src/HOL/Map.thy
author nipkow
Sun Nov 21 18:39:25 2004 +0100 (2004-11-21)
changeset 15304 3514ca74ac54
parent 15303 eedbb8d22ca2
child 15369 090b16d6c6e0
permissions -rw-r--r--
Added more lemmas
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
nipkow@15131
    11
theory Map
nipkow@15140
    12
imports List
nipkow@15131
    13
begin
nipkow@3981
    14
webertj@13908
    15
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
oheimb@14100
    16
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    17
nipkow@3981
    18
consts
oheimb@5300
    19
chg_map	:: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
oheimb@14100
    20
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
oheimb@14100
    21
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90)
oheimb@5300
    22
dom	:: "('a ~=> 'b) => 'a set"
oheimb@5300
    23
ran	:: "('a ~=> 'b) => 'b set"
oheimb@5300
    24
map_of	:: "('a * 'b)list => 'a ~=> 'b"
oheimb@5300
    25
map_upds:: "('a ~=> 'b) => 'a list => 'b list => 
nipkow@14180
    26
	    ('a ~=> 'b)"
oheimb@14100
    27
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
oheimb@14100
    28
	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
oheimb@14100
    29
map_subst::"('a ~=> 'b) => 'b => 'b => 
oheimb@14100
    30
	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
nipkow@13910
    31
map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
nipkow@13910
    32
nipkow@14739
    33
syntax
nipkow@14739
    34
  fun_map_comp :: "('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55)
nipkow@14739
    35
translations
nipkow@14739
    36
  "f o_m m" == "option_map f o m"
nipkow@14739
    37
nipkow@14180
    38
nonterminals
nipkow@14180
    39
  maplets maplet
nipkow@14180
    40
oheimb@5300
    41
syntax
nipkow@14180
    42
  empty	    ::  "'a ~=> 'b"
nipkow@14180
    43
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    44
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    45
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    46
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    47
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    48
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    49
wenzelm@12114
    50
syntax (xsymbols)
nipkow@14739
    51
  "~=>"     :: "[type, type] => type"    (infixr "\<rightharpoonup>" 0)
nipkow@14739
    52
nipkow@14739
    53
  fun_map_comp :: "('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55)
nipkow@14739
    54
nipkow@14180
    55
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    56
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    57
oheimb@14100
    58
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90)
oheimb@14100
    59
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
oheimb@14100
    60
				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
oheimb@14100
    61
  map_subst :: "('a ~=> 'b) => 'b => 'b => 
oheimb@14100
    62
	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
oheimb@14100
    63
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
oheimb@14100
    64
					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
oheimb@5300
    65
oheimb@5300
    66
translations
nipkow@13890
    67
  "empty"    => "_K None"
nipkow@13890
    68
  "empty"    <= "%x. None"
oheimb@5300
    69
oheimb@14100
    70
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
nipkow@3981
    71
nipkow@14180
    72
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    73
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    74
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
nipkow@14180
    75
  "_Map ms"                     == "_MapUpd empty ms"
nipkow@14180
    76
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    77
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    78
nipkow@3981
    79
defs
webertj@13908
    80
chg_map_def:  "chg_map f a m == case m a of None => m | Some b => m(a|->f b)"
nipkow@3981
    81
oheimb@14100
    82
map_add_def:   "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y"
oheimb@14100
    83
restrict_map_def: "m|_A == %x. if x : A then m x else None"
nipkow@14025
    84
nipkow@14025
    85
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
oheimb@14100
    86
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
oheimb@14100
    87
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
nipkow@3981
    88
webertj@13908
    89
dom_def: "dom(m) == {a. m a ~= None}"
nipkow@14025
    90
ran_def: "ran(m) == {b. EX a. m a = Some b}"
nipkow@3981
    91
nipkow@14376
    92
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2  ==  ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a"
nipkow@13910
    93
berghofe@5183
    94
primrec
berghofe@5183
    95
  "map_of [] = empty"
oheimb@5300
    96
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    97
webertj@13908
    98
oheimb@14100
    99
subsection {* @{term empty} *}
webertj@13908
   100
nipkow@13910
   101
lemma empty_upd_none[simp]: "empty(x := None) = empty"
webertj@13908
   102
apply (rule ext)
webertj@13908
   103
apply (simp (no_asm))
webertj@13908
   104
done
nipkow@13910
   105
webertj@13908
   106
webertj@13908
   107
(* FIXME: what is this sum_case nonsense?? *)
nipkow@13910
   108
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
webertj@13908
   109
apply (rule ext)
webertj@13908
   110
apply (simp (no_asm) split add: sum.split)
webertj@13908
   111
done
webertj@13908
   112
oheimb@14100
   113
subsection {* @{term map_upd} *}
webertj@13908
   114
webertj@13908
   115
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
webertj@13908
   116
apply (rule ext)
webertj@13908
   117
apply (simp (no_asm_simp))
webertj@13908
   118
done
webertj@13908
   119
nipkow@13910
   120
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty"
webertj@13908
   121
apply safe
paulson@14208
   122
apply (drule_tac x = k in fun_cong)
webertj@13908
   123
apply (simp (no_asm_use))
webertj@13908
   124
done
webertj@13908
   125
oheimb@14100
   126
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y"
oheimb@14100
   127
by (drule fun_cong [of _ _ a], auto)
oheimb@14100
   128
oheimb@14100
   129
lemma map_upd_Some_unfold: 
oheimb@14100
   130
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
oheimb@14100
   131
by auto
oheimb@14100
   132
nipkow@15303
   133
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@15303
   134
by fastsimp
nipkow@15303
   135
webertj@13908
   136
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
webertj@13908
   137
apply (unfold image_def)
webertj@13908
   138
apply (simp (no_asm_use) add: full_SetCompr_eq)
webertj@13908
   139
apply (rule finite_subset)
paulson@14208
   140
prefer 2 apply assumption
webertj@13908
   141
apply auto
webertj@13908
   142
done
webertj@13908
   143
webertj@13908
   144
webertj@13908
   145
(* FIXME: what is this sum_case nonsense?? *)
oheimb@14100
   146
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *}
webertj@13908
   147
nipkow@13910
   148
lemma sum_case_map_upd_empty[simp]:
nipkow@13910
   149
 "sum_case (m(k|->y)) empty =  (sum_case m empty)(Inl k|->y)"
webertj@13908
   150
apply (rule ext)
webertj@13908
   151
apply (simp (no_asm) split add: sum.split)
webertj@13908
   152
done
webertj@13908
   153
nipkow@13910
   154
lemma sum_case_empty_map_upd[simp]:
nipkow@13910
   155
 "sum_case empty (m(k|->y)) =  (sum_case empty m)(Inr k|->y)"
webertj@13908
   156
apply (rule ext)
webertj@13908
   157
apply (simp (no_asm) split add: sum.split)
webertj@13908
   158
done
webertj@13908
   159
nipkow@13910
   160
lemma sum_case_map_upd_map_upd[simp]:
nipkow@13910
   161
 "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
webertj@13908
   162
apply (rule ext)
webertj@13908
   163
apply (simp (no_asm) split add: sum.split)
webertj@13908
   164
done
webertj@13908
   165
webertj@13908
   166
oheimb@14100
   167
subsection {* @{term chg_map} *}
webertj@13908
   168
nipkow@13910
   169
lemma chg_map_new[simp]: "m a = None   ==> chg_map f a m = m"
paulson@14208
   170
by (unfold chg_map_def, auto)
webertj@13908
   171
nipkow@13910
   172
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)"
paulson@14208
   173
by (unfold chg_map_def, auto)
webertj@13908
   174
oheimb@14537
   175
lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b"
oheimb@14537
   176
by (auto simp: chg_map_def split add: option.split)
oheimb@14537
   177
webertj@13908
   178
oheimb@14100
   179
subsection {* @{term map_of} *}
webertj@13908
   180
nipkow@15304
   181
lemma map_of_eq_None_iff:
nipkow@15304
   182
 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@15304
   183
by (induct xys) simp_all
nipkow@15304
   184
nipkow@15304
   185
lemma map_of_is_SomeD:
nipkow@15304
   186
 "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
nipkow@15304
   187
apply(induct xys)
nipkow@15304
   188
 apply simp
nipkow@15304
   189
apply(clarsimp split:if_splits)
nipkow@15304
   190
done
nipkow@15304
   191
nipkow@15304
   192
lemma map_of_eq_Some_iff[simp]:
nipkow@15304
   193
 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@15304
   194
apply(induct xys)
nipkow@15304
   195
 apply(simp)
nipkow@15304
   196
apply(auto simp:map_of_eq_None_iff[symmetric])
nipkow@15304
   197
done
nipkow@15304
   198
nipkow@15304
   199
lemma Some_eq_map_of_iff[simp]:
nipkow@15304
   200
 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
nipkow@15304
   201
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric])
nipkow@15304
   202
nipkow@15304
   203
lemma [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
nipkow@15304
   204
  \<Longrightarrow> map_of xys x = Some y"
nipkow@15304
   205
apply (induct xys)
nipkow@15304
   206
 apply simp
nipkow@15304
   207
apply force
nipkow@15304
   208
done
nipkow@15304
   209
nipkow@15110
   210
lemma map_of_zip_is_None[simp]:
nipkow@15110
   211
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@15110
   212
by (induct rule:list_induct2, simp_all)
nipkow@15110
   213
nipkow@15110
   214
lemma finite_range_map_of: "finite (range (map_of xys))"
paulson@15251
   215
apply (induct xys)
nipkow@15110
   216
apply  (simp_all (no_asm) add: image_constant)
nipkow@15110
   217
apply (rule finite_subset)
nipkow@15110
   218
prefer 2 apply assumption
nipkow@15110
   219
apply auto
nipkow@15110
   220
done
nipkow@15110
   221
webertj@13908
   222
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs"
paulson@15251
   223
by (induct "xs", auto)
webertj@13908
   224
webertj@13908
   225
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x -->  
webertj@13908
   226
   map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
paulson@15251
   227
apply (induct "t")
webertj@13908
   228
apply  (auto simp add: inj_eq)
webertj@13908
   229
done
webertj@13908
   230
webertj@13908
   231
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)"
paulson@15251
   232
by (induct "l", auto)
webertj@13908
   233
webertj@13908
   234
lemma map_of_filter_in: 
webertj@13908
   235
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z"
webertj@13908
   236
apply (rule mp)
paulson@14208
   237
prefer 2 apply assumption
webertj@13908
   238
apply (erule thin_rl)
paulson@15251
   239
apply (induct "xs", auto)
webertj@13908
   240
done
webertj@13908
   241
webertj@13908
   242
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
paulson@15251
   243
by (induct "xs", auto)
webertj@13908
   244
webertj@13908
   245
oheimb@14100
   246
subsection {* @{term option_map} related *}
webertj@13908
   247
nipkow@13910
   248
lemma option_map_o_empty[simp]: "option_map f o empty = empty"
webertj@13908
   249
apply (rule ext)
webertj@13908
   250
apply (simp (no_asm))
webertj@13908
   251
done
webertj@13908
   252
nipkow@13910
   253
lemma option_map_o_map_upd[simp]:
nipkow@13910
   254
 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
webertj@13908
   255
apply (rule ext)
webertj@13908
   256
apply (simp (no_asm))
webertj@13908
   257
done
webertj@13908
   258
webertj@13908
   259
oheimb@14100
   260
subsection {* @{text "++"} *}
webertj@13908
   261
nipkow@14025
   262
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@14025
   263
apply (unfold map_add_def)
webertj@13908
   264
apply (simp (no_asm))
webertj@13908
   265
done
webertj@13908
   266
nipkow@14025
   267
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@14025
   268
apply (unfold map_add_def)
webertj@13908
   269
apply (rule ext)
webertj@13908
   270
apply (simp split add: option.split)
webertj@13908
   271
done
webertj@13908
   272
nipkow@14025
   273
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@14025
   274
apply(rule ext)
nipkow@14025
   275
apply(simp add: map_add_def split:option.split)
nipkow@14025
   276
done
nipkow@14025
   277
nipkow@14025
   278
lemma map_add_Some_iff: 
webertj@13908
   279
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@14025
   280
apply (unfold map_add_def)
webertj@13908
   281
apply (simp (no_asm) split add: option.split)
webertj@13908
   282
done
webertj@13908
   283
nipkow@14025
   284
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard]
nipkow@14025
   285
declare map_add_SomeD [dest!]
webertj@13908
   286
nipkow@14025
   287
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
paulson@14208
   288
by (subst map_add_Some_iff, fast)
webertj@13908
   289
nipkow@14025
   290
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@14025
   291
apply (unfold map_add_def)
webertj@13908
   292
apply (simp (no_asm) split add: option.split)
webertj@13908
   293
done
webertj@13908
   294
nipkow@14025
   295
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@14025
   296
apply (unfold map_add_def)
paulson@14208
   297
apply (rule ext, auto)
webertj@13908
   298
done
webertj@13908
   299
nipkow@14186
   300
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@14186
   301
by(simp add:map_upds_def)
nipkow@14186
   302
nipkow@14025
   303
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs"
nipkow@14025
   304
apply (unfold map_add_def)
paulson@15251
   305
apply (induct "xs")
webertj@13908
   306
apply (simp (no_asm))
webertj@13908
   307
apply (rule ext)
webertj@13908
   308
apply (simp (no_asm_simp) split add: option.split)
webertj@13908
   309
done
webertj@13908
   310
webertj@13908
   311
declare fun_upd_apply [simp del]
nipkow@14025
   312
lemma finite_range_map_of_map_add:
nipkow@14025
   313
 "finite (range f) ==> finite (range (f ++ map_of l))"
paulson@15251
   314
apply (induct "l", auto)
webertj@13908
   315
apply (erule finite_range_updI)
webertj@13908
   316
done
webertj@13908
   317
declare fun_upd_apply [simp]
webertj@13908
   318
nipkow@15304
   319
lemma inj_on_map_add_dom[iff]:
nipkow@15304
   320
 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@15304
   321
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits)
nipkow@15304
   322
oheimb@14100
   323
subsection {* @{term restrict_map} *}
oheimb@14100
   324
nipkow@14186
   325
lemma restrict_map_to_empty[simp]: "m\<lfloor>{} = empty"
nipkow@14186
   326
by(simp add: restrict_map_def)
nipkow@14186
   327
nipkow@14186
   328
lemma restrict_map_empty[simp]: "empty\<lfloor>D = empty"
nipkow@14186
   329
by(simp add: restrict_map_def)
nipkow@14186
   330
oheimb@14100
   331
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x"
oheimb@14100
   332
by (auto simp: restrict_map_def)
oheimb@14100
   333
oheimb@14100
   334
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None"
oheimb@14100
   335
by (auto simp: restrict_map_def)
oheimb@14100
   336
oheimb@14100
   337
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
oheimb@14100
   338
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   339
nipkow@14186
   340
lemma dom_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A"
oheimb@14100
   341
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   342
oheimb@14100
   343
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})"
oheimb@14100
   344
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   345
oheimb@14100
   346
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)"
oheimb@14100
   347
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   348
nipkow@14186
   349
lemma restrict_fun_upd[simp]:
nipkow@14186
   350
 "m(x := y)\<lfloor>D = (if x \<in> D then (m\<lfloor>(D-{x}))(x := y) else m\<lfloor>D)"
nipkow@14186
   351
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   352
nipkow@14186
   353
lemma fun_upd_None_restrict[simp]:
nipkow@14186
   354
  "(m\<lfloor>D)(x := None) = (if x:D then m\<lfloor>(D - {x}) else m\<lfloor>D)"
nipkow@14186
   355
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   356
nipkow@14186
   357
lemma fun_upd_restrict:
nipkow@14186
   358
 "(m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
nipkow@14186
   359
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   360
nipkow@14186
   361
lemma fun_upd_restrict_conv[simp]:
nipkow@14186
   362
 "x \<in> D \<Longrightarrow> (m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
nipkow@14186
   363
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   364
oheimb@14100
   365
oheimb@14100
   366
subsection {* @{term map_upds} *}
nipkow@14025
   367
nipkow@14025
   368
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m"
nipkow@14025
   369
by(simp add:map_upds_def)
nipkow@14025
   370
nipkow@14025
   371
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m"
nipkow@14025
   372
by(simp add:map_upds_def)
nipkow@14025
   373
nipkow@14025
   374
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@14025
   375
by(simp add:map_upds_def)
nipkow@14025
   376
nipkow@14187
   377
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@14187
   378
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@14187
   379
apply(induct xs)
nipkow@14187
   380
 apply(clarsimp simp add:neq_Nil_conv)
paulson@14208
   381
apply (case_tac ys, simp, simp)
nipkow@14187
   382
done
nipkow@14187
   383
nipkow@14187
   384
lemma map_upds_list_update2_drop[simp]:
nipkow@14187
   385
 "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
nipkow@14187
   386
     \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
paulson@14208
   387
apply (induct xs, simp)
paulson@14208
   388
apply (case_tac ys, simp)
nipkow@14187
   389
apply(simp split:nat.split)
nipkow@14187
   390
done
nipkow@14025
   391
nipkow@14025
   392
lemma map_upd_upds_conv_if: "!!x y ys f.
nipkow@14025
   393
 (f(x|->y))(xs [|->] ys) =
nipkow@14025
   394
 (if x : set(take (length ys) xs) then f(xs [|->] ys)
nipkow@14025
   395
                                  else (f(xs [|->] ys))(x|->y))"
paulson@14208
   396
apply (induct xs, simp)
nipkow@14025
   397
apply(case_tac ys)
nipkow@14025
   398
 apply(auto split:split_if simp:fun_upd_twist)
nipkow@14025
   399
done
nipkow@14025
   400
nipkow@14025
   401
lemma map_upds_twist [simp]:
nipkow@14025
   402
 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@14025
   403
apply(insert set_take_subset)
nipkow@14025
   404
apply (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   405
done
nipkow@14025
   406
nipkow@14025
   407
lemma map_upds_apply_nontin[simp]:
nipkow@14025
   408
 "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x"
paulson@14208
   409
apply (induct xs, simp)
nipkow@14025
   410
apply(case_tac ys)
nipkow@14025
   411
 apply(auto simp: map_upd_upds_conv_if)
nipkow@14025
   412
done
nipkow@14025
   413
nipkow@14300
   414
lemma fun_upds_append_drop[simp]:
nipkow@14300
   415
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@14300
   416
apply(induct xs)
nipkow@14300
   417
 apply (simp)
nipkow@14300
   418
apply(case_tac ys)
nipkow@14300
   419
apply simp_all
nipkow@14300
   420
done
nipkow@14300
   421
nipkow@14300
   422
lemma fun_upds_append2_drop[simp]:
nipkow@14300
   423
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@14300
   424
apply(induct xs)
nipkow@14300
   425
 apply (simp)
nipkow@14300
   426
apply(case_tac ys)
nipkow@14300
   427
apply simp_all
nipkow@14300
   428
done
nipkow@14300
   429
nipkow@14300
   430
nipkow@14186
   431
lemma restrict_map_upds[simp]: "!!m ys.
nipkow@14186
   432
 \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
nipkow@14186
   433
 \<Longrightarrow> m(xs [\<mapsto>] ys)\<lfloor>D = (m\<lfloor>(D - set xs))(xs [\<mapsto>] ys)"
paulson@14208
   434
apply (induct xs, simp)
paulson@14208
   435
apply (case_tac ys, simp)
nipkow@14186
   436
apply(simp add:Diff_insert[symmetric] insert_absorb)
nipkow@14186
   437
apply(simp add: map_upd_upds_conv_if)
nipkow@14186
   438
done
nipkow@14186
   439
nipkow@14186
   440
oheimb@14100
   441
subsection {* @{term map_upd_s} *}
oheimb@14100
   442
oheimb@14100
   443
lemma map_upd_s_apply [simp]: 
oheimb@14100
   444
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
oheimb@14100
   445
by (simp add: map_upd_s_def)
oheimb@14100
   446
oheimb@14100
   447
lemma map_subst_apply [simp]: 
oheimb@14100
   448
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)" 
oheimb@14100
   449
by (simp add: map_subst_def)
oheimb@14100
   450
oheimb@14100
   451
subsection {* @{term dom} *}
webertj@13908
   452
webertj@13908
   453
lemma domI: "m a = Some b ==> a : dom m"
paulson@14208
   454
by (unfold dom_def, auto)
oheimb@14100
   455
(* declare domI [intro]? *)
webertj@13908
   456
webertj@13908
   457
lemma domD: "a : dom m ==> ? b. m a = Some b"
paulson@14208
   458
by (unfold dom_def, auto)
webertj@13908
   459
nipkow@13910
   460
lemma domIff[iff]: "(a : dom m) = (m a ~= None)"
paulson@14208
   461
by (unfold dom_def, auto)
webertj@13908
   462
declare domIff [simp del]
webertj@13908
   463
nipkow@13910
   464
lemma dom_empty[simp]: "dom empty = {}"
webertj@13908
   465
apply (unfold dom_def)
webertj@13908
   466
apply (simp (no_asm))
webertj@13908
   467
done
webertj@13908
   468
nipkow@13910
   469
lemma dom_fun_upd[simp]:
nipkow@13910
   470
 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@13910
   471
by (simp add:dom_def) blast
webertj@13908
   472
nipkow@13937
   473
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@13937
   474
apply(induct xys)
nipkow@13937
   475
apply(auto simp del:fun_upd_apply)
nipkow@13937
   476
done
nipkow@13937
   477
nipkow@15304
   478
lemma dom_map_of_conv_image_fst:
nipkow@15304
   479
  "dom(map_of xys) = fst ` (set xys)"
nipkow@15304
   480
by(force simp: dom_map_of)
nipkow@15304
   481
nipkow@15110
   482
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==>
nipkow@15110
   483
  dom(map_of(zip xs ys)) = set xs"
nipkow@15110
   484
by(induct rule: list_induct2, simp_all)
nipkow@15110
   485
webertj@13908
   486
lemma finite_dom_map_of: "finite (dom (map_of l))"
webertj@13908
   487
apply (unfold dom_def)
paulson@15251
   488
apply (induct "l")
webertj@13908
   489
apply (auto simp add: insert_Collect [symmetric])
webertj@13908
   490
done
webertj@13908
   491
nipkow@14025
   492
lemma dom_map_upds[simp]:
nipkow@14025
   493
 "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
paulson@14208
   494
apply (induct xs, simp)
paulson@14208
   495
apply (case_tac ys, auto)
nipkow@14025
   496
done
nipkow@13910
   497
nipkow@14025
   498
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m"
paulson@14208
   499
by (unfold dom_def, auto)
nipkow@13910
   500
nipkow@13910
   501
lemma dom_overwrite[simp]:
nipkow@13910
   502
 "dom(f(g|A)) = (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@13910
   503
by(auto simp add: dom_def overwrite_def)
webertj@13908
   504
nipkow@14027
   505
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@14027
   506
apply(rule ext)
nipkow@14027
   507
apply(fastsimp simp:map_add_def split:option.split)
nipkow@14027
   508
done
nipkow@14027
   509
oheimb@14100
   510
subsection {* @{term ran} *}
oheimb@14100
   511
oheimb@14100
   512
lemma ranI: "m a = Some b ==> b : ran m" 
oheimb@14100
   513
by (auto simp add: ran_def)
oheimb@14100
   514
(* declare ranI [intro]? *)
webertj@13908
   515
nipkow@13910
   516
lemma ran_empty[simp]: "ran empty = {}"
webertj@13908
   517
apply (unfold ran_def)
webertj@13908
   518
apply (simp (no_asm))
webertj@13908
   519
done
webertj@13908
   520
nipkow@13910
   521
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
paulson@14208
   522
apply (unfold ran_def, auto)
webertj@13908
   523
apply (subgoal_tac "~ (aa = a) ")
webertj@13908
   524
apply auto
webertj@13908
   525
done
nipkow@13910
   526
oheimb@14100
   527
subsection {* @{text "map_le"} *}
nipkow@13910
   528
kleing@13912
   529
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@13910
   530
by(simp add:map_le_def)
nipkow@13910
   531
nipkow@14187
   532
lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@14187
   533
by(force simp add:map_le_def)
nipkow@14187
   534
nipkow@13910
   535
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@13910
   536
by(fastsimp simp add:map_le_def)
nipkow@13910
   537
nipkow@14187
   538
lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@14187
   539
by(force simp add:map_le_def)
nipkow@14187
   540
nipkow@13910
   541
lemma map_le_upds[simp]:
nipkow@13910
   542
 "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
paulson@14208
   543
apply (induct as, simp)
paulson@14208
   544
apply (case_tac bs, auto)
nipkow@14025
   545
done
webertj@13908
   546
webertj@14033
   547
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
webertj@14033
   548
  by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   549
webertj@14033
   550
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
webertj@14033
   551
  by (simp add: map_le_def)
webertj@14033
   552
nipkow@14187
   553
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
nipkow@14187
   554
by(force simp add:map_le_def)
webertj@14033
   555
webertj@14033
   556
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
webertj@14033
   557
  apply (unfold map_le_def)
webertj@14033
   558
  apply (rule ext)
paulson@14208
   559
  apply (case_tac "x \<in> dom f", simp)
paulson@14208
   560
  apply (case_tac "x \<in> dom g", simp, fastsimp)
webertj@14033
   561
done
webertj@14033
   562
webertj@14033
   563
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
webertj@14033
   564
  by (fastsimp simp add: map_le_def)
webertj@14033
   565
nipkow@15304
   566
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
nipkow@15304
   567
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits)
nipkow@15304
   568
nipkow@15303
   569
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
nipkow@15303
   570
by (fastsimp simp add: map_le_def map_add_def dom_def)
nipkow@15303
   571
nipkow@15303
   572
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
nipkow@15303
   573
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits)
nipkow@15303
   574
nipkow@3981
   575
end