src/HOL/Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML
author blanchet
Fri Jun 11 17:10:23 2010 +0200 (2010-06-11)
changeset 37399 34f080a12063
parent 37349 3d7058e24b7a
child 37403 7e3d7af86215
permissions -rw-r--r--
proper polymorphic Skolemization of uncached facts + synchronization of caching and relevance filter
blanchet@35826
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML
wenzelm@33311
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@35826
     8
signature SLEDGEHAMMER_FACT_PREPROCESSOR =
wenzelm@21505
     9
sig
blanchet@37171
    10
  val chained_prefix: string
wenzelm@32955
    11
  val trace: bool Unsynchronized.ref
wenzelm@32955
    12
  val trace_msg: (unit -> string) -> unit
blanchet@37399
    13
  val skolem_Eps_pseudo_theory: string
blanchet@35865
    14
  val skolem_prefix: string
blanchet@36492
    15
  val skolem_infix: string
blanchet@37399
    16
  val is_skolem_const_name: string -> bool
blanchet@37399
    17
  val skolem_type_and_args: typ -> term -> typ * term list
wenzelm@27179
    18
  val cnf_axiom: theory -> thm -> thm list
wenzelm@27184
    19
  val multi_base_blacklist: string list
blanchet@37348
    20
  val is_theorem_bad_for_atps: thm -> bool
wenzelm@35568
    21
  val type_has_topsort: typ -> bool
blanchet@37348
    22
  val cnf_rules_pairs:
blanchet@37348
    23
    theory -> (string * thm) list -> (thm * (string * int)) list
blanchet@37348
    24
  val use_skolem_cache: bool Unsynchronized.ref
blanchet@37348
    25
    (* for emergency use where the Skolem cache causes problems *)
blanchet@36478
    26
  val strip_subgoal : thm -> int -> (string * typ) list * term list * term
blanchet@36398
    27
  val neg_clausify: thm -> thm list
blanchet@36398
    28
  val neg_conjecture_clauses:
blanchet@36398
    29
    Proof.context -> thm -> int -> thm list list * (string * typ) list
blanchet@36394
    30
  val neg_clausify_tac: Proof.context -> int -> tactic
wenzelm@24669
    31
  val setup: theory -> theory
wenzelm@21505
    32
end;
mengj@19196
    33
blanchet@35826
    34
structure Sledgehammer_Fact_Preprocessor : SLEDGEHAMMER_FACT_PREPROCESSOR =
paulson@15997
    35
struct
paulson@15347
    36
blanchet@35865
    37
open Sledgehammer_FOL_Clause
blanchet@35865
    38
blanchet@37171
    39
(* Used to label theorems chained into the goal. *)
blanchet@37171
    40
val chained_prefix = "Sledgehammer.chained_"
blanchet@37171
    41
wenzelm@32955
    42
val trace = Unsynchronized.ref false;
blanchet@35865
    43
fun trace_msg msg = if !trace then tracing (msg ()) else ();
blanchet@35865
    44
blanchet@37399
    45
val skolem_Eps_pseudo_theory = "Sledgehammer.Eps"
blanchet@35865
    46
val skolem_prefix = "sko_"
blanchet@36492
    47
val skolem_infix = "$"
wenzelm@32955
    48
wenzelm@33832
    49
fun freeze_thm th = #1 (Drule.legacy_freeze_thaw th);
paulson@20863
    50
wenzelm@35568
    51
val type_has_topsort = Term.exists_subtype
wenzelm@35568
    52
  (fn TFree (_, []) => true
wenzelm@35568
    53
    | TVar (_, []) => true
wenzelm@35568
    54
    | _ => false);
wenzelm@27184
    55
wenzelm@28544
    56
paulson@15997
    57
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    58
wenzelm@29064
    59
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    60
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    61
paulson@21430
    62
(*Converts an elim-rule into an equivalent theorem that does not have the
paulson@21430
    63
  predicate variable.  Leaves other theorems unchanged.  We simply instantiate the
paulson@21430
    64
  conclusion variable to False.*)
paulson@16009
    65
fun transform_elim th =
paulson@21430
    66
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    67
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    68
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    69
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    70
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
paulson@21430
    71
    | _ => th;
paulson@15997
    72
paulson@24742
    73
(*To enforce single-threading*)
paulson@24742
    74
exception Clausify_failure of theory;
wenzelm@20461
    75
wenzelm@28544
    76
paulson@16009
    77
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    78
blanchet@37399
    79
fun skolem_Eps_const T =
blanchet@37399
    80
  Const (@{const_name skolem_Eps}, (T --> HOLogic.boolT) --> T)
blanchet@37399
    81
blanchet@36492
    82
(*Keep the full complexity of the original name*)
blanchet@36492
    83
fun flatten_name s = space_implode "_X" (Long_Name.explode s);
blanchet@36492
    84
blanchet@37399
    85
fun skolem_name thm_name j var_name =
blanchet@37399
    86
  skolem_prefix ^ thm_name ^ "_" ^ Int.toString j ^
blanchet@36492
    87
  skolem_infix ^ (if var_name = "" then "g" else flatten_name var_name)
blanchet@36492
    88
blanchet@37399
    89
(* Hack: Could return false positives (e.g., a user happens to declare a
blanchet@37399
    90
   constant called "SomeTheory.sko_means_shoe_in_$wedish". *)
blanchet@37399
    91
val is_skolem_const_name =
blanchet@37399
    92
  Long_Name.base_name
blanchet@37399
    93
  #> String.isPrefix skolem_prefix andf String.isSubstring skolem_infix
blanchet@37399
    94
paulson@24742
    95
fun rhs_extra_types lhsT rhs =
paulson@24742
    96
  let val lhs_vars = Term.add_tfreesT lhsT []
paulson@24742
    97
      fun add_new_TFrees (TFree v) =
wenzelm@24821
    98
            if member (op =) lhs_vars v then I else insert (op =) (TFree v)
wenzelm@24821
    99
        | add_new_TFrees _ = I
paulson@24742
   100
      val rhs_consts = fold_aterms (fn Const c => insert (op =) c | _ => I) rhs []
paulson@24742
   101
  in fold (#2 #> Term.fold_atyps add_new_TFrees) rhs_consts [] end;
paulson@24742
   102
blanchet@37399
   103
fun skolem_type_and_args bound_T body =
blanchet@37399
   104
  let
blanchet@37399
   105
    val args1 = OldTerm.term_frees body
blanchet@37399
   106
    val Ts1 = map type_of args1
blanchet@37399
   107
    val Ts2 = rhs_extra_types (Ts1 ---> bound_T) body
blanchet@37399
   108
    val args2 = map (fn T => Free (gensym "vsk", T)) Ts2
blanchet@37399
   109
  in (Ts2 ---> Ts1 ---> bound_T, args2 @ args1) end
blanchet@37399
   110
blanchet@37348
   111
(* Traverse a theorem, declaring Skolem function definitions. String "s" is the
blanchet@37348
   112
   suggested prefix for the Skolem constants. *)
blanchet@37349
   113
fun declare_skolem_funs s th thy =
wenzelm@27174
   114
  let
blanchet@37399
   115
    val skolem_count = Unsynchronized.ref 0    (* FIXME ??? *)
blanchet@37399
   116
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p)))
blanchet@37399
   117
                (axs, thy) =
blanchet@37399
   118
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
   119
        let
blanchet@37399
   120
          val id = skolem_name s (Unsynchronized.inc skolem_count) s'
blanchet@37399
   121
          val (cT, args) = skolem_type_and_args T body
blanchet@37399
   122
          val rhs = list_abs_free (map dest_Free args,
blanchet@37399
   123
                                   skolem_Eps_const T $ body)
blanchet@37399
   124
                  (*Forms a lambda-abstraction over the formal parameters*)
blanchet@37399
   125
          val (c, thy) =
blanchet@37399
   126
            Sign.declare_const ((Binding.conceal (Binding.name id), cT), NoSyn) thy
blanchet@37399
   127
          val cdef = id ^ "_def"
blanchet@37399
   128
          val ((_, ax), thy) =
blanchet@37399
   129
            Thm.add_def true false (Binding.name cdef, Logic.mk_equals (c, rhs)) thy
blanchet@37399
   130
          val ax' = Drule.export_without_context ax
blanchet@37399
   131
        in dec_sko (subst_bound (list_comb (c, args), p)) (ax' :: axs, thy) end
blanchet@35963
   132
      | dec_sko (Const (@{const_name All}, _) $ (Abs (a, T, p))) thx =
blanchet@37399
   133
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
   134
        let val fname = Name.variant (OldTerm.add_term_names (p, [])) a
blanchet@37399
   135
        in dec_sko (subst_bound (Free (fname, T), p)) thx end
blanchet@35963
   136
      | dec_sko (@{const "op &"} $ p $ q) thx = dec_sko q (dec_sko p thx)
blanchet@35963
   137
      | dec_sko (@{const "op |"} $ p $ q) thx = dec_sko q (dec_sko p thx)
blanchet@35963
   138
      | dec_sko (@{const Trueprop} $ p) thx = dec_sko p thx
blanchet@37349
   139
      | dec_sko t thx = thx
blanchet@37349
   140
  in dec_sko (prop_of th) ([], thy) end
paulson@18141
   141
paulson@18141
   142
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@37399
   143
fun assume_skolem_funs inline s th =
blanchet@37399
   144
  let
blanchet@37399
   145
    val skolem_count = Unsynchronized.ref 0   (* FIXME ??? *)
blanchet@37399
   146
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) defs =
blanchet@37399
   147
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
   148
        let
blanchet@37399
   149
          val skos = map (#1 o Logic.dest_equals) defs  (*existing sko fns*)
blanchet@37399
   150
          val args = subtract (op =) skos (OldTerm.term_frees body) (*the formal parameters*)
blanchet@37399
   151
          val Ts = map type_of args
blanchet@37399
   152
          val cT = Ts ---> T (* FIXME: use "skolem_type_and_args" *)
blanchet@37399
   153
          val id = skolem_name s (Unsynchronized.inc skolem_count) s'
blanchet@37399
   154
          val c = Free (id, cT)
blanchet@37399
   155
          val rhs = list_abs_free (map dest_Free args, skolem_Eps_const T $ body)
blanchet@37399
   156
                (*Forms a lambda-abstraction over the formal parameters*)
blanchet@37399
   157
          val def = Logic.mk_equals (c, rhs)
blanchet@37399
   158
          val comb = list_comb (if inline then rhs else c, args)
blanchet@37399
   159
        in dec_sko (subst_bound (comb, p)) (def :: defs) end
blanchet@37399
   160
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) defs =
blanchet@37399
   161
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
   162
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37399
   163
        in dec_sko (subst_bound (Free(fname,T), p)) defs end
blanchet@37399
   164
      | dec_sko (@{const "op &"} $ p $ q) defs = dec_sko q (dec_sko p defs)
blanchet@37399
   165
      | dec_sko (@{const "op |"} $ p $ q) defs = dec_sko q (dec_sko p defs)
blanchet@37399
   166
      | dec_sko (@{const Trueprop} $ p) defs = dec_sko p defs
blanchet@37399
   167
      | dec_sko t defs = defs (*Do nothing otherwise*)
paulson@20419
   168
  in  dec_sko (prop_of th) []  end;
paulson@20419
   169
paulson@20419
   170
paulson@24827
   171
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
   172
paulson@20419
   173
(*Returns the vars of a theorem*)
paulson@20419
   174
fun vars_of_thm th =
wenzelm@22691
   175
  map (Thm.cterm_of (theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th []);
paulson@20419
   176
paulson@20419
   177
(*Make a version of fun_cong with a given variable name*)
paulson@20419
   178
local
paulson@20419
   179
    val fun_cong' = fun_cong RS asm_rl; (*renumber f, g to prevent clashes with (a,0)*)
paulson@20419
   180
    val cx = hd (vars_of_thm fun_cong');
paulson@20419
   181
    val ty = typ_of (ctyp_of_term cx);
paulson@20445
   182
    val thy = theory_of_thm fun_cong;
paulson@20419
   183
    fun mkvar a = cterm_of thy (Var((a,0),ty));
paulson@20419
   184
in
paulson@20419
   185
fun xfun_cong x = Thm.instantiate ([], [(cx, mkvar x)]) fun_cong'
paulson@20419
   186
end;
paulson@20419
   187
paulson@20863
   188
(*Removes the lambdas from an equation of the form t = (%x. u).  A non-negative n,
paulson@20863
   189
  serves as an upper bound on how many to remove.*)
paulson@20863
   190
fun strip_lambdas 0 th = th
wenzelm@24669
   191
  | strip_lambdas n th =
paulson@20863
   192
      case prop_of th of
blanchet@35963
   193
          _ $ (Const (@{const_name "op ="}, _) $ _ $ Abs (x, _, _)) =>
wenzelm@24669
   194
              strip_lambdas (n-1) (freeze_thm (th RS xfun_cong x))
wenzelm@24669
   195
        | _ => th;
paulson@20419
   196
wenzelm@24669
   197
val lambda_free = not o Term.has_abs;
wenzelm@20461
   198
wenzelm@32010
   199
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
   200
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   201
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   202
paulson@24827
   203
(*FIXME: requires more use of cterm constructors*)
paulson@24827
   204
fun abstract ct =
wenzelm@28544
   205
  let
wenzelm@28544
   206
      val thy = theory_of_cterm ct
paulson@25256
   207
      val Abs(x,_,body) = term_of ct
blanchet@35963
   208
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
paulson@24827
   209
      val cxT = ctyp_of thy xT and cbodyT = ctyp_of thy bodyT
wenzelm@27184
   210
      fun makeK() = instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)] @{thm abs_K}
paulson@24827
   211
  in
paulson@24827
   212
      case body of
paulson@24827
   213
          Const _ => makeK()
paulson@24827
   214
        | Free _ => makeK()
paulson@24827
   215
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   216
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   217
        | rator$rand =>
wenzelm@27184
   218
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   219
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   220
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   221
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   222
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   223
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   224
                 in
wenzelm@27179
   225
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   226
                 end
wenzelm@27179
   227
               else (*C*)
wenzelm@27179
   228
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   229
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   230
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   231
                 in
wenzelm@27179
   232
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   233
                 end
wenzelm@27184
   234
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   235
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   236
               else (*B*)
wenzelm@27179
   237
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   238
                     val crator = cterm_of thy rator
wenzelm@27184
   239
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   240
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   241
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   242
            else makeK()
blanchet@37349
   243
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   244
  end;
paulson@20863
   245
blanchet@37349
   246
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@37349
   247
fun do_introduce_combinators ct =
blanchet@37349
   248
  if lambda_free (term_of ct) then
blanchet@37349
   249
    Thm.reflexive ct
blanchet@37349
   250
  else case term_of ct of
blanchet@37349
   251
    Abs _ =>
blanchet@37349
   252
    let
blanchet@37349
   253
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   254
      val (v, _) = dest_Free (term_of cv)
blanchet@37349
   255
      val u_th = do_introduce_combinators cta
blanchet@37349
   256
      val cu = Thm.rhs_of u_th
blanchet@37349
   257
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   258
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   259
  | _ $ _ =>
blanchet@37349
   260
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@37349
   261
        Thm.combination (do_introduce_combinators ct1)
blanchet@37349
   262
                        (do_introduce_combinators ct2)
blanchet@37349
   263
    end
blanchet@37349
   264
blanchet@37349
   265
fun introduce_combinators th =
blanchet@37349
   266
  if lambda_free (prop_of th) then
blanchet@37349
   267
    th
paulson@24827
   268
  else
blanchet@37349
   269
    let
blanchet@37349
   270
      val th = Drule.eta_contraction_rule th
blanchet@37349
   271
      val eqth = do_introduce_combinators (cprop_of th)
blanchet@37349
   272
    in Thm.equal_elim eqth th end
blanchet@37349
   273
    handle THM (msg, _, _) =>
blanchet@37349
   274
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   275
                     Display.string_of_thm_without_context th ^
blanchet@37349
   276
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   277
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   278
            TrueI)
paulson@16009
   279
paulson@16009
   280
(*cterms are used throughout for efficiency*)
wenzelm@29064
   281
val cTrueprop = Thm.cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   282
paulson@16009
   283
(*cterm version of mk_cTrueprop*)
paulson@16009
   284
fun c_mkTrueprop A = Thm.capply cTrueprop A;
paulson@16009
   285
paulson@16009
   286
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   287
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   288
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   289
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   290
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   291
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   292
wenzelm@20461
   293
(*Given the definition of a Skolem function, return a theorem to replace
wenzelm@20461
   294
  an existential formula by a use of that function.
paulson@18141
   295
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@37399
   296
fun skolem_theorem_of_def inline def =
blanchet@37399
   297
  let
blanchet@37399
   298
      val (c,rhs) = Thm.dest_equals (cprop_of (freeze_thm def))
paulson@16009
   299
      val (ch, frees) = c_variant_abs_multi (rhs, [])
paulson@18141
   300
      val (chilbert,cabs) = Thm.dest_comb ch
wenzelm@26627
   301
      val thy = Thm.theory_of_cterm chilbert
wenzelm@26627
   302
      val t = Thm.term_of chilbert
blanchet@37399
   303
      val T =
blanchet@37399
   304
        case t of
blanchet@37399
   305
          Const (@{const_name skolem_Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@37399
   306
        | _ => raise THM ("skolem_theorem_of_def: expected \"Eps\"", 0, [def])
wenzelm@22596
   307
      val cex = Thm.cterm_of thy (HOLogic.exists_const T)
paulson@16009
   308
      val ex_tm = c_mkTrueprop (Thm.capply cex cabs)
blanchet@37399
   309
      and conc =
blanchet@37399
   310
        Drule.list_comb (if inline then rhs else c, frees)
blanchet@37399
   311
        |> Drule.beta_conv cabs |> c_mkTrueprop
blanchet@37399
   312
      fun tacf [prem] =
blanchet@37399
   313
        (if inline then all_tac else rewrite_goals_tac [def])
blanchet@37399
   314
        THEN rtac (prem RS @{thm skolem_someI_ex}) 1
wenzelm@23352
   315
  in  Goal.prove_internal [ex_tm] conc tacf
paulson@18141
   316
       |> forall_intr_list frees
wenzelm@26653
   317
       |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
wenzelm@35845
   318
       |> Thm.varifyT_global
paulson@18141
   319
  end;
paulson@16009
   320
paulson@24742
   321
paulson@20863
   322
(*Converts an Isabelle theorem (intro, elim or simp format, even higher-order) into NNF.*)
paulson@24937
   323
fun to_nnf th ctxt0 =
wenzelm@27179
   324
  let val th1 = th |> transform_elim |> zero_var_indexes
wenzelm@32262
   325
      val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
wenzelm@32262
   326
      val th3 = th2
wenzelm@35625
   327
        |> Conv.fconv_rule Object_Logic.atomize
wenzelm@32262
   328
        |> Meson.make_nnf ctxt |> strip_lambdas ~1
paulson@24937
   329
  in  (th3, ctxt)  end;
paulson@16009
   330
paulson@18141
   331
(*Generate Skolem functions for a theorem supplied in nnf*)
blanchet@37399
   332
fun skolem_theorems_of_assume inline s th =
blanchet@37399
   333
  map (skolem_theorem_of_def inline o Thm.assume o cterm_of (theory_of_thm th))
blanchet@37399
   334
      (assume_skolem_funs inline s th)
paulson@18141
   335
paulson@25007
   336
blanchet@37349
   337
(*** Blacklisting (more in "Sledgehammer_Fact_Filter") ***)
paulson@25007
   338
blanchet@37348
   339
val max_lambda_nesting = 3
wenzelm@27184
   340
blanchet@37348
   341
fun term_has_too_many_lambdas max (t1 $ t2) =
blanchet@37348
   342
    exists (term_has_too_many_lambdas max) [t1, t2]
blanchet@37348
   343
  | term_has_too_many_lambdas max (Abs (_, _, t)) =
blanchet@37348
   344
    max = 0 orelse term_has_too_many_lambdas (max - 1) t
blanchet@37348
   345
  | term_has_too_many_lambdas _ _ = false
paulson@25007
   346
blanchet@37348
   347
fun is_formula_type T = (T = HOLogic.boolT orelse T = propT)
paulson@25007
   348
blanchet@37348
   349
(* Don't count nested lambdas at the level of formulas, since they are
blanchet@37348
   350
   quantifiers. *)
blanchet@37348
   351
fun formula_has_too_many_lambdas Ts (Abs (_, T, t)) =
blanchet@37348
   352
    formula_has_too_many_lambdas (T :: Ts) t
blanchet@37348
   353
  | formula_has_too_many_lambdas Ts t =
blanchet@37348
   354
    if is_formula_type (fastype_of1 (Ts, t)) then
blanchet@37348
   355
      exists (formula_has_too_many_lambdas Ts) (#2 (strip_comb t))
blanchet@37348
   356
    else
blanchet@37348
   357
      term_has_too_many_lambdas max_lambda_nesting t
paulson@25007
   358
blanchet@37348
   359
(* The max apply depth of any "metis" call in "Metis_Examples" (on 31-10-2007)
blanchet@37348
   360
   was 11. *)
blanchet@37348
   361
val max_apply_depth = 15
wenzelm@27184
   362
blanchet@37348
   363
fun apply_depth (f $ t) = Int.max (apply_depth f, apply_depth t + 1)
blanchet@37348
   364
  | apply_depth (Abs (_, _, t)) = apply_depth t
blanchet@37348
   365
  | apply_depth _ = 0
paulson@25256
   366
blanchet@37348
   367
fun is_formula_too_complex t =
blanchet@37348
   368
  apply_depth t > max_apply_depth orelse Meson.too_many_clauses NONE t orelse
blanchet@37348
   369
  formula_has_too_many_lambdas [] t
wenzelm@27184
   370
paulson@25243
   371
fun is_strange_thm th =
paulson@25243
   372
  case head_of (concl_of th) of
blanchet@35963
   373
      Const (a, _) => (a <> @{const_name Trueprop} andalso
blanchet@35963
   374
                       a <> @{const_name "=="})
paulson@25243
   375
    | _ => false;
paulson@25243
   376
blanchet@37348
   377
fun is_theorem_bad_for_atps thm =
blanchet@37348
   378
  let val t = prop_of thm in
blanchet@37348
   379
    is_formula_too_complex t orelse exists_type type_has_topsort t orelse
blanchet@37348
   380
    is_strange_thm thm
blanchet@37348
   381
  end
paulson@25243
   382
blanchet@35963
   383
(* FIXME: put other record thms here, or declare as "no_atp" *)
paulson@25007
   384
val multi_base_blacklist =
blanchet@35963
   385
  ["defs", "select_defs", "update_defs", "induct", "inducts", "split", "splits",
blanchet@35963
   386
   "split_asm", "cases", "ext_cases"];
paulson@25007
   387
paulson@22731
   388
fun fake_name th =
wenzelm@27865
   389
  if Thm.has_name_hint th then flatten_name (Thm.get_name_hint th)
paulson@22731
   390
  else gensym "unknown_thm_";
paulson@22731
   391
wenzelm@27184
   392
(*Skolemize a named theorem, with Skolem functions as additional premises.*)
blanchet@37399
   393
fun skolemize_theorem s th =
blanchet@37345
   394
  if member (op =) multi_base_blacklist (Long_Name.base_name s) orelse
blanchet@37348
   395
     is_theorem_bad_for_atps th then
blanchet@37345
   396
    []
wenzelm@27184
   397
  else
wenzelm@27184
   398
    let
wenzelm@36603
   399
      val ctxt0 = Variable.global_thm_context th
blanchet@37349
   400
      val (nnfth, ctxt) = to_nnf th ctxt0
blanchet@37399
   401
      val inline = exists_type (exists_subtype (can dest_TFree)) (prop_of nnfth)
blanchet@37399
   402
      val defs = skolem_theorems_of_assume inline s nnfth
blanchet@37349
   403
      val (cnfs, ctxt) = Meson.make_cnf defs nnfth ctxt
blanchet@37349
   404
    in
blanchet@37349
   405
      cnfs |> map introduce_combinators
blanchet@37349
   406
           |> Variable.export ctxt ctxt0
blanchet@37349
   407
           |> Meson.finish_cnf
blanchet@37349
   408
    end
blanchet@37349
   409
    handle THM _ => []
wenzelm@27184
   410
paulson@24742
   411
(*The cache prevents repeated clausification of a theorem, and also repeated declaration of
paulson@24742
   412
  Skolem functions.*)
wenzelm@33522
   413
structure ThmCache = Theory_Data
wenzelm@22846
   414
(
wenzelm@28544
   415
  type T = thm list Thmtab.table * unit Symtab.table;
wenzelm@28544
   416
  val empty = (Thmtab.empty, Symtab.empty);
wenzelm@26618
   417
  val extend = I;
wenzelm@33522
   418
  fun merge ((cache1, seen1), (cache2, seen2)) : T =
wenzelm@27184
   419
    (Thmtab.merge (K true) (cache1, cache2), Symtab.merge (K true) (seen1, seen2));
wenzelm@22846
   420
);
paulson@22516
   421
wenzelm@27184
   422
val lookup_cache = Thmtab.lookup o #1 o ThmCache.get;
wenzelm@27184
   423
val already_seen = Symtab.defined o #2 o ThmCache.get;
wenzelm@20461
   424
wenzelm@27184
   425
val update_cache = ThmCache.map o apfst o Thmtab.update;
wenzelm@27184
   426
fun mark_seen name = ThmCache.map (apsnd (Symtab.update (name, ())));
paulson@25007
   427
blanchet@36228
   428
(* Convert Isabelle theorems into axiom clauses. *)
wenzelm@27179
   429
fun cnf_axiom thy th0 =
wenzelm@27184
   430
  let val th = Thm.transfer thy th0 in
wenzelm@27184
   431
    case lookup_cache thy th of
blanchet@37399
   432
      NONE => map Thm.close_derivation (skolemize_theorem (fake_name th) th)
wenzelm@27184
   433
    | SOME cls => cls
paulson@22516
   434
  end;
paulson@15347
   435
paulson@18141
   436
paulson@22471
   437
(**** Translate a set of theorems into CNF ****)
paulson@15347
   438
paulson@19894
   439
fun pair_name_cls k (n, []) = []
paulson@19894
   440
  | pair_name_cls k (n, cls::clss) = (cls, (n,k)) :: pair_name_cls (k+1) (n, clss)
wenzelm@20461
   441
wenzelm@27179
   442
fun cnf_rules_pairs_aux _ pairs [] = pairs
wenzelm@27179
   443
  | cnf_rules_pairs_aux thy pairs ((name,th)::ths) =
wenzelm@27179
   444
      let val pairs' = (pair_name_cls 0 (name, cnf_axiom thy th)) @ pairs
blanchet@35826
   445
                       handle THM _ => pairs |
blanchet@35865
   446
                              CLAUSE _ => pairs
wenzelm@27179
   447
      in  cnf_rules_pairs_aux thy pairs' ths  end;
wenzelm@20461
   448
paulson@21290
   449
(*The combination of rev and tail recursion preserves the original order*)
wenzelm@27179
   450
fun cnf_rules_pairs thy l = cnf_rules_pairs_aux thy [] (rev l);
mengj@19353
   451
mengj@19196
   452
blanchet@35865
   453
(**** Convert all facts of the theory into FOL or HOL clauses ****)
paulson@15347
   454
wenzelm@28544
   455
local
wenzelm@28544
   456
wenzelm@28544
   457
fun skolem_def (name, th) thy =
wenzelm@36603
   458
  let val ctxt0 = Variable.global_thm_context th in
blanchet@37348
   459
    case try (to_nnf th) ctxt0 of
wenzelm@28544
   460
      NONE => (NONE, thy)
blanchet@37349
   461
    | SOME (nnfth, ctxt) =>
blanchet@37348
   462
      let val (defs, thy') = declare_skolem_funs (flatten_name name) nnfth thy
blanchet@37349
   463
      in (SOME (th, ctxt0, ctxt, nnfth, defs), thy') end
wenzelm@28544
   464
  end;
paulson@24742
   465
blanchet@37349
   466
fun skolem_cnfs (th, ctxt0, ctxt, nnfth, defs) =
wenzelm@28544
   467
  let
blanchet@37399
   468
    val (cnfs, ctxt) =
blanchet@37399
   469
      Meson.make_cnf (map (skolem_theorem_of_def false) defs) nnfth ctxt
wenzelm@28544
   470
    val cnfs' = cnfs
blanchet@37349
   471
      |> map introduce_combinators
blanchet@37349
   472
      |> Variable.export ctxt ctxt0
wenzelm@28544
   473
      |> Meson.finish_cnf
wenzelm@28544
   474
      |> map Thm.close_derivation;
wenzelm@28544
   475
    in (th, cnfs') end;
wenzelm@28544
   476
wenzelm@28544
   477
in
paulson@24742
   478
wenzelm@27184
   479
fun saturate_skolem_cache thy =
wenzelm@28544
   480
  let
wenzelm@33306
   481
    val facts = PureThy.facts_of thy;
wenzelm@33306
   482
    val new_facts = (facts, []) |-> Facts.fold_static (fn (name, ths) =>
wenzelm@33306
   483
      if Facts.is_concealed facts name orelse already_seen thy name then I
wenzelm@33306
   484
      else cons (name, ths));
wenzelm@28544
   485
    val new_thms = (new_facts, []) |-> fold (fn (name, ths) =>
blanchet@37399
   486
      if member (op =) multi_base_blacklist (Long_Name.base_name name) then
blanchet@37399
   487
        I
blanchet@37399
   488
      else
blanchet@37399
   489
        fold_index (fn (i, th) =>
blanchet@37399
   490
          if is_theorem_bad_for_atps th orelse is_some (lookup_cache thy th) then
blanchet@37399
   491
            I
blanchet@37399
   492
          else
blanchet@37399
   493
            cons (name ^ "_" ^ string_of_int (i + 1), Thm.transfer thy th)) ths)
wenzelm@28544
   494
  in
blanchet@37399
   495
    if null new_facts then
blanchet@37399
   496
      NONE
wenzelm@28544
   497
    else
wenzelm@28544
   498
      let
wenzelm@28544
   499
        val (defs, thy') = thy
wenzelm@28544
   500
          |> fold (mark_seen o #1) new_facts
wenzelm@28544
   501
          |> fold_map skolem_def (sort_distinct (Thm.thm_ord o pairself snd) new_thms)
wenzelm@28544
   502
          |>> map_filter I;
wenzelm@29368
   503
        val cache_entries = Par_List.map skolem_cnfs defs;
wenzelm@28544
   504
      in SOME (fold update_cache cache_entries thy') end
wenzelm@28544
   505
  end;
wenzelm@27184
   506
wenzelm@28544
   507
end;
paulson@24854
   508
blanchet@37348
   509
val use_skolem_cache = Unsynchronized.ref true
wenzelm@27184
   510
wenzelm@27184
   511
fun clause_cache_endtheory thy =
blanchet@37348
   512
  if !use_skolem_cache then saturate_skolem_cache thy else NONE
wenzelm@27184
   513
paulson@20457
   514
paulson@22516
   515
(*The cache can be kept smaller by inspecting the prop of each thm. Can ignore all that are
paulson@22516
   516
  lambda_free, but then the individual theory caches become much bigger.*)
paulson@21071
   517
wenzelm@27179
   518
blanchet@36398
   519
fun strip_subgoal goal i =
blanchet@36398
   520
  let
blanchet@36398
   521
    val (t, frees) = Logic.goal_params (prop_of goal) i
blanchet@36398
   522
    val hyp_ts = t |> Logic.strip_assums_hyp |> map (curry subst_bounds frees)
blanchet@36398
   523
    val concl_t = t |> Logic.strip_assums_concl |> curry subst_bounds frees
blanchet@36478
   524
  in (rev (map dest_Free frees), hyp_ts, concl_t) end
blanchet@36398
   525
paulson@21999
   526
(*** Converting a subgoal into negated conjecture clauses. ***)
paulson@21999
   527
wenzelm@32262
   528
fun neg_skolemize_tac ctxt =
blanchet@37332
   529
  EVERY' [rtac ccontr, Object_Logic.atomize_prems_tac, Meson.skolemize_tac ctxt]
blanchet@36398
   530
blanchet@35869
   531
val neg_clausify =
blanchet@37349
   532
  single
blanchet@37349
   533
  #> Meson.make_clauses_unsorted
blanchet@37349
   534
  #> map introduce_combinators
blanchet@37349
   535
  #> Meson.finish_cnf
paulson@21999
   536
wenzelm@32257
   537
fun neg_conjecture_clauses ctxt st0 n =
wenzelm@32257
   538
  let
blanchet@37332
   539
    (* "Option" is thrown if the assumptions contain schematic variables. *)
blanchet@37332
   540
    val st = Seq.hd (neg_skolemize_tac ctxt n st0) handle Option.Option => st0
blanchet@37332
   541
    val ({params, prems, ...}, _) =
blanchet@37332
   542
      Subgoal.focus (Variable.set_body false ctxt) n st
blanchet@37332
   543
  in (map neg_clausify prems, map (dest_Free o term_of o #2) params) end
paulson@21999
   544
wenzelm@24669
   545
(*Conversion of a subgoal to conjecture clauses. Each clause has
paulson@21999
   546
  leading !!-bound universal variables, to express generality. *)
wenzelm@32257
   547
fun neg_clausify_tac ctxt =
wenzelm@32262
   548
  neg_skolemize_tac ctxt THEN'
wenzelm@32257
   549
  SUBGOAL (fn (prop, i) =>
wenzelm@32257
   550
    let val ts = Logic.strip_assums_hyp prop in
wenzelm@32257
   551
      EVERY'
wenzelm@32283
   552
       [Subgoal.FOCUS
wenzelm@32257
   553
         (fn {prems, ...} =>
wenzelm@32257
   554
           (Method.insert_tac
blanchet@36398
   555
             (map forall_intr_vars (maps neg_clausify prems)) i)) ctxt,
wenzelm@32257
   556
        REPEAT_DETERM_N (length ts) o etac thin_rl] i
paulson@21999
   557
     end);
paulson@21999
   558
wenzelm@27184
   559
wenzelm@27184
   560
(** setup **)
wenzelm@27184
   561
wenzelm@27184
   562
val setup =
blanchet@37348
   563
  perhaps saturate_skolem_cache
blanchet@37348
   564
  #> Theory.at_end clause_cache_endtheory
paulson@18510
   565
wenzelm@20461
   566
end;