src/HOL/MicroJava/J/TypeRel.thy
author kleing
Sun Dec 16 00:18:17 2001 +0100 (2001-12-16)
changeset 12517 360e3215f029
parent 12443 e56ab6134b41
child 12911 704713ca07ea
permissions -rw-r--r--
exception merge, cleanup, tuned
nipkow@8011
     1
(*  Title:      HOL/MicroJava/J/TypeRel.thy
nipkow@8011
     2
    ID:         $Id$
nipkow@8011
     3
    Author:     David von Oheimb
nipkow@8011
     4
    Copyright   1999 Technische Universitaet Muenchen
oheimb@11070
     5
*)
nipkow@8011
     6
oheimb@11070
     7
header "Relations between Java Types"
nipkow@8011
     8
oheimb@11026
     9
theory TypeRel = Decl:
nipkow@8011
    10
nipkow@8011
    11
consts
kleing@12517
    12
  subcls1 :: "'c prog => (cname \<times> cname) set"  -- "subclass"
kleing@12517
    13
  widen   :: "'c prog => (ty    \<times> ty   ) set"  -- "widening"
kleing@12517
    14
  cast    :: "'c prog => (cname \<times> cname) set"  -- "casting"
nipkow@8011
    15
oheimb@11372
    16
syntax (xsymbols)
oheimb@11026
    17
  subcls1 :: "'c prog => [cname, cname] => bool" ("_ \<turnstile> _ \<prec>C1 _" [71,71,71] 70)
oheimb@11372
    18
  subcls  :: "'c prog => [cname, cname] => bool" ("_ \<turnstile> _ \<preceq>C _"  [71,71,71] 70)
oheimb@11372
    19
  widen   :: "'c prog => [ty   , ty   ] => bool" ("_ \<turnstile> _ \<preceq> _"   [71,71,71] 70)
oheimb@11372
    20
  cast    :: "'c prog => [cname, cname] => bool" ("_ \<turnstile> _ \<preceq>? _"  [71,71,71] 70)
kleing@10061
    21
oheimb@11372
    22
syntax
kleing@10061
    23
  subcls1 :: "'c prog => [cname, cname] => bool" ("_ |- _ <=C1 _" [71,71,71] 70)
oheimb@11372
    24
  subcls  :: "'c prog => [cname, cname] => bool" ("_ |- _ <=C _"  [71,71,71] 70)
oheimb@11372
    25
  widen   :: "'c prog => [ty   , ty   ] => bool" ("_ |- _ <= _"   [71,71,71] 70)
oheimb@11372
    26
  cast    :: "'c prog => [cname, cname] => bool" ("_ |- _ <=? _"  [71,71,71] 70)
nipkow@8011
    27
nipkow@8011
    28
translations
oheimb@11026
    29
  "G\<turnstile>C \<prec>C1 D" == "(C,D) \<in> subcls1 G"
oheimb@11026
    30
  "G\<turnstile>C \<preceq>C  D" == "(C,D) \<in> (subcls1 G)^*"
oheimb@11026
    31
  "G\<turnstile>S \<preceq>   T" == "(S,T) \<in> widen   G"
oheimb@11026
    32
  "G\<turnstile>C \<preceq>?  D" == "(C,D) \<in> cast    G"
nipkow@8011
    33
kleing@12517
    34
-- "direct subclass, cf. 8.1.3"
berghofe@12443
    35
inductive "subcls1 G" intros
berghofe@12443
    36
  subcls1I: "\<lbrakk>class G C = Some (D,rest); C \<noteq> Object\<rbrakk> \<Longrightarrow> G\<turnstile>C\<prec>C1D"
nipkow@8011
    37
  
oheimb@11026
    38
lemma subcls1D: 
oheimb@11026
    39
  "G\<turnstile>C\<prec>C1D \<Longrightarrow> C \<noteq> Object \<and> (\<exists>fs ms. class G C = Some (D,fs,ms))"
berghofe@12443
    40
apply (erule subcls1.elims)
oheimb@11026
    41
apply auto
oheimb@11026
    42
done
oheimb@11026
    43
oheimb@11026
    44
lemma subcls1_def2: 
oheimb@11026
    45
"subcls1 G = (\<Sigma>C\<in>{C. is_class G C} . {D. C\<noteq>Object \<and> fst (the (class G C))=D})"
berghofe@12443
    46
  by (auto simp add: is_class_def dest: subcls1D intro: subcls1I)
oheimb@11026
    47
oheimb@11026
    48
lemma finite_subcls1: "finite (subcls1 G)"
oheimb@11026
    49
apply(subst subcls1_def2)
oheimb@11026
    50
apply(rule finite_SigmaI [OF finite_is_class])
oheimb@11026
    51
apply(rule_tac B = "{fst (the (class G C))}" in finite_subset)
oheimb@11026
    52
apply  auto
oheimb@11026
    53
done
oheimb@11026
    54
oheimb@11026
    55
lemma subcls_is_class: "(C,D) \<in> (subcls1 G)^+ ==> is_class G C"
oheimb@11026
    56
apply (unfold is_class_def)
oheimb@11026
    57
apply(erule trancl_trans_induct)
oheimb@11026
    58
apply (auto dest!: subcls1D)
oheimb@11026
    59
done
oheimb@11026
    60
oheimb@11266
    61
lemma subcls_is_class2 [rule_format (no_asm)]: 
oheimb@11266
    62
  "G\<turnstile>C\<preceq>C D \<Longrightarrow> is_class G D \<longrightarrow> is_class G C"
oheimb@11026
    63
apply (unfold is_class_def)
oheimb@11026
    64
apply (erule rtrancl_induct)
oheimb@11026
    65
apply  (drule_tac [2] subcls1D)
oheimb@11026
    66
apply  auto
oheimb@11026
    67
done
oheimb@11026
    68
oheimb@11026
    69
consts class_rec ::"'c prog \<times> cname \<Rightarrow> 
oheimb@11026
    70
        'a \<Rightarrow> (cname \<Rightarrow> fdecl list \<Rightarrow> 'c mdecl list \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a"
oheimb@11266
    71
oheimb@11026
    72
recdef class_rec "same_fst (\<lambda>G. wf ((subcls1 G)^-1)) (\<lambda>G. (subcls1 G)^-1)"
oheimb@11026
    73
      "class_rec (G,C) = (\<lambda>t f. case class G C of None \<Rightarrow> arbitrary 
oheimb@11026
    74
                         | Some (D,fs,ms) \<Rightarrow> if wf ((subcls1 G)^-1) then 
oheimb@11026
    75
      f C fs ms (if C = Object then t else class_rec (G,D) t f) else arbitrary)"
oheimb@11266
    76
(hints intro: subcls1I)
nipkow@11284
    77
oheimb@11266
    78
declare class_rec.simps [simp del]
oheimb@11026
    79
nipkow@11284
    80
oheimb@11026
    81
lemma class_rec_lemma: "\<lbrakk> wf ((subcls1 G)^-1); class G C = Some (D,fs,ms)\<rbrakk> \<Longrightarrow>
oheimb@11026
    82
 class_rec (G,C) t f = f C fs ms (if C=Object then t else class_rec (G,D) t f)";
oheimb@11266
    83
  apply (rule class_rec.simps [THEN trans [THEN fun_cong [THEN fun_cong]]])
oheimb@11266
    84
  apply simp
oheimb@11026
    85
  done
oheimb@11026
    86
nipkow@8011
    87
consts
nipkow@8011
    88
oheimb@11026
    89
  method :: "'c prog \<times> cname => ( sig   \<leadsto> cname \<times> ty \<times> 'c)" (* ###curry *)
oheimb@11026
    90
  field  :: "'c prog \<times> cname => ( vname \<leadsto> cname \<times> ty     )" (* ###curry *)
oheimb@11026
    91
  fields :: "'c prog \<times> cname => ((vname \<times> cname) \<times> ty) list" (* ###curry *)
nipkow@8011
    92
kleing@12517
    93
-- "methods of a class, with inheritance, overriding and hiding, cf. 8.4.6"
oheimb@11026
    94
defs method_def: "method \<equiv> \<lambda>(G,C). class_rec (G,C) empty (\<lambda>C fs ms ts.
oheimb@11026
    95
                           ts ++ map_of (map (\<lambda>(s,m). (s,(C,m))) ms))"
oheimb@11026
    96
oheimb@11026
    97
lemma method_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subcls1 G)^-1)|] ==>
oheimb@11026
    98
  method (G,C) = (if C = Object then empty else method (G,D)) ++  
oheimb@11026
    99
  map_of (map (\<lambda>(s,m). (s,(C,m))) ms)"
oheimb@11026
   100
apply (unfold method_def)
oheimb@11026
   101
apply (simp split del: split_if)
oheimb@11026
   102
apply (erule (1) class_rec_lemma [THEN trans]);
oheimb@11026
   103
apply auto
oheimb@11026
   104
done
oheimb@11026
   105
nipkow@8011
   106
kleing@12517
   107
-- "list of fields of a class, including inherited and hidden ones"
oheimb@11026
   108
defs fields_def: "fields \<equiv> \<lambda>(G,C). class_rec (G,C) []    (\<lambda>C fs ms ts.
oheimb@11026
   109
                           map (\<lambda>(fn,ft). ((fn,C),ft)) fs @ ts)"
oheimb@11026
   110
oheimb@11026
   111
lemma fields_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subcls1 G)^-1)|] ==>
oheimb@11026
   112
 fields (G,C) = 
oheimb@11026
   113
  map (\<lambda>(fn,ft). ((fn,C),ft)) fs @ (if C = Object then [] else fields (G,D))"
oheimb@11026
   114
apply (unfold fields_def)
oheimb@11026
   115
apply (simp split del: split_if)
oheimb@11026
   116
apply (erule (1) class_rec_lemma [THEN trans]);
oheimb@11026
   117
apply auto
oheimb@11026
   118
done
oheimb@11026
   119
oheimb@11026
   120
oheimb@11026
   121
defs field_def: "field == map_of o (map (\<lambda>((fn,fd),ft). (fn,(fd,ft)))) o fields"
oheimb@11026
   122
oheimb@11026
   123
lemma field_fields: 
oheimb@11026
   124
"field (G,C) fn = Some (fd, fT) \<Longrightarrow> map_of (fields (G,C)) (fn, fd) = Some fT"
oheimb@11026
   125
apply (unfold field_def)
oheimb@11026
   126
apply (rule table_of_remap_SomeD)
oheimb@11026
   127
apply simp
oheimb@11026
   128
done
oheimb@11026
   129
oheimb@11026
   130
kleing@12517
   131
-- "widening, viz. method invocation conversion,cf. 5.3 i.e. sort of syntactic subtyping"
kleing@12517
   132
inductive "widen G" intros 
kleing@12517
   133
  refl   [intro!, simp]:       "G\<turnstile>      T \<preceq> T"   -- "identity conv., cf. 5.1.1"
oheimb@11026
   134
  subcls         : "G\<turnstile>C\<preceq>C D ==> G\<turnstile>Class C \<preceq> Class D"
oheimb@11026
   135
  null   [intro!]:             "G\<turnstile>     NT \<preceq> RefT R"
nipkow@8011
   136
kleing@12517
   137
-- "casting conversion, cf. 5.5 / 5.1.5"
kleing@12517
   138
-- "left out casts on primitve types"
kleing@12517
   139
inductive "cast G" intros
oheimb@11026
   140
  widen:  "G\<turnstile>C\<preceq>C D ==> G\<turnstile>C \<preceq>? D"
oheimb@11026
   141
  subcls: "G\<turnstile>D\<preceq>C C ==> G\<turnstile>C \<preceq>? D"
oheimb@11026
   142
oheimb@11026
   143
lemma widen_PrimT_RefT [iff]: "(G\<turnstile>PrimT pT\<preceq>RefT rT) = False"
oheimb@11026
   144
apply (rule iffI)
oheimb@11026
   145
apply (erule widen.elims)
oheimb@11026
   146
apply auto
oheimb@11026
   147
done
oheimb@11026
   148
oheimb@11026
   149
lemma widen_RefT: "G\<turnstile>RefT R\<preceq>T ==> \<exists>t. T=RefT t"
oheimb@11026
   150
apply (ind_cases "G\<turnstile>S\<preceq>T")
oheimb@11026
   151
apply auto
oheimb@11026
   152
done
oheimb@11026
   153
oheimb@11026
   154
lemma widen_RefT2: "G\<turnstile>S\<preceq>RefT R ==> \<exists>t. S=RefT t"
oheimb@11026
   155
apply (ind_cases "G\<turnstile>S\<preceq>T")
oheimb@11026
   156
apply auto
oheimb@11026
   157
done
oheimb@11026
   158
oheimb@11026
   159
lemma widen_Class: "G\<turnstile>Class C\<preceq>T ==> \<exists>D. T=Class D"
oheimb@11026
   160
apply (ind_cases "G\<turnstile>S\<preceq>T")
oheimb@11026
   161
apply auto
oheimb@11026
   162
done
oheimb@11026
   163
oheimb@11026
   164
lemma widen_Class_NullT [iff]: "(G\<turnstile>Class C\<preceq>NT) = False"
oheimb@11026
   165
apply (rule iffI)
oheimb@11026
   166
apply (ind_cases "G\<turnstile>S\<preceq>T")
oheimb@11026
   167
apply auto
oheimb@11026
   168
done
nipkow@8011
   169
oheimb@11026
   170
lemma widen_Class_Class [iff]: "(G\<turnstile>Class C\<preceq> Class D) = (G\<turnstile>C\<preceq>C D)"
oheimb@11026
   171
apply (rule iffI)
oheimb@11026
   172
apply (ind_cases "G\<turnstile>S\<preceq>T")
oheimb@11026
   173
apply (auto elim: widen.subcls)
oheimb@11026
   174
done
oheimb@11026
   175
kleing@12517
   176
theorem widen_trans[trans]: "\<lbrakk>G\<turnstile>S\<preceq>U; G\<turnstile>U\<preceq>T\<rbrakk> \<Longrightarrow> G\<turnstile>S\<preceq>T"
oheimb@11026
   177
proof -
kleing@12517
   178
  assume "G\<turnstile>S\<preceq>U" thus "\<And>T. G\<turnstile>U\<preceq>T \<Longrightarrow> G\<turnstile>S\<preceq>T"
wenzelm@11987
   179
  proof induct
kleing@12517
   180
    case (refl T T') thus "G\<turnstile>T\<preceq>T'" .
oheimb@11026
   181
  next
wenzelm@11987
   182
    case (subcls C D T)
oheimb@11026
   183
    then obtain E where "T = Class E" by (blast dest: widen_Class)
wenzelm@11987
   184
    with subcls show "G\<turnstile>Class C\<preceq>T" by (auto elim: rtrancl_trans)
oheimb@11026
   185
  next
wenzelm@11987
   186
    case (null R RT)
oheimb@11026
   187
    then obtain rt where "RT = RefT rt" by (blast dest: widen_RefT)
oheimb@11026
   188
    thus "G\<turnstile>NT\<preceq>RT" by auto
oheimb@11026
   189
  qed
oheimb@11026
   190
qed
oheimb@11026
   191
nipkow@8011
   192
end