985
   284
wenzelm@16985
   285
wenzelm@15023
   286
(* print simpsets *)
berghofe@10413
   287
wenzelm@15023
   288
fun print_ss ss =
wenzelm@15023
   289
  let
wenzelm@15034
   290
    val pretty_thms = map Display.pretty_thm;
wenzelm@15023
   291
wenzelm@15034
   292
    fun pretty_cong (name, th) =
wenzelm@15034
   293
      Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, Display.pretty_thm th];
wenzelm@15023
   294
    fun pretty_proc (name, lhss) =
wenzelm@15023
   295
      Pretty.big_list (name ^ ":") (map Display.pretty_cterm lhss);
wenzelm@15034
   296
wenzelm@15034
   297
    val Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...}) = ss;
wenzelm@16807
   298
    val smps = map #thm (Net.entries rules);
wenzelm@15034
   299
    val cngs = map (fn (name, {thm, ...}) => (name, thm)) (#1 congs);
wenzelm@16807
   300
    val prcs = Net.entries procs |>
wenzelm@16807
   301
      map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
haftmann@17496
   302
      |> partition_eq (eq_snd (op =))
wenzelm@17756
   303
      |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps))
wenzelm@17756
   304
      |> Library.sort_wrt fst;
wenzelm@15023
   305
  in
wenzelm@15034
   306
    [Pretty.big_list "simplification rules:" (pretty_thms smps),
wenzelm@15034
   307
      Pretty.big_list "simplification procedures:" (map pretty_proc prcs),
wenzelm@15034
   308
      Pretty.big_list "congruences:" (map pretty_cong cngs),
wenzelm@15088
   309
      Pretty.strs ("loopers:" :: map (quote o #1) loop_tacs),
wenzelm@15088
   310
      Pretty.strs ("unsafe solvers:" :: map (quote o solver_name) (#1 solvers)),
wenzelm@15088
   311
      Pretty.strs ("safe solvers:" :: map (quote o solver_name) (#2 solvers))]
wenzelm@15023
   312
    |> Pretty.chunks |> Pretty.writeln
nipkow@13828
   313
  end;
berghofe@10413
   314
wenzelm@15023
   315
wenzelm@15023
   316
(* empty simpsets *)
wenzelm@15023
   317
wenzelm@15023
   318
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@17882
   319
  make_simpset ((Net.empty, [], (0, []), NONE),
wenzelm@15023
   320
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@15023
   321
wenzelm@15023
   322
val basic_mk_rews: mk_rews =
wenzelm@15023
   323
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@15023
   324
  mk_cong = I,
skalberg@15531
   325
  mk_sym = SOME o Drule.symmetric_fun,
skalberg@15531
   326
  mk_eq_True = K NONE};
wenzelm@15023
   327
wenzelm@15023
   328
val empty_ss = init_ss basic_mk_rews Term.termless (K (K no_tac)) ([], []);
wenzelm@15023
   329
wenzelm@15023
   330
wenzelm@15023
   331
(* merge simpsets *)            (*NOTE: ignores some fields of 2nd simpset*)
skalberg@15011
   332
wenzelm@15023
   333
fun merge_ss (ss1, ss2) =
wenzelm@15023
   334
  let
wenzelm@17882
   335
    val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, context = _},
wenzelm@15023
   336
     {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@15023
   337
      loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@17882
   338
    val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, context = _},
wenzelm@15023
   339
     {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@15023
   340
      loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
skalberg@15011
   341
wenzelm@16807
   342
    val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@15023
   343
    val prems' = gen_merge_lists Drule.eq_thm_prop prems1 prems2;
wenzelm@16985
   344
    val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@15023
   345
    val congs' = gen_merge_lists (eq_cong o pairself #2) congs1 congs2;
wenzelm@15023
   346
    val weak' = merge_lists weak1 weak2;
wenzelm@16807
   347
    val procs' = Net.merge eq_proc (procs1, procs2);
wenzelm@15023
   348
    val loop_tacs' = merge_alists loop_tacs1 loop_tacs2;
wenzelm@15023
   349
    val unsafe_solvers' = merge_solvers unsafe_solvers1 unsafe_solvers2;
wenzelm@15023
   350
    val solvers' = merge_solvers solvers1 solvers2;
wenzelm@15023
   351
  in
wenzelm@17882
   352
    make_simpset ((rules', prems', bounds', NONE), ((congs', weak'), procs',
wenzelm@15023
   353
      mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@15023
   354
  end;
wenzelm@15023
   355
wenzelm@15023
   356
wenzelm@15023
   357
(* simprocs *)
wenzelm@15023
   358
wenzelm@15023
   359
exception SIMPROC_FAIL of string * exn;
wenzelm@15023
   360
wenzelm@15023
   361
datatype simproc = Simproc of proc list;
wenzelm@15023
   362
wenzelm@15023
   363
fun mk_simproc name lhss proc =
wenzelm@15023
   364
  let val id = stamp () in
wenzelm@15023
   365
    Simproc (lhss |> map (fn lhs =>
wenzelm@15023
   366
      Proc {name = name, lhs = lhs, proc = proc, id = id}))
wenzelm@15023
   367
  end;
wenzelm@15023
   368
wenzelm@16458
   369
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@16807
   370
fun simproc thy name = simproc_i thy name o map (Sign.read_term thy);
wenzelm@15023
   371
skalberg@15011
   372
berghofe@10413
   373
berghofe@10413
   374
(** simpset operations **)
berghofe@10413
   375
wenzelm@17882
   376
(* context *)
berghofe@10413
   377
wenzelm@17614
   378
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   379
wenzelm@17882
   380
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), context) =>
wenzelm@17882
   381
  (rules, prems, (count + 1, bound :: bounds), context));
wenzelm@17882
   382
wenzelm@17882
   383
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@17882
   384
  (rules, ths @ prems, bounds, context));
wenzelm@17882
   385
wenzelm@17882
   386
fun inherit_context (Simpset ({bounds, context, ...}, _)) =
wenzelm@17882
   387
  map_simpset1 (fn (rules, prems, _, _) => (rules, prems, bounds, context));
wenzelm@16985
   388
wenzelm@17882
   389
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   390
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   391
wenzelm@17897
   392
fun context ctxt =
wenzelm@17882
   393
  map_simpset1 (fn (rules, prems, bounds, _) => (rules, prems, bounds, SOME ctxt));
wenzelm@17882
   394
wenzelm@17897
   395
val theory_context = context o Context.init_proof;
wenzelm@17897
   396
wenzelm@17882
   397
fun fallback_context _ (ss as Simpset ({context = SOME _, ...}, _)) = ss
wenzelm@17882
   398
  | fallback_context thy ss =
wenzelm@17882
   399
     (warning "Simplifier: no proof context in simpset -- fallback to theory context!";
wenzelm@17897
   400
      theory_context thy ss);
wenzelm@17897
   401
wenzelm@17897
   402
wenzelm@17897
   403
(* clear_ss *)
wenzelm@17897
   404
wenzelm@17897
   405
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@17897
   406
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@17897
   407
  |> inherit_context ss;
wenzelm@15023
   408
berghofe@10413
   409
wenzelm@15023
   410
(* addsimps *)
berghofe@10413
   411
wenzelm@15023
   412
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   413
  let
wenzelm@15023
   414
    val fo = Pattern.first_order (term_of elhs) orelse not (Pattern.pattern (term_of elhs))
wenzelm@15023
   415
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, fo = fo, perm = perm} end;
berghofe@10413
   416
wenzelm@15023
   417
fun insert_rrule quiet (ss, rrule as {thm, name, lhs, elhs, perm}) =
wenzelm@16985
   418
 (trace_named_thm "Adding rewrite rule" ss (thm, name);
wenzelm@17882
   419
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@15023
   420
    let
wenzelm@15023
   421
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   422
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@17882
   423
    in (rules', prems, bounds, context) end)
wenzelm@15023
   424
  handle Net.INSERT =>
wenzelm@16985
   425
    (if quiet then () else warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   426
berghofe@10413
   427
fun vperm (Var _, Var _) = true
berghofe@10413
   428
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   429
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   430
  | vperm (t, u) = (t = u);
berghofe@10413
   431
berghofe@10413
   432
fun var_perm (t, u) =
berghofe@10413
   433
  vperm (t, u) andalso eq_set (term_varnames t, term_varnames u);
berghofe@10413
   434
berghofe@10413
   435
(* FIXME: it seems that the conditions on extra variables are too liberal if
berghofe@10413
   436
prems are nonempty: does solving the prems really guarantee instantiation of
berghofe@10413
   437
all its Vars? Better: a dynamic check each time a rule is applied.
berghofe@10413
   438
*)
berghofe@10413
   439
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@16861
   440
  not (term_varnames erhs subset fold add_term_varnames prems (term_varnames elhs))
berghofe@10413
   441
  orelse
wenzelm@15023
   442
  not (term_tvars erhs subset (term_tvars elhs union List.concat (map term_tvars prems)));
berghofe@10413
   443
wenzelm@15023
   444
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@16458
   445
fun reorient thy prems lhs rhs =
wenzelm@15023
   446
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   447
    orelse
wenzelm@15023
   448
  is_Var (head_of lhs)
wenzelm@15023
   449
    orelse
nipkow@16305
   450
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   451
   usually it is very useful :-(
nipkow@16305
   452
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   453
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   454
    orelse
nipkow@16305
   455
*)
wenzelm@16842
   456
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   457
    orelse
wenzelm@17203
   458
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   459
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   460
      with extra variables in the conditions may terminate although
wenzelm@15023
   461
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   462
    orelse
wenzelm@15023
   463
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   464
berghofe@10413
   465
fun decomp_simp thm =
wenzelm@15023
   466
  let
wenzelm@16458
   467
    val {thy, prop, ...} = Thm.rep_thm thm;
wenzelm@15023
   468
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   469
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@15023
   470
    val (lhs, rhs) = Drule.dest_equals concl handle TERM _ =>
wenzelm@15023
   471
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@15023
   472
    val (_, elhs) = Drule.dest_equals (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   473
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@15023
   474
    val erhs = Pattern.eta_contract (term_of rhs);
wenzelm@15023
   475
    val perm =
wenzelm@15023
   476
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   477
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   478
      not (is_Var (term_of elhs));
wenzelm@16458
   479
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   480
wenzelm@12783
   481
fun decomp_simp' thm =
wenzelm@12979
   482
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   483
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   484
    else (lhs, rhs)
wenzelm@12783
   485
  end;
wenzelm@12783
   486
wenzelm@15023
   487
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   488
  (case mk_eq_True thm of
skalberg@15531
   489
    NONE => []
skalberg@15531
   490
  | SOME eq_True =>
wenzelm@15023
   491
      let val (_, _, lhs, elhs, _, _) = decomp_simp eq_True
wenzelm@15023
   492
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   493
wenzelm@15023
   494
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   495
  in case there are extra vars on the rhs*)
wenzelm@15023
   496
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   497
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@15023
   498
    if term_varnames rhs subset term_varnames lhs andalso
wenzelm@15023
   499
      term_tvars rhs subset term_tvars lhs then [rrule]
wenzelm@15023
   500
    else mk_eq_True ss (thm2, name) @ [rrule]
berghofe@10413
   501
  end;
berghofe@10413
   502
wenzelm@15023
   503
fun mk_rrule ss (thm, name) =
wenzelm@15023
   504
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   505
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   506
    else
wenzelm@15023
   507
      (*weak test for loops*)
wenzelm@15023
   508
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   509
      then mk_eq_True ss (thm, name)
wenzelm@15023
   510
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   511
  end;
berghofe@10413
   512
wenzelm@15023
   513
fun orient_rrule ss (thm, name) =
wenzelm@16458
   514
  let val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   515
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   516
    else if reorient thy prems lhs rhs then
wenzelm@16458
   517
      if reorient thy prems rhs lhs
wenzelm@15023
   518
      then mk_eq_True ss (thm, name)
wenzelm@15023
   519
      else
wenzelm@15023
   520
        let val Simpset (_, {mk_rews = {mk_sym, ...}, ...}) = ss in
wenzelm@15023
   521
          (case mk_sym thm of
skalberg@15531
   522
            NONE => []
skalberg@15531
   523
          | SOME thm' =>
wenzelm@15023
   524
              let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@15023
   525
              in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   526
        end
wenzelm@15023
   527
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   528
  end;
berghofe@10413
   529
nipkow@15199
   530
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
skalberg@15570
   531
  List.concat (map (fn thm => map (rpair (Thm.name_of_thm thm)) (mk thm)) thms);
berghofe@10413
   532
wenzelm@15023
   533
fun orient_comb_simps comb mk_rrule (ss, thms) =
wenzelm@15023
   534
  let
wenzelm@15023
   535
    val rews = extract_rews (ss, thms);
skalberg@15570
   536
    val rrules = List.concat (map mk_rrule rews);
skalberg@15570
   537
  in Library.foldl comb (ss, rrules) end;
berghofe@10413
   538
wenzelm@15023
   539
fun extract_safe_rrules (ss, thm) =
skalberg@15570
   540
  List.concat (map (orient_rrule ss) (extract_rews (ss, [thm])));
berghofe@10413
   541
wenzelm@15023
   542
(*add rewrite rules explicitly; do not reorient!*)
wenzelm@15023
   543
fun ss addsimps thms =
wenzelm@15023
   544
  orient_comb_simps (insert_rrule false) (mk_rrule ss) (ss, thms);
berghofe@10413
   545
berghofe@10413
   546
wenzelm@15023
   547
(* delsimps *)
berghofe@10413
   548
wenzelm@15023
   549
fun del_rrule (ss, rrule as {thm, elhs, ...}) =
wenzelm@17882
   550
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@17882
   551
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, context))
wenzelm@16985
   552
  handle Net.DELETE => (warn_thm "Rewrite rule not in simpset:" ss thm; ss);
berghofe@10413
   553
wenzelm@15023
   554
fun ss delsimps thms =
wenzelm@15023
   555
  orient_comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   556
wenzelm@15023
   557
wenzelm@15023
   558
(* congs *)
berghofe@10413
   559
skalberg@15531
   560
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   561
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   562
  | cong_name _ = NONE;
ballarin@13835
   563
wenzelm@15023
   564
local
wenzelm@15023
   565
wenzelm@15023
   566
fun is_full_cong_prems [] [] = true
wenzelm@15023
   567
  | is_full_cong_prems [] _ = false
wenzelm@15023
   568
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   569
      (case Logic.strip_assums_concl p of
wenzelm@15023
   570
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   571
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   572
            is_Var x andalso forall is_Bound xs andalso
wenzelm@15023
   573
            null (findrep xs) andalso xs = ys andalso
wenzelm@15023
   574
            (x, y) mem varpairs andalso
wenzelm@15023
   575
            is_full_cong_prems prems (varpairs \ (x, y))
wenzelm@15023
   576
          end
wenzelm@15023
   577
      | _ => false);
wenzelm@15023
   578
wenzelm@15023
   579
fun is_full_cong thm =
berghofe@10413
   580
  let
wenzelm@15023
   581
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   582
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   583
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   584
  in
wenzelm@15023
   585
    f = g andalso null (findrep (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   586
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   587
  end;
berghofe@10413
   588
wenzelm@15023
   589
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   590
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   591
    let
wenzelm@15023
   592
      val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   593
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@15023
   594
    (*val lhs = Pattern.eta_contract lhs;*)
skalberg@15570
   595
      val a = valOf (cong_name (head_of (term_of lhs))) handle Option =>
wenzelm@15023
   596
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
wenzelm@15023
   597
      val (alist, weak) = congs;
wenzelm@15023
   598
      val alist2 = overwrite_warn (alist, (a, {lhs = lhs, thm = thm}))
wenzelm@15023
   599
        ("Overwriting congruence rule for " ^ quote a);
wenzelm@15023
   600
      val weak2 = if is_full_cong thm then weak else a :: weak;
wenzelm@15023
   601
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   602
wenzelm@15023
   603
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   604
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   605
    let
wenzelm@15023
   606
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   607
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@15023
   608
    (*val lhs = Pattern.eta_contract lhs;*)
skalberg@15570
   609
      val a = valOf (cong_name (head_of lhs)) handle Option =>
wenzelm@15023
   610
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
wenzelm@15023
   611
      val (alist, _) = congs;
skalberg@15570
   612
      val alist2 = List.filter (fn (x, _) => x <> a) alist;
wenzelm@17756
   613
      val weak2 = alist2 |> List.mapPartial (fn (a, {thm, ...}: cong) =>
skalberg@15531
   614
        if is_full_cong thm then NONE else SOME a);
wenzelm@15023
   615
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   616
wenzelm@15023
   617
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   618
wenzelm@15023
   619
in
wenzelm@15023
   620
skalberg@15570
   621
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   622
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   623
wenzelm@15023
   624
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   625
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   626
wenzelm@15023
   627
end;
berghofe@10413
   628
berghofe@10413
   629
wenzelm@15023
   630
(* simprocs *)
wenzelm@15023
   631
wenzelm@15023
   632
local
berghofe@10413
   633
wenzelm@16985
   634
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@16985
   635
 (trace_cterm false ("Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   636
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   637
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   638
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   639
  handle Net.INSERT =>
wenzelm@15023
   640
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   641
wenzelm@16985
   642
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   643
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   644
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   645
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   646
  handle Net.DELETE =>
wenzelm@15023
   647
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   648
wenzelm@15023
   649
in
berghofe@10413
   650
wenzelm@16985
   651
fun ss addsimprocs ps = fold (fn Simproc procs => fold add_proc procs) ps ss;
wenzelm@16985
   652
fun ss delsimprocs ps = fold (fn Simproc procs => fold del_proc procs) ps ss;
berghofe@10413
   653
wenzelm@15023
   654
end;
berghofe@10413
   655
berghofe@10413
   656
berghofe@10413
   657
(* mk_rews *)
berghofe@10413
   658
wenzelm@15023
   659
local
wenzelm@15023
   660
nipkow@15199
   661
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True},
wenzelm@15023
   662
      termless, subgoal_tac, loop_tacs, solvers) =>
nipkow@15199
   663
  let val (mk', mk_cong', mk_sym', mk_eq_True') = f (mk, mk_cong, mk_sym, mk_eq_True) in
nipkow@15199
   664
    (congs, procs, {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True'},
wenzelm@15023
   665
      termless, subgoal_tac, loop_tacs, solvers)
wenzelm@15023
   666
  end);
wenzelm@15023
   667
wenzelm@15023
   668
in
berghofe@10413
   669
nipkow@15199
   670
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True) =>
nipkow@15199
   671
  (mk, mk_cong, mk_sym, mk_eq_True));
wenzelm@15023
   672
nipkow@15199
   673
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True) =>
nipkow@15199
   674
  (mk, mk_cong, mk_sym, mk_eq_True));
berghofe@10413
   675
nipkow@15199
   676
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True) =>
nipkow@15199
   677
  (mk, mk_cong, mk_sym, mk_eq_True));
berghofe@10413
   678
nipkow@15199
   679
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _) =>
nipkow@15199
   680
  (mk, mk_cong, mk_sym, mk_eq_True));
wenzelm@15023
   681
wenzelm@15023
   682
end;
wenzelm@15023
   683
skalberg@14242
   684
berghofe@10413
   685
(* termless *)
berghofe@10413
   686
wenzelm@15023
   687
fun ss settermless termless = ss |>
wenzelm@15023
   688
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   689
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   690
skalberg@15006
   691
wenzelm@15023
   692
(* tactics *)
skalberg@15006
   693
wenzelm@15023
   694
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   695
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   696
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   697
wenzelm@17882
   698
fun ss setloop' tac = ss |>
wenzelm@15023
   699
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   700
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   701
wenzelm@17882
   702
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   703
wenzelm@17882
   704
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   705
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   706
    (congs, procs, mk_rews, termless, subgoal_tac,
wenzelm@15023
   707
      overwrite_warn (loop_tacs, (name, tac)) ("Overwriting looper " ^ quote name),
wenzelm@15023
   708
      solvers));
skalberg@15006
   709
wenzelm@17882
   710
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   711
wenzelm@15023
   712
fun ss delloop name = ss |>
wenzelm@15023
   713
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@17756
   714
    let val loop_tacs' = filter_out (equal name o fst) loop_tacs in
wenzelm@15034
   715
      if length loop_tacs <> length loop_tacs' then ()
wenzelm@15034
   716
      else warning ("No such looper in simpset: " ^ quote name);
wenzelm@15034
   717
      (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs', solvers)
wenzelm@15023
   718
    end);
skalberg@15006
   719
wenzelm@15023
   720
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   721
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   722
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   723
wenzelm@15023
   724
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   725
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   726
    subgoal_tac, loop_tacs, (unsafe_solvers, merge_solvers solvers [solver])));
skalberg@15006
   727
wenzelm@15023
   728
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   729
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   730
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   731
wenzelm@15023
   732
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   733
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   734
    subgoal_tac, loop_tacs, (merge_solvers unsafe_solvers [solver], solvers)));
skalberg@15006
   735
wenzelm@15023
   736
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   737
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   738
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   739
skalberg@15006
   740
skalberg@15006
   741
berghofe@10413
   742
(** rewriting **)
berghofe@10413
   743
berghofe@10413
   744
(*
berghofe@10413
   745
  Uses conversions, see:
berghofe@10413
   746
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   747
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   748
*)
berghofe@10413
   749
wenzelm@15023
   750
val dest_eq = Drule.dest_equals o Thm.cprop_of;
wenzelm@15023
   751
val lhs_of = #1 o dest_eq;
wenzelm@15023
   752
val rhs_of = #2 o dest_eq;
berghofe@10413
   753
wenzelm@16985
   754
fun check_conv msg ss thm thm' =
berghofe@10413
   755
  let
berghofe@10413
   756
    val thm'' = transitive thm (transitive
skalberg@15001
   757
      (symmetric (Drule.beta_eta_conversion (lhs_of thm'))) thm')
wenzelm@16985
   758
  in if msg then trace_thm "SUCCEEDED" ss thm' else (); SOME thm'' end
berghofe@10413
   759
  handle THM _ =>
wenzelm@16458
   760
    let val {thy, prop = _ $ _ $ prop0, ...} = Thm.rep_thm thm in
wenzelm@16985
   761
      trace_thm "Proved wrong thm (Check subgoaler?)" ss thm';
wenzelm@16985
   762
      trace_term false "Should have proved:" ss thy prop0;
skalberg@15531
   763
      NONE
berghofe@10413
   764
    end;
berghofe@10413
   765
berghofe@10413
   766
berghofe@10413
   767
(* mk_procrule *)
berghofe@10413
   768
wenzelm@16985
   769
fun mk_procrule ss thm =
wenzelm@15023
   770
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   771
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   772
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   773
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   774
  end;
berghofe@10413
   775
berghofe@10413
   776
wenzelm@15023
   777
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   778
wenzelm@15023
   779
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   780
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   781
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   782
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   783
  already in normal form.
wenzelm@15023
   784
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   785
berghofe@10413
   786
val skel0 = Bound 0;
berghofe@10413
   787
wenzelm@15023
   788
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   789
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   790
  in the lhs.*)
berghofe@10413
   791
wenzelm@15023
   792
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   793
  if null weak then rhs  (*optimization*)
wenzelm@15023
   794
  else if exists_Const (fn (c, _) => c mem weak) lhs then skel0
wenzelm@15023
   795
  else rhs;
wenzelm@15023
   796
wenzelm@15023
   797
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   798
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   799
  while the premises are solved.*)
wenzelm@15023
   800
wenzelm@15023
   801
fun cond_skel (args as (congs, (lhs, rhs))) =
wenzelm@15023
   802
  if term_varnames rhs subset term_varnames lhs then uncond_skel args
berghofe@10413
   803
  else skel0;
berghofe@10413
   804
berghofe@10413
   805
(*
wenzelm@15023
   806
  Rewriting -- we try in order:
berghofe@10413
   807
    (1) beta reduction
berghofe@10413
   808
    (2) unconditional rewrite rules
berghofe@10413
   809
    (3) conditional rewrite rules
berghofe@10413
   810
    (4) simplification procedures
berghofe@10413
   811
berghofe@10413
   812
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   813
*)
berghofe@10413
   814
wenzelm@16458
   815
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   816
  let
wenzelm@15023
   817
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   818
    val eta_thm = Thm.eta_conversion t;
berghofe@10413
   819
    val eta_t' = rhs_of eta_thm;
berghofe@10413
   820
    val eta_t = term_of eta_t';
berghofe@13607
   821
    fun rew {thm, name, lhs, elhs, fo, perm} =
berghofe@10413
   822
      let
wenzelm@16458
   823
        val {thy, prop, maxidx, ...} = rep_thm thm;
berghofe@10413
   824
        val (rthm, elhs') = if maxt = ~1 then (thm, elhs)
berghofe@10413
   825
          else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs);
berghofe@10413
   826
        val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t')
berghofe@10413
   827
                          else Thm.cterm_match (elhs', eta_t');
berghofe@10413
   828
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   829
        val prop' = Thm.prop_of thm';
berghofe@10413
   830
        val unconditional = (Logic.count_prems (prop',0) = 0);
berghofe@10413
   831
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   832
      in
nipkow@11295
   833
        if perm andalso not (termless (rhs', lhs'))
wenzelm@16985
   834
        then (trace_named_thm "Cannot apply permutative rewrite rule" ss (thm, name);
wenzelm@16985
   835
              trace_thm "Term does not become smaller:" ss thm'; NONE)
wenzelm@16985
   836
        else (trace_named_thm "Applying instance of rewrite rule" ss (thm, name);
berghofe@10413
   837
           if unconditional
berghofe@10413
   838
           then
wenzelm@16985
   839
             (trace_thm "Rewriting:" ss thm';
berghofe@10413
   840
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   841
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   842
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   843
           else
wenzelm@16985
   844
             (trace_thm "Trying to rewrite:" ss thm';
nipkow@16042
   845
              if !simp_depth > !simp_depth_limit
nipkow@16042
   846
              then let val s = "simp_depth_limit exceeded - giving up"
nipkow@16042
   847
                   in trace false s; warning s; NONE end
nipkow@16042
   848
              else
nipkow@16042
   849
              case prover ss thm' of
wenzelm@16985
   850
                NONE => (trace_thm "FAILED" ss thm'; NONE)
skalberg@15531
   851
              | SOME thm2 =>
wenzelm@16985
   852
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   853
                     NONE => NONE |
skalberg@15531
   854
                     SOME thm2' =>
berghofe@10413
   855
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   856
                           val lr = Logic.dest_equals concl
nipkow@16042
   857
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   858
      end
berghofe@10413
   859
skalberg@15531
   860
    fun rews [] = NONE
berghofe@10413
   861
      | rews (rrule :: rrules) =
skalberg@15531
   862
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   863
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   864
berghofe@10413
   865
    fun sort_rrules rrs = let
wenzelm@14643
   866
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   867
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   868
                                      | _                   => false
berghofe@10413
   869
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   870
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   871
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   872
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   873
    in sort rrs ([],[]) end
berghofe@10413
   874
skalberg@15531
   875
    fun proc_rews [] = NONE
wenzelm@15023
   876
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   877
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@16985
   878
            (debug_term false ("Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@13486
   879
             case transform_failure (curry SIMPROC_FAIL name)
wenzelm@16458
   880
                 (fn () => proc thyt ss eta_t) () of
skalberg@15531
   881
               NONE => (debug false "FAILED"; proc_rews ps)
skalberg@15531
   882
             | SOME raw_thm =>
wenzelm@16985
   883
                 (trace_thm ("Procedure " ^ quote name ^ " produced rewrite rule:") ss raw_thm;
wenzelm@16985
   884
                  (case rews (mk_procrule ss raw_thm) of
skalberg@15531
   885
                    NONE => (trace_cterm true ("IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   886
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   887
                  | some => some)))
berghofe@10413
   888
          else proc_rews ps;
berghofe@10413
   889
  in case eta_t of
skalberg@15531
   890
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   891
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   892
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   893
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   894
             | some => some)
berghofe@10413
   895
  end;
berghofe@10413
   896
berghofe@10413
   897
berghofe@10413
   898
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   899
wenzelm@16985
   900
fun congc prover ss maxt {thm=cong,lhs=lhs} t =
wenzelm@16985
   901
  let val rthm = Thm.incr_indexes (maxt+1) cong;
berghofe@10413
   902
      val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
berghofe@10413
   903
      val insts = Thm.cterm_match (rlhs, t)
berghofe@10413
   904
      (* Pattern.match can raise Pattern.MATCH;
berghofe@10413
   905
         is handled when congc is called *)
berghofe@10413
   906
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@16985
   907
      val unit = trace_thm "Applying congruence rule:" ss thm';
wenzelm@16985
   908
      fun err (msg, thm) = (trace_thm msg ss thm; NONE)
berghofe@10413
   909
  in case prover thm' of
skalberg@15531
   910
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   911
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   912
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   913
        | SOME thm2' =>
berghofe@12155
   914
            if op aconv (pairself term_of (dest_equals (cprop_of thm2')))
skalberg@15531
   915
            then NONE else SOME thm2')
berghofe@10413
   916
  end;
berghofe@10413
   917
berghofe@10413
   918
val (cA, (cB, cC)) =
berghofe@10413
   919
  apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   920
skalberg@15531
   921
fun transitive1 NONE NONE = NONE
skalberg@15531
   922
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
   923
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
   924
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
   925
skalberg@15531
   926
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
   927
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
   928
wenzelm@16458
   929
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
   930
  let
wenzelm@15023
   931
    fun botc skel ss t =
skalberg@15531
   932
          if is_Var skel then NONE
berghofe@10413
   933
          else
wenzelm@15023
   934
          (case subc skel ss t of
skalberg@15531
   935
             some as SOME thm1 =>
wenzelm@16458
   936
               (case rewritec (prover, thy, maxidx) ss (rhs_of thm1) of
skalberg@15531
   937
                  SOME (thm2, skel2) =>
berghofe@13607
   938
                    transitive2 (transitive thm1 thm2)
wenzelm@15023
   939
                      (botc skel2 ss (rhs_of thm2))
skalberg@15531
   940
                | NONE => some)
skalberg@15531
   941
           | NONE =>
wenzelm@16458
   942
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
   943
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@15023
   944
                    (botc skel2 ss (rhs_of thm2))
skalberg@15531
   945
                | NONE => NONE))
berghofe@10413
   946
wenzelm@15023
   947
    and try_botc ss t =
wenzelm@15023
   948
          (case botc skel0 ss t of
skalberg@15531
   949
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
   950
wenzelm@15023
   951
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
   952
       (case term_of t0 of
berghofe@10413
   953
           Abs (a, T, t) =>
wenzelm@15023
   954
             let
wenzelm@16985
   955
                 val b = Term.bound (#1 bounds);
wenzelm@16985
   956
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
   957
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@16985
   958
                 val _ = conditional (b <> b') (fn () =>
wenzelm@16985
   959
                   warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b'));
wenzelm@17614
   960
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
   961
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
   962
             in case botc skel' ss' t' of
skalberg@15531
   963
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
   964
                | NONE => NONE
berghofe@10413
   965
             end
berghofe@10413
   966
         | t $ _ => (case t of
wenzelm@15023
   967
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
   968
           | Abs _ =>
berghofe@10413
   969
               let val thm = beta_conversion false t0
wenzelm@15023
   970
               in case subc skel0 ss (rhs_of thm) of
skalberg@15531
   971
                    NONE => SOME thm
skalberg@15531
   972
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
   973
               end
berghofe@10413
   974
           | _  =>
berghofe@10413
   975
               let fun appc () =
berghofe@10413
   976
                     let
berghofe@10413
   977
                       val (tskel, uskel) = case skel of
berghofe@10413
   978
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
   979
                         | _ => (skel0, skel0);
wenzelm@10767
   980
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
   981
                     in
wenzelm@15023
   982
                     (case botc tskel ss ct of
skalberg@15531
   983
                        SOME thm1 =>
wenzelm@15023
   984
                          (case botc uskel ss cu of
skalberg@15531
   985
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
   986
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
   987
                      | NONE =>
wenzelm@15023
   988
                          (case botc uskel ss cu of
skalberg@15531
   989
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
   990
                           | NONE => NONE))
berghofe@10413
   991
                     end
berghofe@10413
   992
                   val (h, ts) = strip_comb t
ballarin@13835
   993
               in case cong_name h of
skalberg@15531
   994
                    SOME a =>
haftmann@17232
   995
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
   996
                         NONE => appc ()
skalberg@15531
   997
                       | SOME cong =>
wenzelm@15023
   998
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
   999
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1000
                          (let
wenzelm@16985
  1001
                             val thm = congc (prover ss) ss maxidx cong t0;
skalberg@15570
  1002
                             val t = getOpt (Option.map rhs_of thm, t0);
wenzelm@10767
  1003
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1004
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1005
                             val skel =
berghofe@10413
  1006
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1007
                           in case botc skel ss cl of
skalberg@15531
  1008
                                NONE => thm
skalberg@15531
  1009
                              | SOME thm' => transitive3 thm
berghofe@12155
  1010
                                  (combination thm' (reflexive cr))
berghofe@10413
  1011
                           end handle TERM _ => error "congc result"
berghofe@10413
  1012
                                    | Pattern.MATCH => appc ()))
berghofe@10413
  1013
                  | _ => appc ()
berghofe@10413
  1014
               end)
skalberg@15531
  1015
         | _ => NONE)
berghofe@10413
  1016
wenzelm@15023
  1017
    and impc ct ss =
wenzelm@15023
  1018
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1019
wenzelm@15023
  1020
    and rules_of_prem ss prem =
berghofe@13607
  1021
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1022
      then (trace_cterm true
wenzelm@16985
  1023
        "Cannot add premise as rewrite rule because it contains (type) unknowns:" ss prem; ([], NONE))
berghofe@13607
  1024
      else
berghofe@13607
  1025
        let val asm = assume prem
skalberg@15531
  1026
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1027
wenzelm@15023
  1028
    and add_rrules (rrss, asms) ss =
skalberg@15570
  1029
      Library.foldl (insert_rrule true) (ss, List.concat rrss) |> add_prems (List.mapPartial I asms)
berghofe@10413
  1030
berghofe@13607
  1031
    and disch r (prem, eq) =
berghofe@13607
  1032
      let
berghofe@13607
  1033
        val (lhs, rhs) = dest_eq eq;
berghofe@13607
  1034
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1035
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1036
          (implies_intr prem eq)
berghofe@13607
  1037
      in if not r then eq' else
berghofe@10413
  1038
        let
berghofe@13607
  1039
          val (prem', concl) = dest_implies lhs;
berghofe@13607
  1040
          val (prem'', _) = dest_implies rhs
berghofe@13607
  1041
        in transitive (transitive
berghofe@13607
  1042
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1043
             Drule.swap_prems_eq) eq')
berghofe@13607
  1044
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1045
             Drule.swap_prems_eq)
berghofe@10413
  1046
        end
berghofe@10413
  1047
      end
berghofe@10413
  1048
berghofe@13607
  1049
    and rebuild [] _ _ _ _ eq = eq
wenzelm@15023
  1050
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) ss eq =
berghofe@13607
  1051
          let
wenzelm@15023
  1052
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1053
            val concl' =
skalberg@15570
  1054
              Drule.mk_implies (prem, getOpt (Option.map rhs_of eq, concl));
skalberg@15570
  1055
            val dprem = Option.map (curry (disch false) prem)
wenzelm@16458
  1056
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1057
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
skalberg@15570
  1058
            | SOME (eq', _) => transitive2 (Library.foldl (disch false o swap)
skalberg@15570
  1059
                  (valOf (transitive3 (dprem eq) eq'), prems))
wenzelm@15023
  1060
                (mut_impc0 (rev prems) (rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1061
          end
wenzelm@15023
  1062
wenzelm@15023
  1063
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1064
      let
berghofe@13607
  1065
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1066
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1067
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1068
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1069
      end
wenzelm@15023
  1070
wenzelm@15023
  1071
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1072
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
skalberg@15570
  1073
            (Option.map (curry (disch false) prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1074
          (if changed > 0 then
berghofe@13607
  1075
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1076
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1077
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1078
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1079
berghofe@13607
  1080
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1081
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1082
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1083
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1084
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1085
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1086
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1087
          | SOME eqn =>
berghofe@13607
  1088
            let
berghofe@13607
  1089
              val prem' = rhs_of eqn;
berghofe@13607
  1090
              val tprems = map term_of prems;
skalberg@15570
  1091
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
berghofe@13607
  1092
                find_index_eq p tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1093
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1094
            in mut_impc prems concl rrss asms (prem' :: prems')
skalberg@15574
  1095
              (rrs' :: rrss') (asm' :: asms') (SOME (foldr (disch true)
skalberg@15574
  1096
                (Drule.imp_cong' eqn (reflexive (Drule.list_implies
skalberg@15574
  1097
                  (Library.drop (i, prems), concl)))) (Library.take (i, prems))) :: eqns) ss (length prems') ~1
berghofe@13607
  1098
            end
berghofe@13607
  1099
wenzelm@15023
  1100
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1101
     and nonmut_impc ct ss =
berghofe@13607
  1102
       let val (prem, conc) = dest_implies ct;
skalberg@15531
  1103
           val thm1 = if simprem then botc skel0 ss prem else NONE;
skalberg@15570
  1104
           val prem1 = getOpt (Option.map rhs_of thm1, prem);
wenzelm@15023
  1105
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1106
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1107
       in (case botc skel0 ss1 conc of
skalberg@15531
  1108
           NONE => (case thm1 of
skalberg@15531
  1109
               NONE => NONE
skalberg@15531
  1110
             | SOME thm1' => SOME (Drule.imp_cong' thm1' (reflexive conc)))
skalberg@15531
  1111
         | SOME thm2 =>
berghofe@13607
  1112
           let val thm2' = disch false (prem1, thm2)
berghofe@10413
  1113
           in (case thm1 of
skalberg@15531
  1114
               NONE => SOME thm2'
skalberg@15531
  1115
             | SOME thm1' =>
skalberg@15531
  1116
                 SOME (transitive (Drule.imp_cong' thm1' (reflexive conc)) thm2'))
berghofe@10413
  1117
           end)
berghofe@10413
  1118
       end
berghofe@10413
  1119
wenzelm@15023
  1120
 in try_botc end;
berghofe@10413
  1121
berghofe@10413
  1122
wenzelm@15023
  1123
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1124
berghofe@10413
  1125
(*
berghofe@10413
  1126
  Parameters:
berghofe@10413
  1127
    mode = (simplify A,
berghofe@10413
  1128
            use A in simplifying B,
berghofe@10413
  1129
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1130
           when simplifying A ==> B
berghofe@10413
  1131
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1132
*)
berghofe@10413
  1133
wenzelm@17705
  1134
val debug_bounds = ref false;
wenzelm@17705
  1135
wenzelm@17705
  1136
fun check_bounds ss ct = conditional (! debug_bounds) (fn () =>
wenzelm@17614
  1137
  let
wenzelm@17614
  1138
    val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@17614
  1139
    val bs = fold_aterms (fn Free (x, _) =>
wenzelm@17614
  1140
        if Term.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@17614
  1141
        then insert (op =) x else I
wenzelm@17614
  1142
      | _ => I) (term_of ct) [];
wenzelm@17705
  1143
  in
wenzelm@17705
  1144
    if null bs then ()
wenzelm@17723
  1145
    else print_term true ("Simplifier: term contains loose bounds: " ^ commas_quote bs) ss
wenzelm@17705
  1146
      (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@17705
  1147
  end);
wenzelm@17614
  1148
wenzelm@17882
  1149
fun rewrite_cterm mode prover raw_ss ct =
wenzelm@17882
  1150
  let
wenzelm@17882
  1151
    val {thy, t, maxidx, ...} = Thm.rep_cterm ct;
wenzelm@17882
  1152
    val ss = fallback_context thy raw_ss;
wenzelm@17882
  1153
    val _ = inc simp_depth;
wenzelm@17882
  1154
    val _ = conditional (!simp_depth mod 20 = 0) (fn () =>
wenzelm@17882
  1155
      warning ("Simplification depth " ^ string_of_int (! simp_depth)));
wenzelm@17882
  1156
    val _ = trace_cterm false "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:" ss ct;
wenzelm@17882
  1157
    val _ = check_bounds ss ct;
wenzelm@17882
  1158
    val res = bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct
wenzelm@17882
  1159
  in dec simp_depth; res end
wenzelm@17882
  1160
  handle exn => (dec simp_depth; raise exn);
berghofe@10413
  1161
wenzelm@11760
  1162
(*Rewrite a cterm*)
wenzelm@17897
  1163
fun rewrite_aux _ _ [] ct = Thm.reflexive ct
wenzelm@17897
  1164
  | rewrite_aux prover full thms ct =
wenzelm@17897
  1165
      rewrite_cterm (full, false, false) prover
wenzelm@17897
  1166
      (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1167
berghofe@10413
  1168
(*Rewrite a theorem*)
wenzelm@17897
  1169
fun simplify_aux _ _ [] th = th
wenzelm@17897
  1170
  | simplify_aux prover full thms th =
wenzelm@17897
  1171
      Drule.fconv_rule (rewrite_cterm (full, false, false) prover
wenzelm@17897
  1172
        (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms)) th;
berghofe@10413
  1173
wenzelm@15023
  1174
(*simple term rewriting -- no proof*)
wenzelm@16458
  1175
fun rewrite_term thy rules procs =
wenzelm@17203
  1176
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1177
wenzelm@15023
  1178
fun rewrite_thm mode prover ss = Drule.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1179
berghofe@10413
  1180
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
berghofe@10413
  1181
fun rewrite_goals_rule_aux _ []   th = th
berghofe@10413
  1182
  | rewrite_goals_rule_aux prover thms th =
skalberg@15001
  1183
      Drule.fconv_rule (Drule.goals_conv (K true) (rewrite_cterm (true, true, false) prover
wenzelm@17897
  1184
        (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1185
wenzelm@15023
  1186
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1187
fun rewrite_goal_rule mode prover ss i thm =
berghofe@10413
  1188
  if 0 < i  andalso  i <= nprems_of thm
skalberg@15011
  1189
  then Drule.fconv_rule (Drule.goals_conv (fn j => j=i) (rewrite_cterm mode prover ss)) thm
berghofe@10413
  1190
  else raise THM("rewrite_goal_rule",i,[thm]);
berghofe@10413
  1191
berghofe@10413
  1192
end;
berghofe@10413
  1193
wenzelm@11672
  1194
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
  1195
open BasicMetaSimplifier;