src/HOL/Relation.thy
author krauss
Fri Nov 24 13:44:51 2006 +0100 (2006-11-24)
changeset 21512 3786eb1b69d6
parent 21404 eb85850d3eb7
child 22172 e7d6cb237b5e
permissions -rw-r--r--
Lemma "fundef_default_value" uses predicate instead of set.
wenzelm@10358
     1
(*  Title:      HOL/Relation.thy
nipkow@1128
     2
    ID:         $Id$
paulson@1983
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1983
     4
    Copyright   1996  University of Cambridge
nipkow@1128
     5
*)
nipkow@1128
     6
berghofe@12905
     7
header {* Relations *}
berghofe@12905
     8
nipkow@15131
     9
theory Relation
nipkow@15140
    10
imports Product_Type
nipkow@15131
    11
begin
paulson@5978
    12
wenzelm@12913
    13
subsection {* Definitions *}
wenzelm@12913
    14
wenzelm@19656
    15
definition
wenzelm@21404
    16
  converse :: "('a * 'b) set => ('b * 'a) set"
wenzelm@21404
    17
    ("(_^-1)" [1000] 999) where
wenzelm@10358
    18
  "r^-1 == {(y, x). (x, y) : r}"
paulson@7912
    19
wenzelm@21210
    20
notation (xsymbols)
wenzelm@19656
    21
  converse  ("(_\<inverse>)" [1000] 999)
wenzelm@19656
    22
wenzelm@19656
    23
definition
wenzelm@21404
    24
  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"
wenzelm@21404
    25
    (infixr "O" 75) where
wenzelm@12913
    26
  "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
wenzelm@12913
    27
wenzelm@21404
    28
definition
wenzelm@21404
    29
  Image :: "[('a * 'b) set, 'a set] => 'b set"
wenzelm@21404
    30
    (infixl "``" 90) where
wenzelm@12913
    31
  "r `` s == {y. EX x:s. (x,y):r}"
paulson@7912
    32
wenzelm@21404
    33
definition
wenzelm@21404
    34
  Id :: "('a * 'a) set" where -- {* the identity relation *}
wenzelm@12913
    35
  "Id == {p. EX x. p = (x,x)}"
paulson@7912
    36
wenzelm@21404
    37
definition
wenzelm@21404
    38
  diag  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
paulson@13830
    39
  "diag A == \<Union>x\<in>A. {(x,x)}"
wenzelm@12913
    40
wenzelm@21404
    41
definition
wenzelm@21404
    42
  Domain :: "('a * 'b) set => 'a set" where
wenzelm@12913
    43
  "Domain r == {x. EX y. (x,y):r}"
paulson@5978
    44
wenzelm@21404
    45
definition
wenzelm@21404
    46
  Range  :: "('a * 'b) set => 'b set" where
wenzelm@12913
    47
  "Range r == Domain(r^-1)"
paulson@5978
    48
wenzelm@21404
    49
definition
wenzelm@21404
    50
  Field :: "('a * 'a) set => 'a set" where
paulson@13830
    51
  "Field r == Domain r \<union> Range r"
paulson@10786
    52
wenzelm@21404
    53
definition
wenzelm@21404
    54
  refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
wenzelm@12913
    55
  "refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
paulson@6806
    56
wenzelm@21404
    57
definition
wenzelm@21404
    58
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
wenzelm@12913
    59
  "sym r == ALL x y. (x,y): r --> (y,x): r"
paulson@6806
    60
wenzelm@21404
    61
definition
wenzelm@21404
    62
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
wenzelm@12913
    63
  "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
paulson@6806
    64
wenzelm@21404
    65
definition
wenzelm@21404
    66
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
wenzelm@12913
    67
  "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
paulson@5978
    68
wenzelm@21404
    69
definition
wenzelm@21404
    70
  single_valued :: "('a * 'b) set => bool" where
wenzelm@12913
    71
  "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
berghofe@7014
    72
wenzelm@21404
    73
definition
wenzelm@21404
    74
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
wenzelm@12913
    75
  "inv_image r f == {(x, y). (f x, f y) : r}"
oheimb@11136
    76
wenzelm@19363
    77
abbreviation
wenzelm@21404
    78
  reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
wenzelm@19363
    79
  "reflexive == refl UNIV"
paulson@6806
    80
berghofe@12905
    81
wenzelm@12913
    82
subsection {* The identity relation *}
berghofe@12905
    83
berghofe@12905
    84
lemma IdI [intro]: "(a, a) : Id"
berghofe@12905
    85
  by (simp add: Id_def)
berghofe@12905
    86
berghofe@12905
    87
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
nipkow@17589
    88
  by (unfold Id_def) (iprover elim: CollectE)
berghofe@12905
    89
berghofe@12905
    90
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
berghofe@12905
    91
  by (unfold Id_def) blast
berghofe@12905
    92
berghofe@12905
    93
lemma reflexive_Id: "reflexive Id"
berghofe@12905
    94
  by (simp add: refl_def)
berghofe@12905
    95
berghofe@12905
    96
lemma antisym_Id: "antisym Id"
berghofe@12905
    97
  -- {* A strange result, since @{text Id} is also symmetric. *}
berghofe@12905
    98
  by (simp add: antisym_def)
berghofe@12905
    99
huffman@19228
   100
lemma sym_Id: "sym Id"
huffman@19228
   101
  by (simp add: sym_def)
huffman@19228
   102
berghofe@12905
   103
lemma trans_Id: "trans Id"
berghofe@12905
   104
  by (simp add: trans_def)
berghofe@12905
   105
berghofe@12905
   106
wenzelm@12913
   107
subsection {* Diagonal: identity over a set *}
berghofe@12905
   108
paulson@13812
   109
lemma diag_empty [simp]: "diag {} = {}"
paulson@13812
   110
  by (simp add: diag_def) 
paulson@13812
   111
berghofe@12905
   112
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A"
berghofe@12905
   113
  by (simp add: diag_def)
berghofe@12905
   114
berghofe@12905
   115
lemma diagI [intro!]: "a : A ==> (a, a) : diag A"
berghofe@12905
   116
  by (rule diag_eqI) (rule refl)
berghofe@12905
   117
berghofe@12905
   118
lemma diagE [elim!]:
berghofe@12905
   119
  "c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
wenzelm@12913
   120
  -- {* The general elimination rule. *}
nipkow@17589
   121
  by (unfold diag_def) (iprover elim!: UN_E singletonE)
berghofe@12905
   122
berghofe@12905
   123
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)"
berghofe@12905
   124
  by blast
berghofe@12905
   125
wenzelm@12913
   126
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A"
berghofe@12905
   127
  by blast
berghofe@12905
   128
berghofe@12905
   129
berghofe@12905
   130
subsection {* Composition of two relations *}
berghofe@12905
   131
wenzelm@12913
   132
lemma rel_compI [intro]:
berghofe@12905
   133
  "(a, b) : s ==> (b, c) : r ==> (a, c) : r O s"
berghofe@12905
   134
  by (unfold rel_comp_def) blast
berghofe@12905
   135
wenzelm@12913
   136
lemma rel_compE [elim!]: "xz : r O s ==>
berghofe@12905
   137
  (!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r  ==> P) ==> P"
nipkow@17589
   138
  by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
berghofe@12905
   139
berghofe@12905
   140
lemma rel_compEpair:
berghofe@12905
   141
  "(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P"
nipkow@17589
   142
  by (iprover elim: rel_compE Pair_inject ssubst)
berghofe@12905
   143
berghofe@12905
   144
lemma R_O_Id [simp]: "R O Id = R"
berghofe@12905
   145
  by fast
berghofe@12905
   146
berghofe@12905
   147
lemma Id_O_R [simp]: "Id O R = R"
berghofe@12905
   148
  by fast
berghofe@12905
   149
berghofe@12905
   150
lemma O_assoc: "(R O S) O T = R O (S O T)"
berghofe@12905
   151
  by blast
berghofe@12905
   152
wenzelm@12913
   153
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
berghofe@12905
   154
  by (unfold trans_def) blast
berghofe@12905
   155
wenzelm@12913
   156
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
berghofe@12905
   157
  by blast
berghofe@12905
   158
berghofe@12905
   159
lemma rel_comp_subset_Sigma:
wenzelm@12913
   160
    "s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
berghofe@12905
   161
  by blast
berghofe@12905
   162
wenzelm@12913
   163
wenzelm@12913
   164
subsection {* Reflexivity *}
wenzelm@12913
   165
wenzelm@12913
   166
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r"
nipkow@17589
   167
  by (unfold refl_def) (iprover intro!: ballI)
berghofe@12905
   168
berghofe@12905
   169
lemma reflD: "refl A r ==> a : A ==> (a, a) : r"
berghofe@12905
   170
  by (unfold refl_def) blast
berghofe@12905
   171
huffman@19228
   172
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A"
huffman@19228
   173
  by (unfold refl_def) blast
huffman@19228
   174
huffman@19228
   175
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A"
huffman@19228
   176
  by (unfold refl_def) blast
huffman@19228
   177
huffman@19228
   178
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)"
huffman@19228
   179
  by (unfold refl_def) blast
huffman@19228
   180
huffman@19228
   181
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)"
huffman@19228
   182
  by (unfold refl_def) blast
huffman@19228
   183
huffman@19228
   184
lemma refl_INTER:
huffman@19228
   185
  "ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)"
huffman@19228
   186
  by (unfold refl_def) fast
huffman@19228
   187
huffman@19228
   188
lemma refl_UNION:
huffman@19228
   189
  "ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)"
huffman@19228
   190
  by (unfold refl_def) blast
huffman@19228
   191
huffman@19228
   192
lemma refl_diag: "refl A (diag A)"
huffman@19228
   193
  by (rule reflI [OF diag_subset_Times diagI])
huffman@19228
   194
wenzelm@12913
   195
wenzelm@12913
   196
subsection {* Antisymmetry *}
berghofe@12905
   197
berghofe@12905
   198
lemma antisymI:
berghofe@12905
   199
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
nipkow@17589
   200
  by (unfold antisym_def) iprover
berghofe@12905
   201
berghofe@12905
   202
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
nipkow@17589
   203
  by (unfold antisym_def) iprover
berghofe@12905
   204
huffman@19228
   205
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
huffman@19228
   206
  by (unfold antisym_def) blast
wenzelm@12913
   207
huffman@19228
   208
lemma antisym_empty [simp]: "antisym {}"
huffman@19228
   209
  by (unfold antisym_def) blast
huffman@19228
   210
huffman@19228
   211
lemma antisym_diag [simp]: "antisym (diag A)"
huffman@19228
   212
  by (unfold antisym_def) blast
huffman@19228
   213
huffman@19228
   214
huffman@19228
   215
subsection {* Symmetry *}
huffman@19228
   216
huffman@19228
   217
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
huffman@19228
   218
  by (unfold sym_def) iprover
paulson@15177
   219
paulson@15177
   220
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
paulson@15177
   221
  by (unfold sym_def, blast)
berghofe@12905
   222
huffman@19228
   223
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
huffman@19228
   224
  by (fast intro: symI dest: symD)
huffman@19228
   225
huffman@19228
   226
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
huffman@19228
   227
  by (fast intro: symI dest: symD)
huffman@19228
   228
huffman@19228
   229
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
huffman@19228
   230
  by (fast intro: symI dest: symD)
huffman@19228
   231
huffman@19228
   232
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
huffman@19228
   233
  by (fast intro: symI dest: symD)
huffman@19228
   234
huffman@19228
   235
lemma sym_diag [simp]: "sym (diag A)"
huffman@19228
   236
  by (rule symI) clarify
huffman@19228
   237
huffman@19228
   238
huffman@19228
   239
subsection {* Transitivity *}
huffman@19228
   240
berghofe@12905
   241
lemma transI:
berghofe@12905
   242
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
nipkow@17589
   243
  by (unfold trans_def) iprover
berghofe@12905
   244
berghofe@12905
   245
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
nipkow@17589
   246
  by (unfold trans_def) iprover
berghofe@12905
   247
huffman@19228
   248
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
huffman@19228
   249
  by (fast intro: transI elim: transD)
huffman@19228
   250
huffman@19228
   251
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
huffman@19228
   252
  by (fast intro: transI elim: transD)
huffman@19228
   253
huffman@19228
   254
lemma trans_diag [simp]: "trans (diag A)"
huffman@19228
   255
  by (fast intro: transI elim: transD)
huffman@19228
   256
berghofe@12905
   257
wenzelm@12913
   258
subsection {* Converse *}
wenzelm@12913
   259
wenzelm@12913
   260
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
berghofe@12905
   261
  by (simp add: converse_def)
berghofe@12905
   262
nipkow@13343
   263
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
berghofe@12905
   264
  by (simp add: converse_def)
berghofe@12905
   265
nipkow@13343
   266
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
berghofe@12905
   267
  by (simp add: converse_def)
berghofe@12905
   268
berghofe@12905
   269
lemma converseE [elim!]:
berghofe@12905
   270
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
wenzelm@12913
   271
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
nipkow@17589
   272
  by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
berghofe@12905
   273
berghofe@12905
   274
lemma converse_converse [simp]: "(r^-1)^-1 = r"
berghofe@12905
   275
  by (unfold converse_def) blast
berghofe@12905
   276
berghofe@12905
   277
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
berghofe@12905
   278
  by blast
berghofe@12905
   279
huffman@19228
   280
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
huffman@19228
   281
  by blast
huffman@19228
   282
huffman@19228
   283
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
huffman@19228
   284
  by blast
huffman@19228
   285
huffman@19228
   286
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
huffman@19228
   287
  by fast
huffman@19228
   288
huffman@19228
   289
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
huffman@19228
   290
  by blast
huffman@19228
   291
berghofe@12905
   292
lemma converse_Id [simp]: "Id^-1 = Id"
berghofe@12905
   293
  by blast
berghofe@12905
   294
wenzelm@12913
   295
lemma converse_diag [simp]: "(diag A)^-1 = diag A"
berghofe@12905
   296
  by blast
berghofe@12905
   297
huffman@19228
   298
lemma refl_converse [simp]: "refl A (converse r) = refl A r"
huffman@19228
   299
  by (unfold refl_def) auto
berghofe@12905
   300
huffman@19228
   301
lemma sym_converse [simp]: "sym (converse r) = sym r"
huffman@19228
   302
  by (unfold sym_def) blast
huffman@19228
   303
huffman@19228
   304
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
berghofe@12905
   305
  by (unfold antisym_def) blast
berghofe@12905
   306
huffman@19228
   307
lemma trans_converse [simp]: "trans (converse r) = trans r"
berghofe@12905
   308
  by (unfold trans_def) blast
berghofe@12905
   309
huffman@19228
   310
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
huffman@19228
   311
  by (unfold sym_def) fast
huffman@19228
   312
huffman@19228
   313
lemma sym_Un_converse: "sym (r \<union> r^-1)"
huffman@19228
   314
  by (unfold sym_def) blast
huffman@19228
   315
huffman@19228
   316
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
huffman@19228
   317
  by (unfold sym_def) blast
huffman@19228
   318
wenzelm@12913
   319
berghofe@12905
   320
subsection {* Domain *}
berghofe@12905
   321
berghofe@12905
   322
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
berghofe@12905
   323
  by (unfold Domain_def) blast
berghofe@12905
   324
berghofe@12905
   325
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
nipkow@17589
   326
  by (iprover intro!: iffD2 [OF Domain_iff])
berghofe@12905
   327
berghofe@12905
   328
lemma DomainE [elim!]:
berghofe@12905
   329
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
nipkow@17589
   330
  by (iprover dest!: iffD1 [OF Domain_iff])
berghofe@12905
   331
berghofe@12905
   332
lemma Domain_empty [simp]: "Domain {} = {}"
berghofe@12905
   333
  by blast
berghofe@12905
   334
berghofe@12905
   335
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
berghofe@12905
   336
  by blast
berghofe@12905
   337
berghofe@12905
   338
lemma Domain_Id [simp]: "Domain Id = UNIV"
berghofe@12905
   339
  by blast
berghofe@12905
   340
berghofe@12905
   341
lemma Domain_diag [simp]: "Domain (diag A) = A"
berghofe@12905
   342
  by blast
berghofe@12905
   343
paulson@13830
   344
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
berghofe@12905
   345
  by blast
berghofe@12905
   346
paulson@13830
   347
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
berghofe@12905
   348
  by blast
berghofe@12905
   349
wenzelm@12913
   350
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
berghofe@12905
   351
  by blast
berghofe@12905
   352
paulson@13830
   353
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
berghofe@12905
   354
  by blast
berghofe@12905
   355
wenzelm@12913
   356
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
berghofe@12905
   357
  by blast
berghofe@12905
   358
berghofe@12905
   359
berghofe@12905
   360
subsection {* Range *}
berghofe@12905
   361
berghofe@12905
   362
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
berghofe@12905
   363
  by (simp add: Domain_def Range_def)
berghofe@12905
   364
berghofe@12905
   365
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
nipkow@17589
   366
  by (unfold Range_def) (iprover intro!: converseI DomainI)
berghofe@12905
   367
berghofe@12905
   368
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
nipkow@17589
   369
  by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
berghofe@12905
   370
berghofe@12905
   371
lemma Range_empty [simp]: "Range {} = {}"
berghofe@12905
   372
  by blast
berghofe@12905
   373
berghofe@12905
   374
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
berghofe@12905
   375
  by blast
berghofe@12905
   376
berghofe@12905
   377
lemma Range_Id [simp]: "Range Id = UNIV"
berghofe@12905
   378
  by blast
berghofe@12905
   379
berghofe@12905
   380
lemma Range_diag [simp]: "Range (diag A) = A"
berghofe@12905
   381
  by auto
berghofe@12905
   382
paulson@13830
   383
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
berghofe@12905
   384
  by blast
berghofe@12905
   385
paulson@13830
   386
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
berghofe@12905
   387
  by blast
berghofe@12905
   388
wenzelm@12913
   389
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
berghofe@12905
   390
  by blast
berghofe@12905
   391
paulson@13830
   392
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
berghofe@12905
   393
  by blast
berghofe@12905
   394
berghofe@12905
   395
berghofe@12905
   396
subsection {* Image of a set under a relation *}
berghofe@12905
   397
wenzelm@12913
   398
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
berghofe@12905
   399
  by (simp add: Image_def)
berghofe@12905
   400
wenzelm@12913
   401
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
berghofe@12905
   402
  by (simp add: Image_def)
berghofe@12905
   403
wenzelm@12913
   404
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
berghofe@12905
   405
  by (rule Image_iff [THEN trans]) simp
berghofe@12905
   406
wenzelm@12913
   407
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A"
berghofe@12905
   408
  by (unfold Image_def) blast
berghofe@12905
   409
berghofe@12905
   410
lemma ImageE [elim!]:
wenzelm@12913
   411
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
nipkow@17589
   412
  by (unfold Image_def) (iprover elim!: CollectE bexE)
berghofe@12905
   413
berghofe@12905
   414
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
berghofe@12905
   415
  -- {* This version's more effective when we already have the required @{text a} *}
berghofe@12905
   416
  by blast
berghofe@12905
   417
berghofe@12905
   418
lemma Image_empty [simp]: "R``{} = {}"
berghofe@12905
   419
  by blast
berghofe@12905
   420
berghofe@12905
   421
lemma Image_Id [simp]: "Id `` A = A"
berghofe@12905
   422
  by blast
berghofe@12905
   423
paulson@13830
   424
lemma Image_diag [simp]: "diag A `` B = A \<inter> B"
paulson@13830
   425
  by blast
paulson@13830
   426
paulson@13830
   427
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
berghofe@12905
   428
  by blast
berghofe@12905
   429
paulson@13830
   430
lemma Image_Int_eq:
paulson@13830
   431
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
paulson@13830
   432
  by (simp add: single_valued_def, blast) 
berghofe@12905
   433
paulson@13830
   434
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
berghofe@12905
   435
  by blast
berghofe@12905
   436
paulson@13812
   437
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
paulson@13812
   438
  by blast
paulson@13812
   439
wenzelm@12913
   440
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
nipkow@17589
   441
  by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
berghofe@12905
   442
paulson@13830
   443
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
berghofe@12905
   444
  -- {* NOT suitable for rewriting *}
berghofe@12905
   445
  by blast
berghofe@12905
   446
wenzelm@12913
   447
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
berghofe@12905
   448
  by blast
berghofe@12905
   449
paulson@13830
   450
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
paulson@13830
   451
  by blast
paulson@13830
   452
paulson@13830
   453
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
berghofe@12905
   454
  by blast
berghofe@12905
   455
paulson@13830
   456
text{*Converse inclusion requires some assumptions*}
paulson@13830
   457
lemma Image_INT_eq:
paulson@13830
   458
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
paulson@13830
   459
apply (rule equalityI)
paulson@13830
   460
 apply (rule Image_INT_subset) 
paulson@13830
   461
apply  (simp add: single_valued_def, blast)
paulson@13830
   462
done
berghofe@12905
   463
wenzelm@12913
   464
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
berghofe@12905
   465
  by blast
berghofe@12905
   466
berghofe@12905
   467
wenzelm@12913
   468
subsection {* Single valued relations *}
wenzelm@12913
   469
wenzelm@12913
   470
lemma single_valuedI:
berghofe@12905
   471
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
berghofe@12905
   472
  by (unfold single_valued_def)
berghofe@12905
   473
berghofe@12905
   474
lemma single_valuedD:
berghofe@12905
   475
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
berghofe@12905
   476
  by (simp add: single_valued_def)
berghofe@12905
   477
huffman@19228
   478
lemma single_valued_rel_comp:
huffman@19228
   479
  "single_valued r ==> single_valued s ==> single_valued (r O s)"
huffman@19228
   480
  by (unfold single_valued_def) blast
huffman@19228
   481
huffman@19228
   482
lemma single_valued_subset:
huffman@19228
   483
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
huffman@19228
   484
  by (unfold single_valued_def) blast
huffman@19228
   485
huffman@19228
   486
lemma single_valued_Id [simp]: "single_valued Id"
huffman@19228
   487
  by (unfold single_valued_def) blast
huffman@19228
   488
huffman@19228
   489
lemma single_valued_diag [simp]: "single_valued (diag A)"
huffman@19228
   490
  by (unfold single_valued_def) blast
huffman@19228
   491
berghofe@12905
   492
berghofe@12905
   493
subsection {* Graphs given by @{text Collect} *}
berghofe@12905
   494
berghofe@12905
   495
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
berghofe@12905
   496
  by auto
berghofe@12905
   497
berghofe@12905
   498
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
berghofe@12905
   499
  by auto
berghofe@12905
   500
berghofe@12905
   501
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
berghofe@12905
   502
  by auto
berghofe@12905
   503
berghofe@12905
   504
wenzelm@12913
   505
subsection {* Inverse image *}
berghofe@12905
   506
huffman@19228
   507
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
huffman@19228
   508
  by (unfold sym_def inv_image_def) blast
huffman@19228
   509
wenzelm@12913
   510
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
berghofe@12905
   511
  apply (unfold trans_def inv_image_def)
berghofe@12905
   512
  apply (simp (no_asm))
berghofe@12905
   513
  apply blast
berghofe@12905
   514
  done
berghofe@12905
   515
nipkow@1128
   516
end