src/HOL/Real/HahnBanach/FunctionOrder.thy
author wenzelm
Sun Jun 04 19:39:29 2000 +0200 (2000-06-04)
changeset 9035 371f023d3dbd
parent 8203 2fcc6017cb72
child 9374 153853af318b
permissions -rw-r--r--
removed explicit terminator (";");
wenzelm@7566
     1
(*  Title:      HOL/Real/HahnBanach/FunctionOrder.thy
wenzelm@7566
     2
    ID:         $Id$
wenzelm@7566
     3
    Author:     Gertrud Bauer, TU Munich
wenzelm@7566
     4
*)
wenzelm@7535
     5
wenzelm@9035
     6
header {* An order on functions *}
wenzelm@7808
     7
wenzelm@9035
     8
theory FunctionOrder = Subspace + Linearform:
wenzelm@7535
     9
wenzelm@9035
    10
subsection {* The graph of a function *}
wenzelm@7808
    11
wenzelm@7978
    12
text{* We define the \emph{graph} of a (real) function $f$ with
wenzelm@7917
    13
domain $F$ as the set 
wenzelm@7927
    14
\[
wenzelm@7927
    15
\{(x, f\ap x). \ap x:F\}
wenzelm@7927
    16
\]
wenzelm@7978
    17
So we are modeling partial functions by specifying the domain and 
wenzelm@7978
    18
the mapping function. We use the term ``function'' also for its graph.
wenzelm@9035
    19
*}
wenzelm@7535
    20
wenzelm@9035
    21
types 'a graph = "('a * real) set"
wenzelm@7535
    22
wenzelm@7535
    23
constdefs
wenzelm@7535
    24
  graph :: "['a set, 'a => real] => 'a graph "
wenzelm@9035
    25
  "graph F f == {(x, f x) | x. x:F}" 
wenzelm@7535
    26
wenzelm@9035
    27
lemma graphI [intro??]: "x:F ==> (x, f x) : graph F f"
wenzelm@9035
    28
  by (unfold graph_def, intro CollectI exI) force
wenzelm@7535
    29
wenzelm@9035
    30
lemma graphI2 [intro??]: "x:F ==> EX t: (graph F f). t = (x, f x)"
wenzelm@9035
    31
  by (unfold graph_def, force)
wenzelm@7566
    32
wenzelm@9035
    33
lemma graphD1 [intro??]: "(x, y): graph F f ==> x:F"
wenzelm@9035
    34
  by (unfold graph_def, elim CollectE exE) force
wenzelm@7566
    35
wenzelm@9035
    36
lemma graphD2 [intro??]: "(x, y): graph H h ==> y = h x"
wenzelm@9035
    37
  by (unfold graph_def, elim CollectE exE) force 
wenzelm@7535
    38
wenzelm@9035
    39
subsection {* Functions ordered by domain extension *}
wenzelm@7917
    40
wenzelm@7978
    41
text{* A function $h'$ is an extension of $h$, iff the graph of 
wenzelm@9035
    42
$h$ is a subset of the graph of $h'$.*}
wenzelm@7917
    43
wenzelm@7917
    44
lemma graph_extI: 
wenzelm@7917
    45
  "[| !! x. x: H ==> h x = h' x; H <= H'|]
wenzelm@9035
    46
  ==> graph H h <= graph H' h'"
wenzelm@9035
    47
  by (unfold graph_def, force)
wenzelm@7917
    48
wenzelm@8203
    49
lemma graph_extD1 [intro??]: 
wenzelm@9035
    50
  "[| graph H h <= graph H' h'; x:H |] ==> h x = h' x"
wenzelm@9035
    51
  by (unfold graph_def, force)
wenzelm@7566
    52
wenzelm@8203
    53
lemma graph_extD2 [intro??]: 
wenzelm@9035
    54
  "[| graph H h <= graph H' h' |] ==> H <= H'"
wenzelm@9035
    55
  by (unfold graph_def, force)
wenzelm@7566
    56
wenzelm@9035
    57
subsection {* Domain and function of a graph *}
wenzelm@7917
    58
wenzelm@7917
    59
text{* The inverse functions to $\idt{graph}$ are $\idt{domain}$ and 
wenzelm@9035
    60
$\idt{funct}$.*}
wenzelm@7917
    61
wenzelm@7917
    62
constdefs
wenzelm@7917
    63
  domain :: "'a graph => 'a set" 
wenzelm@7917
    64
  "domain g == {x. EX y. (x, y):g}"
wenzelm@7917
    65
wenzelm@7917
    66
  funct :: "'a graph => ('a => real)"
wenzelm@9035
    67
  "funct g == \<lambda>x. (SOME y. (x, y):g)"
wenzelm@7917
    68
wenzelm@7917
    69
(*text{*  The equations 
wenzelm@7917
    70
\begin{matharray}
wenzelm@7917
    71
\idt{domain} graph F f = F {\rm and}\\ 
wenzelm@7917
    72
\idt{funct} graph F f = f
wenzelm@7917
    73
\end{matharray}
wenzelm@7917
    74
hold, but are not proved here.
wenzelm@9035
    75
*}*)
wenzelm@7917
    76
wenzelm@7917
    77
text {* The following lemma states that $g$ is the graph of a function
wenzelm@9035
    78
if the relation induced by $g$ is unique. *}
wenzelm@7566
    79
wenzelm@7566
    80
lemma graph_domain_funct: 
wenzelm@7808
    81
  "(!!x y z. (x, y):g ==> (x, z):g ==> z = y) 
wenzelm@9035
    82
  ==> graph (domain g) (funct g) = g"
wenzelm@9035
    83
proof (unfold domain_def funct_def graph_def, auto)
wenzelm@9035
    84
  fix a b assume "(a, b) : g"
wenzelm@9035
    85
  show "(a, SOME y. (a, y) : g) : g" by (rule selectI2)
wenzelm@9035
    86
  show "EX y. (a, y) : g" ..
wenzelm@9035
    87
  assume uniq: "!!x y z. (x, y):g ==> (x, z):g ==> z = y"
wenzelm@9035
    88
  show "b = (SOME y. (a, y) : g)"
wenzelm@9035
    89
  proof (rule select_equality [RS sym])
wenzelm@9035
    90
    fix y assume "(a, y):g" show "y = b" by (rule uniq)
wenzelm@9035
    91
  qed
wenzelm@9035
    92
qed
wenzelm@7535
    93
wenzelm@7808
    94
wenzelm@7808
    95
wenzelm@9035
    96
subsection {* Norm-preserving extensions of a function *}
wenzelm@7917
    97
wenzelm@7978
    98
text {* Given a linear form $f$ on the space $F$ and a seminorm $p$ on 
wenzelm@7917
    99
$E$. The set of all linear extensions of $f$, to superspaces $H$ of 
wenzelm@9035
   100
$F$, which are bounded by $p$, is defined as follows. *}
wenzelm@7808
   101
wenzelm@7808
   102
wenzelm@7535
   103
constdefs
wenzelm@7656
   104
  norm_pres_extensions :: 
wenzelm@7917
   105
    "['a::{minus, plus} set, 'a  => real, 'a set, 'a => real] 
wenzelm@7917
   106
    => 'a graph set"
wenzelm@7917
   107
    "norm_pres_extensions E p F f 
wenzelm@7917
   108
    == {g. EX H h. graph H h = g 
wenzelm@7917
   109
                & is_linearform H h 
wenzelm@7917
   110
                & is_subspace H E
wenzelm@7917
   111
                & is_subspace F H
wenzelm@7917
   112
                & graph F f <= graph H h
wenzelm@9035
   113
                & (ALL x:H. h x <= p x)}"
wenzelm@7535
   114
                       
wenzelm@7656
   115
lemma norm_pres_extension_D:  
wenzelm@7917
   116
  "g : norm_pres_extensions E p F f
wenzelm@7917
   117
  ==> EX H h. graph H h = g 
wenzelm@7917
   118
            & is_linearform H h 
wenzelm@7917
   119
            & is_subspace H E
wenzelm@7917
   120
            & is_subspace F H
wenzelm@7917
   121
            & graph F f <= graph H h
wenzelm@9035
   122
            & (ALL x:H. h x <= p x)"
wenzelm@9035
   123
  by (unfold norm_pres_extensions_def) force
wenzelm@7535
   124
wenzelm@7656
   125
lemma norm_pres_extensionI2 [intro]:  
wenzelm@7917
   126
  "[| is_linearform H h; is_subspace H E; is_subspace F H;
wenzelm@7917
   127
  graph F f <= graph H h; ALL x:H. h x <= p x |]
wenzelm@9035
   128
  ==> (graph H h : norm_pres_extensions E p F f)"
wenzelm@9035
   129
 by (unfold norm_pres_extensions_def) force
wenzelm@7535
   130
wenzelm@7656
   131
lemma norm_pres_extensionI [intro]:  
wenzelm@7917
   132
  "EX H h. graph H h = g 
wenzelm@7917
   133
         & is_linearform H h    
wenzelm@7917
   134
         & is_subspace H E
wenzelm@7917
   135
         & is_subspace F H
wenzelm@7917
   136
         & graph F f <= graph H h
wenzelm@7917
   137
         & (ALL x:H. h x <= p x)
wenzelm@9035
   138
  ==> g: norm_pres_extensions E p F f"
wenzelm@9035
   139
  by (unfold norm_pres_extensions_def) force
wenzelm@7535
   140
wenzelm@9035
   141
end