src/Pure/logic.ML
author lcp
Thu Aug 18 17:56:07 1994 +0200 (1994-08-18)
changeset 546 36e40454e03e
parent 447 d1f827fa0a18
child 585 409c9ee7a9f3
permissions -rw-r--r--
/unvarifyT, unvarify: moved to Pure/logic.ML
wenzelm@398
     1
(*  Title: 	Pure/logic.ML
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   Cambridge University 1992
clasohm@0
     5
clasohm@0
     6
Supporting code for defining the abstract type "thm"
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
infix occs;
clasohm@0
    10
clasohm@0
    11
signature LOGIC = 
clasohm@0
    12
  sig
lcp@546
    13
  val assum_pairs	: term -> (term*term)list
lcp@546
    14
  val auto_rename	: bool ref   
lcp@546
    15
  val close_form	: term -> term   
lcp@546
    16
  val count_prems	: term * int -> int
lcp@546
    17
  val dest_equals	: term -> term * term
lcp@546
    18
  val dest_flexpair	: term -> term * term
lcp@546
    19
  val dest_implies	: term -> term * term
lcp@546
    20
  val dest_inclass	: term -> typ * class
lcp@546
    21
  val dest_type		: term -> typ
lcp@546
    22
  val flatten_params	: int -> term -> term
lcp@546
    23
  val freeze_vars	: term -> term
lcp@546
    24
  val incr_indexes	: typ list * int -> term -> term
lcp@546
    25
  val lift_fns		: term * int -> (term -> term) * (term -> term)
lcp@546
    26
  val list_flexpairs	: (term*term)list * term -> term
lcp@546
    27
  val list_implies	: term list * term -> term
clasohm@0
    28
  val list_rename_params: string list * term -> term
lcp@546
    29
  val mk_equals		: term * term -> term
lcp@546
    30
  val mk_flexpair	: term * term -> term
lcp@546
    31
  val mk_implies	: term * term -> term
lcp@546
    32
  val mk_inclass	: typ * class -> term
lcp@546
    33
  val mk_type		: typ -> term
lcp@546
    34
  val occs		: term * term -> bool
lcp@546
    35
  val rule_of		: (term*term)list * term list * term -> term
lcp@546
    36
  val set_rename_prefix	: string -> unit   
lcp@546
    37
  val skip_flexpairs	: term -> term
clasohm@0
    38
  val strip_assums_concl: term -> term
lcp@546
    39
  val strip_assums_hyp	: term -> term list
lcp@546
    40
  val strip_flexpairs	: term -> (term*term)list * term
lcp@546
    41
  val strip_horn	: term -> (term*term)list * term list * term
lcp@546
    42
  val strip_imp_concl	: term -> term
lcp@546
    43
  val strip_imp_prems	: term -> term list
lcp@546
    44
  val strip_params	: term -> (string * typ) list
lcp@546
    45
  val strip_prems	: int * term list * term -> term list * term
lcp@546
    46
  val thaw_vars		: term -> term
lcp@546
    47
  val unvarifyT		: typ -> typ  
lcp@546
    48
  val unvarify		: term -> term  
lcp@546
    49
  val varify		: term -> term  
clasohm@0
    50
  end;
clasohm@0
    51
wenzelm@398
    52
functor LogicFun (structure Unify: UNIFY and Net:NET): LOGIC =
clasohm@0
    53
struct
wenzelm@398
    54
wenzelm@398
    55
structure Sign = Unify.Sign;
wenzelm@398
    56
structure Type = Sign.Type;
clasohm@0
    57
clasohm@0
    58
(*** Abstract syntax operations on the meta-connectives ***)
clasohm@0
    59
clasohm@0
    60
(** equality **)
clasohm@0
    61
lcp@64
    62
(*Make an equality.*)
lcp@64
    63
fun mk_equals(t,u) = equals(fastype_of t) $ t $ u;
clasohm@0
    64
clasohm@0
    65
fun dest_equals (Const("==",_) $ t $ u)  =  (t,u)
clasohm@0
    66
  | dest_equals t = raise TERM("dest_equals", [t]);
clasohm@0
    67
clasohm@0
    68
(** implies **)
clasohm@0
    69
clasohm@0
    70
fun mk_implies(A,B) = implies $ A $ B;
clasohm@0
    71
clasohm@0
    72
fun dest_implies (Const("==>",_) $ A $ B)  =  (A,B)
clasohm@0
    73
  | dest_implies A = raise TERM("dest_implies", [A]);
clasohm@0
    74
clasohm@0
    75
(** nested implications **)
clasohm@0
    76
clasohm@0
    77
(* [A1,...,An], B  goes to  A1==>...An==>B  *)
clasohm@0
    78
fun list_implies ([], B) = B : term
clasohm@0
    79
  | list_implies (A::AS, B) = implies $ A $ list_implies(AS,B);
clasohm@0
    80
clasohm@0
    81
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
clasohm@0
    82
fun strip_imp_prems (Const("==>", _) $ A $ B) = A :: strip_imp_prems B
clasohm@0
    83
  | strip_imp_prems _ = [];
clasohm@0
    84
clasohm@0
    85
(* A1==>...An==>B  goes to B, where B is not an implication *)
clasohm@0
    86
fun strip_imp_concl (Const("==>", _) $ A $ B) = strip_imp_concl B
clasohm@0
    87
  | strip_imp_concl A = A : term;
clasohm@0
    88
clasohm@0
    89
(*Strip and return premises: (i, [], A1==>...Ai==>B)
clasohm@0
    90
    goes to   ([Ai, A(i-1),...,A1] , B) 	(REVERSED) 
clasohm@0
    91
  if  i<0 or else i too big then raises  TERM*)
clasohm@0
    92
fun strip_prems (0, As, B) = (As, B) 
clasohm@0
    93
  | strip_prems (i, As, Const("==>", _) $ A $ B) = 
clasohm@0
    94
	strip_prems (i-1, A::As, B)
clasohm@0
    95
  | strip_prems (_, As, A) = raise TERM("strip_prems", A::As);
clasohm@0
    96
clasohm@0
    97
(*Count premises -- quicker than (length ostrip_prems) *)
clasohm@0
    98
fun count_prems (Const("==>", _) $ A $ B, n) = count_prems (B,n+1)
clasohm@0
    99
  | count_prems (_,n) = n;
clasohm@0
   100
clasohm@0
   101
(** flex-flex constraints **)
clasohm@0
   102
lcp@64
   103
(*Make a constraint.*)
lcp@64
   104
fun mk_flexpair(t,u) = flexpair(fastype_of t) $ t $ u;
clasohm@0
   105
clasohm@0
   106
fun dest_flexpair (Const("=?=",_) $ t $ u)  =  (t,u)
clasohm@0
   107
  | dest_flexpair t = raise TERM("dest_flexpair", [t]);
clasohm@0
   108
clasohm@0
   109
(*make flexflex antecedents: ( [(a1,b1),...,(an,bn)] , C )
clasohm@0
   110
    goes to (a1=?=b1) ==>...(an=?=bn)==>C *)
clasohm@0
   111
fun list_flexpairs ([], A) = A
clasohm@0
   112
  | list_flexpairs ((t,u)::pairs, A) =
clasohm@0
   113
	implies $ (mk_flexpair(t,u)) $ list_flexpairs(pairs,A);
clasohm@0
   114
clasohm@0
   115
(*Make the object-rule tpairs==>As==>B   *)
clasohm@0
   116
fun rule_of (tpairs, As, B) = list_flexpairs(tpairs, list_implies(As, B));
clasohm@0
   117
clasohm@0
   118
(*Remove and return flexflex pairs: 
clasohm@0
   119
    (a1=?=b1)==>...(an=?=bn)==>C  to  ( [(a1,b1),...,(an,bn)] , C )	
clasohm@0
   120
  [Tail recursive in order to return a pair of results] *)
clasohm@0
   121
fun strip_flex_aux (pairs, Const("==>", _) $ (Const("=?=",_)$t$u) $ C) =
clasohm@0
   122
        strip_flex_aux ((t,u)::pairs, C)
clasohm@0
   123
  | strip_flex_aux (pairs,C) = (rev pairs, C);
clasohm@0
   124
clasohm@0
   125
fun strip_flexpairs A = strip_flex_aux([], A);
clasohm@0
   126
clasohm@0
   127
(*Discard flexflex pairs*)
clasohm@0
   128
fun skip_flexpairs (Const("==>", _) $ (Const("=?=",_)$_$_) $ C) =
clasohm@0
   129
	skip_flexpairs C
clasohm@0
   130
  | skip_flexpairs C = C;
clasohm@0
   131
clasohm@0
   132
(*strip a proof state (Horn clause): 
clasohm@0
   133
   (a1==b1)==>...(am==bm)==>B1==>...Bn==>C
clasohm@0
   134
    goes to   ( [(a1,b1),...,(am,bm)] , [B1,...,Bn] , C)    *)
clasohm@0
   135
fun strip_horn A =
clasohm@0
   136
  let val (tpairs,horn) = strip_flexpairs A 
clasohm@0
   137
  in  (tpairs, strip_imp_prems horn, strip_imp_concl horn)   end;
clasohm@0
   138
wenzelm@398
   139
(** types as terms **)
wenzelm@398
   140
wenzelm@398
   141
fun mk_type ty = Const ("TYPE", itselfT ty);
wenzelm@398
   142
wenzelm@398
   143
fun dest_type (Const ("TYPE", Type ("itself", [ty]))) = ty
wenzelm@398
   144
  | dest_type t = raise TERM ("dest_type", [t]);
wenzelm@398
   145
wenzelm@447
   146
(** class constraints **)
wenzelm@398
   147
wenzelm@398
   148
fun mk_inclass (ty, c) =
wenzelm@398
   149
  Const (Sign.const_of_class c, itselfT ty --> propT) $ mk_type ty;
wenzelm@398
   150
wenzelm@398
   151
fun dest_inclass (t as Const (c_class, _) $ ty) =
wenzelm@398
   152
      ((dest_type ty, Sign.class_of_const c_class)
wenzelm@398
   153
        handle TERM _ => raise TERM ("dest_inclass", [t]))
wenzelm@398
   154
  | dest_inclass t = raise TERM ("dest_inclass", [t]);
wenzelm@398
   155
clasohm@0
   156
clasohm@0
   157
(*** Low-level term operations ***)
clasohm@0
   158
clasohm@0
   159
(*Does t occur in u?  Or is alpha-convertible to u?
clasohm@0
   160
  The term t must contain no loose bound variables*)
clasohm@0
   161
fun t occs u = (t aconv u) orelse 
clasohm@0
   162
      (case u of
clasohm@0
   163
          Abs(_,_,body) => t occs body
clasohm@0
   164
	| f$t' => t occs f  orelse  t occs t'
clasohm@0
   165
	| _ => false);
clasohm@0
   166
clasohm@0
   167
(*Close up a formula over all free variables by quantification*)
clasohm@0
   168
fun close_form A =
clasohm@0
   169
    list_all_free (map dest_Free (sort atless (term_frees A)),   
clasohm@0
   170
		   A);
clasohm@0
   171
clasohm@0
   172
clasohm@0
   173
(*Freeze all (T)Vars by turning them into (T)Frees*)
clasohm@0
   174
fun freeze_vars(Var(ixn,T)) = Free(Syntax.string_of_vname ixn,
clasohm@0
   175
                                   Type.freeze_vars T)
clasohm@0
   176
  | freeze_vars(Const(a,T)) = Const(a,Type.freeze_vars T)
clasohm@0
   177
  | freeze_vars(Free(a,T))  = Free(a,Type.freeze_vars T)
clasohm@0
   178
  | freeze_vars(s$t)        = freeze_vars s $ freeze_vars t
clasohm@0
   179
  | freeze_vars(Abs(a,T,t)) = Abs(a,Type.freeze_vars T,freeze_vars t)
clasohm@0
   180
  | freeze_vars(b)          = b;
clasohm@0
   181
clasohm@0
   182
(*Reverse the effect of freeze_vars*)
clasohm@0
   183
fun thaw_vars(Const(a,T)) = Const(a,Type.thaw_vars T)
clasohm@0
   184
  | thaw_vars(Free(a,T))  =
clasohm@0
   185
      let val T' = Type.thaw_vars T
clasohm@0
   186
      in case explode a of
clasohm@0
   187
	   "?"::vn => let val (ixn,_) = Syntax.scan_varname vn
clasohm@0
   188
                      in Var(ixn,T') end
clasohm@0
   189
	 | _       => Free(a,T')
clasohm@0
   190
      end
clasohm@0
   191
  | thaw_vars(Abs(a,T,t)) = Abs(a,Type.thaw_vars T, thaw_vars t)
clasohm@0
   192
  | thaw_vars(s$t)        = thaw_vars s $ thaw_vars t
clasohm@0
   193
  | thaw_vars(b)          = b;
clasohm@0
   194
clasohm@0
   195
clasohm@0
   196
(*** Specialized operations for resolution... ***)
clasohm@0
   197
clasohm@0
   198
(*For all variables in the term, increment indexnames and lift over the Us
clasohm@0
   199
    result is ?Gidx(B.(lev+n-1),...,B.lev) where lev is abstraction level *)
clasohm@0
   200
fun incr_indexes (Us: typ list, inc:int) t = 
clasohm@0
   201
  let fun incr (Var ((a,i), T), lev) = 
clasohm@0
   202
		Unify.combound (Var((a, i+inc), Us---> incr_tvar inc T),
clasohm@0
   203
				lev, length Us)
clasohm@0
   204
	| incr (Abs (a,T,body), lev) =
clasohm@0
   205
		Abs (a, incr_tvar inc T, incr(body,lev+1))
clasohm@0
   206
	| incr (Const(a,T),_) = Const(a, incr_tvar inc T)
clasohm@0
   207
	| incr (Free(a,T),_) = Free(a, incr_tvar inc T)
clasohm@0
   208
	| incr (f$t, lev) = incr(f,lev) $ incr(t,lev)
clasohm@0
   209
	| incr (t,lev) = t
clasohm@0
   210
  in  incr(t,0)  end;
clasohm@0
   211
clasohm@0
   212
(*Make lifting functions from subgoal and increment.
clasohm@0
   213
    lift_abs operates on tpairs (unification constraints)
clasohm@0
   214
    lift_all operates on propositions     *)
clasohm@0
   215
fun lift_fns (B,inc) =
clasohm@0
   216
  let fun lift_abs (Us, Const("==>", _) $ _ $ B) u = lift_abs (Us,B) u
clasohm@0
   217
	| lift_abs (Us, Const("all",_)$Abs(a,T,t)) u =
clasohm@0
   218
	      Abs(a, T, lift_abs (T::Us, t) u)
clasohm@0
   219
	| lift_abs (Us, _) u = incr_indexes(rev Us, inc) u
clasohm@0
   220
      fun lift_all (Us, Const("==>", _) $ A $ B) u =
clasohm@0
   221
	      implies $ A $ lift_all (Us,B) u
clasohm@0
   222
	| lift_all (Us, Const("all",_)$Abs(a,T,t)) u = 
clasohm@0
   223
	      all T $ Abs(a, T, lift_all (T::Us,t) u)
clasohm@0
   224
	| lift_all (Us, _) u = incr_indexes(rev Us, inc) u;
clasohm@0
   225
  in  (lift_abs([],B), lift_all([],B))  end;
clasohm@0
   226
clasohm@0
   227
(*Strips assumptions in goal, yielding list of hypotheses.   *)
clasohm@0
   228
fun strip_assums_hyp (Const("==>", _) $ H $ B) = H :: strip_assums_hyp B
clasohm@0
   229
  | strip_assums_hyp (Const("all",_)$Abs(a,T,t)) = strip_assums_hyp t
clasohm@0
   230
  | strip_assums_hyp B = [];
clasohm@0
   231
clasohm@0
   232
(*Strips assumptions in goal, yielding conclusion.   *)
clasohm@0
   233
fun strip_assums_concl (Const("==>", _) $ H $ B) = strip_assums_concl B
clasohm@0
   234
  | strip_assums_concl (Const("all",_)$Abs(a,T,t)) = strip_assums_concl t
clasohm@0
   235
  | strip_assums_concl B = B;
clasohm@0
   236
clasohm@0
   237
(*Make a list of all the parameters in a subgoal, even if nested*)
clasohm@0
   238
fun strip_params (Const("==>", _) $ H $ B) = strip_params B
clasohm@0
   239
  | strip_params (Const("all",_)$Abs(a,T,t)) = (a,T) :: strip_params t
clasohm@0
   240
  | strip_params B = [];
clasohm@0
   241
clasohm@0
   242
(*Removes the parameters from a subgoal and renumber bvars in hypotheses,
clasohm@0
   243
    where j is the total number of parameters (precomputed) 
clasohm@0
   244
  If n>0 then deletes assumption n. *)
clasohm@0
   245
fun remove_params j n A = 
clasohm@0
   246
    if j=0 andalso n<=0 then A  (*nothing left to do...*)
clasohm@0
   247
    else case A of
clasohm@0
   248
        Const("==>", _) $ H $ B => 
clasohm@0
   249
	  if n=1 then                           (remove_params j (n-1) B)
clasohm@0
   250
	  else implies $ (incr_boundvars j H) $ (remove_params j (n-1) B)
clasohm@0
   251
      | Const("all",_)$Abs(a,T,t) => remove_params (j-1) n t
clasohm@0
   252
      | _ => if n>0 then raise TERM("remove_params", [A])
clasohm@0
   253
             else A;
clasohm@0
   254
clasohm@0
   255
(** Auto-renaming of parameters in subgoals **)
clasohm@0
   256
clasohm@0
   257
val auto_rename = ref false
clasohm@0
   258
and rename_prefix = ref "ka";
clasohm@0
   259
clasohm@0
   260
(*rename_prefix is not exported; it is set by this function.*)
clasohm@0
   261
fun set_rename_prefix a =
clasohm@0
   262
    if a<>"" andalso forall is_letter (explode a)
clasohm@0
   263
    then  (rename_prefix := a;  auto_rename := true)
clasohm@0
   264
    else  error"rename prefix must be nonempty and consist of letters";
clasohm@0
   265
clasohm@0
   266
(*Makes parameters in a goal have distinctive names (not guaranteed unique!)
clasohm@0
   267
  A name clash could cause the printer to rename bound vars;
clasohm@0
   268
    then res_inst_tac would not work properly.*)
clasohm@0
   269
fun rename_vars (a, []) = []
clasohm@0
   270
  | rename_vars (a, (_,T)::vars) =
clasohm@0
   271
        (a,T) :: rename_vars (bump_string a, vars);
clasohm@0
   272
clasohm@0
   273
(*Move all parameters to the front of the subgoal, renaming them apart;
clasohm@0
   274
  if n>0 then deletes assumption n. *)
clasohm@0
   275
fun flatten_params n A =
clasohm@0
   276
    let val params = strip_params A;
clasohm@0
   277
	val vars = if !auto_rename 
clasohm@0
   278
		   then rename_vars (!rename_prefix, params)
clasohm@0
   279
		   else variantlist(map #1 params,[]) ~~ map #2 params
clasohm@0
   280
    in  list_all (vars, remove_params (length vars) n A)
clasohm@0
   281
    end;
clasohm@0
   282
clasohm@0
   283
(*Makes parameters in a goal have the names supplied by the list cs.*)
clasohm@0
   284
fun list_rename_params (cs, Const("==>", _) $ A $ B) =
clasohm@0
   285
      implies $ A $ list_rename_params (cs, B)
clasohm@0
   286
  | list_rename_params (c::cs, Const("all",_)$Abs(_,T,t)) = 
clasohm@0
   287
      all T $ Abs(c, T, list_rename_params (cs, t))
clasohm@0
   288
  | list_rename_params (cs, B) = B;
clasohm@0
   289
clasohm@0
   290
(*Strips assumptions in goal yielding  ( [Hn,...,H1], [xm,...,x1], B )
clasohm@0
   291
  where H1,...,Hn are the hypotheses and x1...xm are the parameters.   *)
clasohm@0
   292
fun strip_assums_aux (Hs, params, Const("==>", _) $ H $ B) = 
clasohm@0
   293
	strip_assums_aux (H::Hs, params, B)
clasohm@0
   294
  | strip_assums_aux (Hs, params, Const("all",_)$Abs(a,T,t)) =
clasohm@0
   295
	strip_assums_aux (Hs, (a,T)::params, t)
clasohm@0
   296
  | strip_assums_aux (Hs, params, B) = (Hs, params, B);
clasohm@0
   297
clasohm@0
   298
fun strip_assums A = strip_assums_aux ([],[],A);
clasohm@0
   299
clasohm@0
   300
clasohm@0
   301
(*Produces disagreement pairs, one for each assumption proof, in order.
clasohm@0
   302
  A is the first premise of the lifted rule, and thus has the form
clasohm@0
   303
    H1 ==> ... Hk ==> B   and the pairs are (H1,B),...,(Hk,B) *)
clasohm@0
   304
fun assum_pairs A =
clasohm@0
   305
  let val (Hs, params, B) = strip_assums A
clasohm@0
   306
      val D = Unify.rlist_abs(params, B)
clasohm@0
   307
      fun pairrev ([],pairs) = pairs  
clasohm@0
   308
        | pairrev (H::Hs,pairs) = 
clasohm@0
   309
	    pairrev(Hs, (Unify.rlist_abs(params,H), D) :: pairs)
clasohm@0
   310
  in  pairrev (Hs,[])   (*WAS:  map pair (rev Hs)  *)
clasohm@0
   311
  end;
clasohm@0
   312
clasohm@0
   313
clasohm@0
   314
(*Converts Frees to Vars and TFrees to TVars so that axioms can be written
clasohm@0
   315
  without (?) everywhere*)
clasohm@0
   316
fun varify (Const(a,T)) = Const(a, Type.varifyT T)
clasohm@0
   317
  | varify (Free(a,T)) = Var((a,0), Type.varifyT T)
clasohm@0
   318
  | varify (Var(ixn,T)) = Var(ixn, Type.varifyT T)
clasohm@0
   319
  | varify (Abs (a,T,body)) = Abs (a, Type.varifyT T, varify body)
clasohm@0
   320
  | varify (f$t) = varify f $ varify t
clasohm@0
   321
  | varify t = t;
clasohm@0
   322
lcp@546
   323
(*Inverse of varifyT.  Move to Pure/type.ML?*)
lcp@546
   324
fun unvarifyT (Type (a, Ts)) = Type (a, map unvarifyT Ts)
lcp@546
   325
  | unvarifyT (TVar ((a, 0), S)) = TFree (a, S)
lcp@546
   326
  | unvarifyT T = T;
lcp@546
   327
lcp@546
   328
(*Inverse of varify.  Converts axioms back to their original form.*)
lcp@546
   329
fun unvarify (Const(a,T))    = Const(a, unvarifyT T)
lcp@546
   330
  | unvarify (Var((a,0), T)) = Free(a, unvarifyT T)
lcp@546
   331
  | unvarify (Var(ixn,T))    = Var(ixn, unvarifyT T)	(*non-zero index!*)
lcp@546
   332
  | unvarify (Abs (a,T,body)) = Abs (a, unvarifyT T, unvarify body)
lcp@546
   333
  | unvarify (f$t) = unvarify f $ unvarify t
lcp@546
   334
  | unvarify t = t;
lcp@546
   335
clasohm@0
   336
end;