src/HOL/Tools/datatype_rep_proofs.ML
author berghofe
Fri Oct 26 23:17:49 2001 +0200 (2001-10-26)
changeset 11951 381135c295ef
parent 11827 16ef206e6648
child 11957 f1657e0291ca
permissions -rw-r--r--
Fixed several bugs concerning arbitrarily branching datatypes.
berghofe@5177
     1
(*  Title:      HOL/Tools/datatype_rep_proofs.ML
berghofe@5177
     2
    ID:         $Id$
wenzelm@11539
     3
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@11539
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@5177
     5
berghofe@5177
     6
Definitional introduction of datatypes
berghofe@5177
     7
Proof of characteristic theorems:
berghofe@5177
     8
berghofe@5177
     9
 - injectivity of constructors
berghofe@7228
    10
 - distinctness of constructors
berghofe@5177
    11
 - induction theorem
berghofe@5177
    12
berghofe@5177
    13
*)
berghofe@5177
    14
berghofe@5177
    15
signature DATATYPE_REP_PROOFS =
berghofe@5177
    16
sig
berghofe@5661
    17
  val representation_proofs : bool -> DatatypeAux.datatype_info Symtab.table ->
berghofe@5177
    18
    string list -> (int * (string * DatatypeAux.dtyp list *
berghofe@5177
    19
      (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
wenzelm@8436
    20
        (string * mixfix) list -> (string * mixfix) list list -> theory attribute
wenzelm@8436
    21
          -> theory -> theory * thm list list * thm list list * thm list list *
berghofe@7015
    22
            DatatypeAux.simproc_dist list * thm
berghofe@5177
    23
end;
berghofe@5177
    24
berghofe@5177
    25
structure DatatypeRepProofs : DATATYPE_REP_PROOFS =
berghofe@5177
    26
struct
berghofe@5177
    27
berghofe@5177
    28
open DatatypeAux;
berghofe@5177
    29
berghofe@5177
    30
val (_ $ (_ $ (_ $ (distinct_f $ _) $ _))) = hd (prems_of distinct_lemma);
berghofe@5177
    31
wenzelm@11435
    32
wenzelm@11435
    33
(** theory context references **)
berghofe@5177
    34
wenzelm@11435
    35
val f_myinv_f = thm "f_myinv_f";
wenzelm@11435
    36
val myinv_f_f = thm "myinv_f_f";
wenzelm@11435
    37
berghofe@5177
    38
berghofe@5177
    39
fun exh_thm_of (dt_info : datatype_info Symtab.table) tname =
berghofe@5177
    40
  #exhaustion (the (Symtab.lookup (dt_info, tname)));
berghofe@5177
    41
berghofe@5177
    42
(******************************************************************************)
berghofe@5177
    43
berghofe@5661
    44
fun representation_proofs flat_names (dt_info : datatype_info Symtab.table)
wenzelm@8436
    45
      new_type_names descr sorts types_syntax constr_syntax case_names_induct thy =
berghofe@5177
    46
  let
berghofe@7015
    47
    val Datatype_thy = theory "Datatype";
berghofe@7015
    48
    val node_name = Sign.intern_tycon (Theory.sign_of Datatype_thy) "node";
berghofe@7015
    49
    val [In0_name, In1_name, Scons_name, Leaf_name, Numb_name, Lim_name,
berghofe@7293
    50
      Funs_name, o_name, sum_case_name] =
berghofe@7015
    51
      map (Sign.intern_const (Theory.sign_of Datatype_thy))
berghofe@7293
    52
        ["In0", "In1", "Scons", "Leaf", "Numb", "Lim", "Funs", "op o", "sum_case"];
berghofe@7015
    53
berghofe@5177
    54
    val [In0_inject, In1_inject, Scons_inject, Leaf_inject, In0_eq, In1_eq,
berghofe@7015
    55
         In0_not_In1, In1_not_In0, Funs_mono, FunsI, Lim_inject,
berghofe@7293
    56
         Funs_inv, FunsD, Funs_rangeE, Funs_nonempty, sum_case_inject] = map (get_thm Datatype_thy)
berghofe@7015
    57
        ["In0_inject", "In1_inject", "Scons_inject", "Leaf_inject", "In0_eq", "In1_eq",
berghofe@7015
    58
         "In0_not_In1", "In1_not_In0", "Funs_mono", "FunsI", "Lim_inject",
berghofe@7293
    59
         "Funs_inv", "FunsD", "Funs_rangeE", "Funs_nonempty", "sum_case_inject"];
berghofe@7015
    60
berghofe@7015
    61
    val Funs_IntE = (Int_lower2 RS Funs_mono RS
berghofe@7015
    62
      (Int_lower1 RS Funs_mono RS Int_greatest) RS subsetD) RS IntE;
berghofe@5177
    63
berghofe@5177
    64
    val descr' = flat descr;
berghofe@5177
    65
berghofe@5661
    66
    val big_name = space_implode "_" new_type_names;
berghofe@5661
    67
    val thy1 = add_path flat_names big_name thy;
berghofe@5661
    68
    val big_rec_name = big_name ^ "_rep_set";
wenzelm@6394
    69
    val rep_set_names = map (Sign.full_name (Theory.sign_of thy1))
berghofe@5177
    70
      (if length descr' = 1 then [big_rec_name] else
berghofe@5177
    71
        (map ((curry (op ^) (big_rec_name ^ "_")) o string_of_int)
berghofe@5177
    72
          (1 upto (length descr'))));
berghofe@5177
    73
berghofe@5661
    74
    val tyvars = map (fn (_, (_, Ts, _)) => map dest_DtTFree Ts) (hd descr);
berghofe@5661
    75
    val leafTs' = get_nonrec_types descr' sorts;
berghofe@7015
    76
    val branchTs = get_branching_types descr' sorts;
berghofe@7015
    77
    val branchT = if null branchTs then HOLogic.unitT
berghofe@7015
    78
      else fold_bal (fn (T, U) => Type ("+", [T, U])) branchTs;
berghofe@7015
    79
    val unneeded_vars = hd tyvars \\ foldr add_typ_tfree_names (leafTs' @ branchTs, []);
berghofe@5661
    80
    val leafTs = leafTs' @ (map (fn n => TFree (n, the (assoc (sorts, n)))) unneeded_vars);
berghofe@5177
    81
    val recTs = get_rec_types descr' sorts;
berghofe@5177
    82
    val newTs = take (length (hd descr), recTs);
berghofe@5177
    83
    val oldTs = drop (length (hd descr), recTs);
berghofe@5177
    84
    val sumT = if null leafTs then HOLogic.unitT
berghofe@5177
    85
      else fold_bal (fn (T, U) => Type ("+", [T, U])) leafTs;
berghofe@7015
    86
    val Univ_elT = HOLogic.mk_setT (Type (node_name, [sumT, branchT]));
berghofe@5177
    87
    val UnivT = HOLogic.mk_setT Univ_elT;
berghofe@5177
    88
berghofe@5177
    89
    val In0 = Const (In0_name, Univ_elT --> Univ_elT);
berghofe@5177
    90
    val In1 = Const (In1_name, Univ_elT --> Univ_elT);
berghofe@5177
    91
    val Leaf = Const (Leaf_name, sumT --> Univ_elT);
berghofe@7015
    92
    val Lim = Const (Lim_name, (branchT --> Univ_elT) --> Univ_elT);
berghofe@5177
    93
berghofe@5177
    94
    (* make injections needed for embedding types in leaves *)
berghofe@5177
    95
berghofe@5177
    96
    fun mk_inj T' x =
berghofe@5177
    97
      let
berghofe@5177
    98
        fun mk_inj' T n i =
berghofe@5177
    99
          if n = 1 then x else
berghofe@5177
   100
          let val n2 = n div 2;
berghofe@5177
   101
              val Type (_, [T1, T2]) = T
berghofe@5177
   102
          in
berghofe@5177
   103
            if i <= n2 then
berghofe@5177
   104
              Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5177
   105
            else
berghofe@5177
   106
              Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5177
   107
          end
berghofe@5177
   108
      in mk_inj' sumT (length leafTs) (1 + find_index_eq T' leafTs)
berghofe@5177
   109
      end;
berghofe@5177
   110
berghofe@5177
   111
    (* make injections for constructors *)
berghofe@5177
   112
wenzelm@7704
   113
    fun mk_univ_inj ts = access_bal (fn t => In0 $ t, fn t => In1 $ t, if ts = [] then
berghofe@5177
   114
        Const ("arbitrary", Univ_elT)
berghofe@5177
   115
      else
berghofe@5177
   116
        foldr1 (HOLogic.mk_binop Scons_name) ts);
berghofe@5177
   117
berghofe@7015
   118
    (* function spaces *)
berghofe@7015
   119
berghofe@7015
   120
    fun mk_fun_inj T' x =
berghofe@7015
   121
      let
berghofe@7015
   122
        fun mk_inj T n i =
berghofe@7015
   123
          if n = 1 then x else
berghofe@7015
   124
          let
berghofe@7015
   125
            val n2 = n div 2;
berghofe@7015
   126
            val Type (_, [T1, T2]) = T;
berghofe@7293
   127
            val sum_case = Const (sum_case_name, [T1 --> Univ_elT, T2 --> Univ_elT, T] ---> Univ_elT)
berghofe@7015
   128
          in
berghofe@7015
   129
            if i <= n2 then
berghofe@7015
   130
              sum_case $ (mk_inj T1 n2 i) $ Const ("arbitrary", T2 --> Univ_elT)
berghofe@7015
   131
            else
berghofe@7015
   132
              sum_case $ Const ("arbitrary", T1 --> Univ_elT) $ mk_inj T2 (n - n2) (i - n2)
berghofe@7015
   133
          end
berghofe@7015
   134
      in mk_inj branchT (length branchTs) (1 + find_index_eq T' branchTs)
berghofe@7015
   135
      end;
berghofe@7015
   136
berghofe@5177
   137
    (************** generate introduction rules for representing set **********)
berghofe@5177
   138
wenzelm@6427
   139
    val _ = message "Constructing representing sets ...";
berghofe@5177
   140
berghofe@5177
   141
    (* make introduction rule for a single constructor *)
berghofe@5177
   142
berghofe@5177
   143
    fun make_intr s n (i, (_, cargs)) =
berghofe@5177
   144
      let
berghofe@5177
   145
        fun mk_prem (DtRec k, (j, prems, ts)) =
berghofe@5177
   146
              let val free_t = mk_Free "x" Univ_elT j
berghofe@5177
   147
              in (j + 1, (HOLogic.mk_mem (free_t,
berghofe@5177
   148
                Const (nth_elem (k, rep_set_names), UnivT)))::prems, free_t::ts)
berghofe@5177
   149
              end
berghofe@7015
   150
          | mk_prem (DtType ("fun", [T, DtRec k]), (j, prems, ts)) =
berghofe@7015
   151
              let val T' = typ_of_dtyp descr' sorts T;
berghofe@7015
   152
                  val free_t = mk_Free "x" (T' --> Univ_elT) j
berghofe@7015
   153
              in (j + 1, (HOLogic.mk_mem (free_t,
berghofe@7015
   154
                Const (Funs_name, UnivT --> HOLogic.mk_setT (T' --> Univ_elT)) $
berghofe@7015
   155
                  Const (nth_elem (k, rep_set_names), UnivT)))::prems,
berghofe@7015
   156
                    Lim $ mk_fun_inj T' free_t::ts)
berghofe@7015
   157
              end
berghofe@5177
   158
          | mk_prem (dt, (j, prems, ts)) =
berghofe@5177
   159
              let val T = typ_of_dtyp descr' sorts dt
berghofe@5177
   160
              in (j + 1, prems, (Leaf $ mk_inj T (mk_Free "x" T j))::ts)
berghofe@5177
   161
              end;
berghofe@5177
   162
berghofe@5177
   163
        val (_, prems, ts) = foldr mk_prem (cargs, (1, [], []));
berghofe@5177
   164
        val concl = HOLogic.mk_Trueprop (HOLogic.mk_mem
berghofe@5177
   165
          (mk_univ_inj ts n i, Const (s, UnivT)))
berghofe@5177
   166
      in Logic.list_implies (map HOLogic.mk_Trueprop prems, concl)
berghofe@5177
   167
      end;
berghofe@5177
   168
berghofe@5177
   169
    val consts = map (fn s => Const (s, UnivT)) rep_set_names;
berghofe@5177
   170
berghofe@5177
   171
    val intr_ts = flat (map (fn ((_, (_, _, constrs)), rep_set_name) =>
berghofe@5177
   172
      map (make_intr rep_set_name (length constrs))
berghofe@5177
   173
        ((1 upto (length constrs)) ~~ constrs)) (descr' ~~ rep_set_names));
berghofe@5177
   174
berghofe@5177
   175
    val (thy2, {raw_induct = rep_induct, intrs = rep_intrs, ...}) =
berghofe@5661
   176
      setmp InductivePackage.quiet_mode (!quiet_mode)
berghofe@5661
   177
        (InductivePackage.add_inductive_i false true big_rec_name false true false
wenzelm@11628
   178
           consts (map (fn x => (("", x), [])) intr_ts) [Funs_mono] []) thy1;
berghofe@5177
   179
berghofe@5177
   180
    (********************************* typedef ********************************)
berghofe@5177
   181
berghofe@5661
   182
    val thy3 = add_path flat_names big_name (foldl (fn (thy, ((((name, mx), tvs), c), name')) =>
wenzelm@5696
   183
      setmp TypedefPackage.quiet_mode true
wenzelm@11827
   184
        (TypedefPackage.add_typedef_i false (Some name') (name, tvs, mx) c None
wenzelm@11827
   185
          (rtac exI 1 THEN
wenzelm@11827
   186
            QUIET_BREADTH_FIRST (has_fewer_prems 1)
wenzelm@11822
   187
            (resolve_tac (Funs_nonempty::rep_intrs) 1))) thy |> #1)
berghofe@7015
   188
              (parent_path flat_names thy2, types_syntax ~~ tyvars ~~
berghofe@7015
   189
                (take (length newTs, consts)) ~~ new_type_names));
berghofe@5177
   190
berghofe@5177
   191
    (*********************** definition of constructors ***********************)
berghofe@5177
   192
berghofe@5177
   193
    val big_rep_name = (space_implode "_" new_type_names) ^ "_Rep_";
berghofe@5177
   194
    val rep_names = map (curry op ^ "Rep_") new_type_names;
berghofe@5177
   195
    val rep_names' = map (fn i => big_rep_name ^ (string_of_int i))
berghofe@5177
   196
      (1 upto (length (flat (tl descr))));
wenzelm@6394
   197
    val all_rep_names = map (Sign.intern_const (Theory.sign_of thy3)) rep_names @
wenzelm@6394
   198
      map (Sign.full_name (Theory.sign_of thy3)) rep_names';
berghofe@5177
   199
berghofe@5177
   200
    (* isomorphism declarations *)
berghofe@5177
   201
berghofe@5177
   202
    val iso_decls = map (fn (T, s) => (s, T --> Univ_elT, NoSyn))
berghofe@5177
   203
      (oldTs ~~ rep_names');
berghofe@5177
   204
berghofe@5177
   205
    (* constructor definitions *)
berghofe@5177
   206
berghofe@5177
   207
    fun make_constr_def tname T n ((thy, defs, eqns, i), ((cname, cargs), (cname', mx))) =
berghofe@5177
   208
      let
berghofe@5177
   209
        fun constr_arg (dt, (j, l_args, r_args)) =
berghofe@5177
   210
          let val T = typ_of_dtyp descr' sorts dt;
berghofe@5177
   211
              val free_t = mk_Free "x" T j
berghofe@5177
   212
          in (case dt of
berghofe@5177
   213
              DtRec m => (j + 1, free_t::l_args, (Const (nth_elem (m, all_rep_names),
berghofe@5177
   214
                T --> Univ_elT) $ free_t)::r_args)
berghofe@7015
   215
            | DtType ("fun", [T', DtRec m]) =>
berghofe@7015
   216
                let val ([T''], T''') = strip_type T
berghofe@7015
   217
                in (j + 1, free_t::l_args, (Lim $ mk_fun_inj T''
berghofe@7015
   218
                  (Const (o_name, [T''' --> Univ_elT, T, T''] ---> Univ_elT) $
berghofe@7015
   219
                    Const (nth_elem (m, all_rep_names), T''' --> Univ_elT) $ free_t))::r_args)
berghofe@7015
   220
                end
berghofe@7015
   221
berghofe@5177
   222
            | _ => (j + 1, free_t::l_args, (Leaf $ mk_inj T free_t)::r_args))
berghofe@5177
   223
          end;
berghofe@5177
   224
berghofe@5177
   225
        val (_, l_args, r_args) = foldr constr_arg (cargs, (1, [], []));
berghofe@5177
   226
        val constrT = (map (typ_of_dtyp descr' sorts) cargs) ---> T;
wenzelm@6394
   227
        val abs_name = Sign.intern_const (Theory.sign_of thy) ("Abs_" ^ tname);
wenzelm@6394
   228
        val rep_name = Sign.intern_const (Theory.sign_of thy) ("Rep_" ^ tname);
berghofe@5177
   229
        val lhs = list_comb (Const (cname, constrT), l_args);
berghofe@5177
   230
        val rhs = mk_univ_inj r_args n i;
berghofe@5177
   231
        val def = equals T $ lhs $ (Const (abs_name, Univ_elT --> T) $ rhs);
berghofe@5177
   232
        val def_name = (Sign.base_name cname) ^ "_def";
berghofe@5177
   233
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   234
          (Const (rep_name, T --> Univ_elT) $ lhs, rhs));
wenzelm@8436
   235
        val (thy', [def_thm]) = thy |>
berghofe@5177
   236
          Theory.add_consts_i [(cname', constrT, mx)] |>
wenzelm@9315
   237
          (PureThy.add_defs_i false o map Thm.no_attributes) [(def_name, def)];
berghofe@5177
   238
wenzelm@8436
   239
      in (thy', defs @ [def_thm], eqns @ [eqn], i + 1) end;
berghofe@5177
   240
berghofe@5177
   241
    (* constructor definitions for datatype *)
berghofe@5177
   242
berghofe@5177
   243
    fun dt_constr_defs ((thy, defs, eqns, rep_congs, dist_lemmas),
berghofe@5177
   244
        ((((_, (_, _, constrs)), tname), T), constr_syntax)) =
berghofe@5177
   245
      let
berghofe@5177
   246
        val _ $ (_ $ (cong_f $ _) $ _) = concl_of arg_cong;
wenzelm@6394
   247
        val sg = Theory.sign_of thy;
berghofe@5177
   248
        val rep_const = cterm_of sg
berghofe@5177
   249
          (Const (Sign.intern_const sg ("Rep_" ^ tname), T --> Univ_elT));
berghofe@7015
   250
        val cong' = standard (cterm_instantiate [(cterm_of sg cong_f, rep_const)] arg_cong);
berghofe@7015
   251
        val dist = standard (cterm_instantiate [(cterm_of sg distinct_f, rep_const)] distinct_lemma);
berghofe@5177
   252
        val (thy', defs', eqns', _) = foldl ((make_constr_def tname T) (length constrs))
berghofe@5661
   253
          ((add_path flat_names tname thy, defs, [], 1), constrs ~~ constr_syntax)
berghofe@5177
   254
      in
berghofe@5661
   255
        (parent_path flat_names thy', defs', eqns @ [eqns'],
berghofe@5177
   256
          rep_congs @ [cong'], dist_lemmas @ [dist])
berghofe@5177
   257
      end;
berghofe@5177
   258
berghofe@5177
   259
    val (thy4, constr_defs, constr_rep_eqns, rep_congs, dist_lemmas) = foldl dt_constr_defs
berghofe@5661
   260
      ((thy3 |> Theory.add_consts_i iso_decls |> parent_path flat_names, [], [], [], []),
berghofe@5177
   261
        hd descr ~~ new_type_names ~~ newTs ~~ constr_syntax);
berghofe@5177
   262
berghofe@5177
   263
    (*********** isomorphisms for new types (introduced by typedef) ***********)
berghofe@5177
   264
wenzelm@6427
   265
    val _ = message "Proving isomorphism properties ...";
berghofe@5177
   266
berghofe@5177
   267
    (* get axioms from theory *)
berghofe@5177
   268
berghofe@5177
   269
    val newT_iso_axms = map (fn s =>
wenzelm@7904
   270
      (get_thm thy4 ("Abs_" ^ s ^ "_inverse"),
wenzelm@7904
   271
       get_thm thy4 ("Rep_" ^ s ^ "_inverse"),
wenzelm@7904
   272
       get_thm thy4 ("Rep_" ^ s))) new_type_names;
berghofe@5177
   273
berghofe@5177
   274
    (*------------------------------------------------*)
berghofe@5177
   275
    (* prove additional theorems:                     *)
berghofe@5177
   276
    (*  inj_on dt_Abs_i rep_set_i  and  inj dt_Rep_i  *)
berghofe@5177
   277
    (*------------------------------------------------*)
berghofe@5177
   278
berghofe@5177
   279
    fun prove_newT_iso_inj_thm (((s, (thm1, thm2, _)), T), rep_set_name) =
berghofe@5177
   280
      let
wenzelm@6394
   281
        val sg = Theory.sign_of thy4;
berghofe@5177
   282
        val RepT = T --> Univ_elT;
berghofe@5177
   283
        val Rep_name = Sign.intern_const sg ("Rep_" ^ s);
berghofe@5177
   284
        val AbsT = Univ_elT --> T;
berghofe@5177
   285
        val Abs_name = Sign.intern_const sg ("Abs_" ^ s);
berghofe@5177
   286
paulson@6171
   287
        val inj_Abs_thm = 
paulson@6171
   288
	    prove_goalw_cterm [] 
paulson@6171
   289
	      (cterm_of sg
paulson@6171
   290
	       (HOLogic.mk_Trueprop 
wenzelm@11435
   291
		(Const ("Fun.inj_on", [AbsT, UnivT] ---> HOLogic.boolT) $
paulson@6171
   292
		 Const (Abs_name, AbsT) $ Const (rep_set_name, UnivT))))
berghofe@5177
   293
              (fn _ => [rtac inj_on_inverseI 1, etac thm1 1]);
berghofe@5177
   294
paulson@6171
   295
        val setT = HOLogic.mk_setT T
paulson@6171
   296
paulson@6171
   297
        val inj_Rep_thm =
paulson@6171
   298
	    prove_goalw_cterm []
paulson@6171
   299
	      (cterm_of sg
paulson@6171
   300
	       (HOLogic.mk_Trueprop
wenzelm@11435
   301
		(Const ("Fun.inj_on", [RepT, setT] ---> HOLogic.boolT) $
wenzelm@11435
   302
		 Const (Rep_name, RepT) $ Const ("UNIV", setT))))
berghofe@5177
   303
              (fn _ => [rtac inj_inverseI 1, rtac thm2 1])
berghofe@5177
   304
paulson@6171
   305
      in (inj_Abs_thm, inj_Rep_thm) end;
berghofe@5177
   306
berghofe@5177
   307
    val newT_iso_inj_thms = map prove_newT_iso_inj_thm
berghofe@5177
   308
      (new_type_names ~~ newT_iso_axms ~~ newTs ~~
berghofe@5177
   309
        take (length newTs, rep_set_names));
berghofe@5177
   310
berghofe@5177
   311
    (********* isomorphisms between existing types and "unfolded" types *******)
berghofe@5177
   312
berghofe@5177
   313
    (*---------------------------------------------------------------------*)
berghofe@5177
   314
    (* isomorphisms are defined using primrec-combinators:                 *)
berghofe@5177
   315
    (* generate appropriate functions for instantiating primrec-combinator *)
berghofe@5177
   316
    (*                                                                     *)
berghofe@5177
   317
    (*   e.g.  dt_Rep_i = list_rec ... (%h t y. In1 ((Leaf h) $ y))        *)
berghofe@5177
   318
    (*                                                                     *)
berghofe@5177
   319
    (* also generate characteristic equations for isomorphisms             *)
berghofe@5177
   320
    (*                                                                     *)
berghofe@5177
   321
    (*   e.g.  dt_Rep_i (cons h t) = In1 ((dt_Rep_j h) $ (dt_Rep_i t))     *)
berghofe@5177
   322
    (*---------------------------------------------------------------------*)
berghofe@5177
   323
berghofe@5177
   324
    fun make_iso_def k ks n ((fs, eqns, i), (cname, cargs)) =
berghofe@5177
   325
      let
berghofe@5177
   326
        val argTs = map (typ_of_dtyp descr' sorts) cargs;
berghofe@5177
   327
        val T = nth_elem (k, recTs);
berghofe@5177
   328
        val rep_name = nth_elem (k, all_rep_names);
berghofe@5177
   329
        val rep_const = Const (rep_name, T --> Univ_elT);
berghofe@5177
   330
        val constr = Const (cname, argTs ---> T);
berghofe@5177
   331
berghofe@7015
   332
        fun process_arg ks' ((i2, i2', ts, Ts), dt) =
berghofe@5177
   333
          let val T' = typ_of_dtyp descr' sorts dt
berghofe@5177
   334
          in (case dt of
berghofe@5177
   335
              DtRec j => if j mem ks' then
berghofe@7015
   336
                  (i2 + 1, i2' + 1, ts @ [mk_Free "y" Univ_elT i2'], Ts @ [Univ_elT])
berghofe@5177
   337
                else
berghofe@5177
   338
                  (i2 + 1, i2', ts @ [Const (nth_elem (j, all_rep_names),
berghofe@7015
   339
                    T' --> Univ_elT) $ mk_Free "x" T' i2], Ts)
berghofe@7015
   340
            | (DtType ("fun", [_, DtRec j])) =>
berghofe@7015
   341
                let val ([T''], T''') = strip_type T'
berghofe@7015
   342
                in if j mem ks' then
berghofe@7015
   343
                    (i2 + 1, i2' + 1, ts @ [Lim $ mk_fun_inj T''
berghofe@7015
   344
                      (mk_Free "y" (T'' --> Univ_elT) i2')], Ts @ [T'' --> Univ_elT])
berghofe@7015
   345
                  else
berghofe@7015
   346
                    (i2 + 1, i2', ts @ [Lim $ mk_fun_inj T''
berghofe@7015
   347
                      (Const (o_name, [T''' --> Univ_elT, T', T''] ---> Univ_elT) $
berghofe@7015
   348
                        Const (nth_elem (j, all_rep_names), T''' --> Univ_elT) $
berghofe@7015
   349
                          mk_Free "x" T' i2)], Ts)
berghofe@7015
   350
                end
berghofe@7015
   351
            | _ => (i2 + 1, i2', ts @ [Leaf $ mk_inj T' (mk_Free "x" T' i2)], Ts))
berghofe@5177
   352
          end;
berghofe@5177
   353
berghofe@7015
   354
        val (i2, i2', ts, Ts) = foldl (process_arg ks) ((1, 1, [], []), cargs);
berghofe@5177
   355
        val xs = map (uncurry (mk_Free "x")) (argTs ~~ (1 upto (i2 - 1)));
berghofe@7015
   356
        val ys = map (uncurry (mk_Free "y")) (Ts ~~ (1 upto (i2' - 1)));
berghofe@5177
   357
        val f = list_abs_free (map dest_Free (xs @ ys), mk_univ_inj ts n i);
berghofe@5177
   358
berghofe@7015
   359
        val (_, _, ts', _) = foldl (process_arg []) ((1, 1, [], []), cargs);
berghofe@5177
   360
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   361
          (rep_const $ list_comb (constr, xs), mk_univ_inj ts' n i))
berghofe@5177
   362
berghofe@5177
   363
      in (fs @ [f], eqns @ [eqn], i + 1) end;
berghofe@5177
   364
berghofe@5177
   365
    (* define isomorphisms for all mutually recursive datatypes in list ds *)
berghofe@5177
   366
berghofe@5177
   367
    fun make_iso_defs (ds, (thy, char_thms)) =
berghofe@5177
   368
      let
berghofe@5177
   369
        val ks = map fst ds;
berghofe@5177
   370
        val (_, (tname, _, _)) = hd ds;
berghofe@5177
   371
        val {rec_rewrites, rec_names, ...} = the (Symtab.lookup (dt_info, tname));
berghofe@5177
   372
berghofe@5177
   373
        fun process_dt ((fs, eqns, isos), (k, (tname, _, constrs))) =
berghofe@5177
   374
          let
berghofe@5177
   375
            val (fs', eqns', _) = foldl (make_iso_def k ks (length constrs))
berghofe@5177
   376
              ((fs, eqns, 1), constrs);
berghofe@5177
   377
            val iso = (nth_elem (k, recTs), nth_elem (k, all_rep_names))
berghofe@5177
   378
          in (fs', eqns', isos @ [iso]) end;
berghofe@5177
   379
        
berghofe@5177
   380
        val (fs, eqns, isos) = foldl process_dt (([], [], []), ds);
berghofe@5177
   381
        val fTs = map fastype_of fs;
berghofe@5177
   382
        val defs = map (fn (rec_name, (T, iso_name)) => ((Sign.base_name iso_name) ^ "_def",
berghofe@5177
   383
          equals (T --> Univ_elT) $ Const (iso_name, T --> Univ_elT) $
berghofe@5177
   384
            list_comb (Const (rec_name, fTs @ [T] ---> Univ_elT), fs))) (rec_names ~~ isos);
wenzelm@9315
   385
        val (thy', def_thms) = (PureThy.add_defs_i false o map Thm.no_attributes) defs thy;
berghofe@5177
   386
berghofe@5177
   387
        (* prove characteristic equations *)
berghofe@5177
   388
oheimb@5553
   389
        val rewrites = def_thms @ (map mk_meta_eq rec_rewrites);
berghofe@5177
   390
        val char_thms' = map (fn eqn => prove_goalw_cterm rewrites
wenzelm@6394
   391
          (cterm_of (Theory.sign_of thy') eqn) (fn _ => [rtac refl 1])) eqns;
berghofe@5177
   392
berghofe@5177
   393
      in (thy', char_thms' @ char_thms) end;
berghofe@5177
   394
berghofe@5661
   395
    val (thy5, iso_char_thms) = foldr make_iso_defs
berghofe@5661
   396
      (tl descr, (add_path flat_names big_name thy4, []));
berghofe@5177
   397
berghofe@5177
   398
    (* prove isomorphism properties *)
berghofe@5177
   399
berghofe@7015
   400
    fun mk_funs_inv thm =
berghofe@7015
   401
      let
berghofe@7015
   402
        val [_, t] = prems_of Funs_inv;
berghofe@7015
   403
        val [_ $ (_ $ _ $ R)] = Logic.strip_assums_hyp t;
berghofe@7015
   404
        val _ $ (_ $ (r $ (a $ _)) $ _) = Logic.strip_assums_concl t;
berghofe@7015
   405
        val [_ $ (_ $ _ $ R')] = prems_of thm;
berghofe@7015
   406
        val _ $ (_ $ (r' $ (a' $ _)) $ _) = concl_of thm;
berghofe@7015
   407
        val inv' = cterm_instantiate (map 
berghofe@7015
   408
          ((pairself (cterm_of (sign_of_thm thm))) o
berghofe@7015
   409
           (apsnd (map_term_types (incr_tvar 1))))
berghofe@7015
   410
             [(R, R'), (r, r'), (a, a')]) Funs_inv
berghofe@7015
   411
      in
berghofe@7015
   412
        rule_by_tactic (atac 2) (thm RSN (2, inv'))
berghofe@7015
   413
      end;
berghofe@7015
   414
berghofe@5177
   415
    (* prove  inj dt_Rep_i  and  dt_Rep_i x : dt_rep_set_i *)
berghofe@5177
   416
berghofe@5177
   417
    fun prove_iso_thms (ds, (inj_thms, elem_thms)) =
berghofe@5177
   418
      let
berghofe@5177
   419
        val (_, (tname, _, _)) = hd ds;
berghofe@5177
   420
        val {induction, ...} = the (Symtab.lookup (dt_info, tname));
berghofe@5177
   421
berghofe@5177
   422
        fun mk_ind_concl (i, _) =
berghofe@5177
   423
          let
berghofe@5177
   424
            val T = nth_elem (i, recTs);
berghofe@5177
   425
            val Rep_t = Const (nth_elem (i, all_rep_names), T --> Univ_elT);
berghofe@5177
   426
            val rep_set_name = nth_elem (i, rep_set_names)
berghofe@5177
   427
          in (HOLogic.all_const T $ Abs ("y", T, HOLogic.imp $
berghofe@5177
   428
                HOLogic.mk_eq (Rep_t $ mk_Free "x" T i, Rep_t $ Bound 0) $
berghofe@5177
   429
                  HOLogic.mk_eq (mk_Free "x" T i, Bound 0)),
berghofe@5177
   430
              HOLogic.mk_mem (Rep_t $ mk_Free "x" T i, Const (rep_set_name, UnivT)))
berghofe@5177
   431
          end;
berghofe@5177
   432
berghofe@5177
   433
        val (ind_concl1, ind_concl2) = ListPair.unzip (map mk_ind_concl ds);
berghofe@5177
   434
oheimb@5553
   435
        val rewrites = map mk_meta_eq iso_char_thms;
berghofe@11471
   436
        val inj_thms' = flat (map (fn r => [r RS injD, r RS inj_o])
berghofe@11471
   437
          (map snd newT_iso_inj_thms @ inj_thms));
berghofe@5177
   438
wenzelm@6394
   439
        val inj_thm = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5)
berghofe@5177
   440
          (HOLogic.mk_Trueprop (mk_conj ind_concl1))) (fn _ =>
berghofe@11951
   441
            [(indtac induction THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@5177
   442
             REPEAT (EVERY
berghofe@5177
   443
               [rtac allI 1, rtac impI 1,
berghofe@5177
   444
                exh_tac (exh_thm_of dt_info) 1,
berghofe@5177
   445
                REPEAT (EVERY
berghofe@5177
   446
                  [hyp_subst_tac 1,
berghofe@5177
   447
                   rewrite_goals_tac rewrites,
berghofe@5177
   448
                   REPEAT (dresolve_tac [In0_inject, In1_inject] 1),
berghofe@5177
   449
                   (eresolve_tac [In0_not_In1 RS notE, In1_not_In0 RS notE] 1)
berghofe@5177
   450
                   ORELSE (EVERY
berghofe@11951
   451
                     [REPEAT (eresolve_tac (Scons_inject :: sum_case_inject ::
berghofe@11951
   452
                        map make_elim (inj_thms' @
berghofe@11951
   453
                          [Leaf_inject, Lim_inject, Inl_inject, Inr_inject])) 1),
berghofe@7015
   454
                      REPEAT ((EVERY [etac allE 1, dtac mp 1, atac 1]) ORELSE
berghofe@7015
   455
                              (dtac inj_fun_lemma 1 THEN atac 1)),
berghofe@11951
   456
                      REPEAT (hyp_subst_tac 1),
berghofe@5177
   457
                      rtac refl 1])])])]);
berghofe@5177
   458
paulson@6171
   459
        val inj_thms'' = map (fn r => r RS datatype_injI)
paulson@6171
   460
                             (split_conj_thm inj_thm);
berghofe@5177
   461
paulson@6171
   462
        val elem_thm = 
paulson@6171
   463
	    prove_goalw_cterm []
wenzelm@6394
   464
	      (cterm_of (Theory.sign_of thy5)
paulson@6171
   465
	       (HOLogic.mk_Trueprop (mk_conj ind_concl2)))
paulson@6171
   466
	      (fn _ =>
berghofe@11951
   467
	       [(indtac induction THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@7015
   468
		rewrite_goals_tac (o_def :: rewrites),
paulson@6171
   469
		REPEAT (EVERY
paulson@6171
   470
			[resolve_tac rep_intrs 1,
berghofe@7015
   471
			 REPEAT (FIRST [atac 1, etac spec 1,
berghofe@7015
   472
				 resolve_tac (FunsI :: elem_thms) 1])])]);
berghofe@5177
   473
berghofe@11471
   474
      in (inj_thms'' @ inj_thms, elem_thms @ (split_conj_thm elem_thm))
berghofe@11471
   475
      end;
berghofe@11471
   476
berghofe@11471
   477
    val (iso_inj_thms_unfolded, iso_elem_thms) = foldr prove_iso_thms
berghofe@11471
   478
      (tl descr, ([], map #3 newT_iso_axms));
berghofe@11471
   479
    val iso_inj_thms = map snd newT_iso_inj_thms @ iso_inj_thms_unfolded;
berghofe@11471
   480
berghofe@11471
   481
    (* prove  x : dt_rep_set_i --> x : range dt_Rep_i *)
berghofe@11471
   482
berghofe@11471
   483
    fun mk_iso_t (((set_name, iso_name), i), T) =
berghofe@11471
   484
      let val isoT = T --> Univ_elT
berghofe@11471
   485
      in HOLogic.imp $ 
berghofe@11471
   486
        HOLogic.mk_mem (mk_Free "x" Univ_elT i, Const (set_name, UnivT)) $
berghofe@11471
   487
          (if i < length newTs then Const ("True", HOLogic.boolT)
berghofe@11471
   488
           else HOLogic.mk_mem (mk_Free "x" Univ_elT i,
berghofe@11471
   489
             Const ("image", [isoT, HOLogic.mk_setT T] ---> UnivT) $
berghofe@11471
   490
               Const (iso_name, isoT) $ Const ("UNIV", HOLogic.mk_setT T)))
berghofe@5177
   491
      end;
berghofe@5177
   492
berghofe@11471
   493
    val iso_t = HOLogic.mk_Trueprop (mk_conj (map mk_iso_t
berghofe@11471
   494
      (rep_set_names ~~ all_rep_names ~~ (0 upto (length descr' - 1)) ~~ recTs)));
berghofe@11471
   495
berghofe@11471
   496
    (* all the theorems are proved by one single simultaneous induction *)
berghofe@11471
   497
berghofe@11471
   498
    val iso_thms = if length descr = 1 then [] else
berghofe@11471
   499
      drop (length newTs, split_conj_thm
berghofe@11471
   500
        (prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) iso_t) (fn _ =>
berghofe@11471
   501
           [indtac rep_induct 1,
berghofe@11471
   502
            REPEAT (rtac TrueI 1),
berghofe@11471
   503
            REPEAT (EVERY
berghofe@11471
   504
              [rewrite_goals_tac [mk_meta_eq Collect_mem_eq],
berghofe@11471
   505
               REPEAT (etac Funs_IntE 1),
berghofe@11471
   506
               REPEAT (eresolve_tac (rangeE ::
berghofe@11471
   507
                 map (fn r => r RS Funs_rangeE) iso_inj_thms_unfolded) 1),
berghofe@11471
   508
               REPEAT (eresolve_tac (map (fn (iso, _, _) => iso RS subst) newT_iso_axms @
berghofe@11471
   509
                 map (fn (iso, _, _) => mk_funs_inv iso RS subst) newT_iso_axms) 1),
berghofe@11471
   510
               TRY (hyp_subst_tac 1),
berghofe@11471
   511
               rtac (sym RS range_eqI) 1,
berghofe@11471
   512
               resolve_tac iso_char_thms 1])])));
wenzelm@11435
   513
wenzelm@11435
   514
    val Abs_inverse_thms' =
wenzelm@11435
   515
      map #1 newT_iso_axms @
berghofe@11471
   516
      map2 (fn (r_inj, r) => f_myinv_f OF [r_inj, r RS mp])
berghofe@11471
   517
        (iso_inj_thms_unfolded, iso_thms);
wenzelm@11435
   518
wenzelm@11435
   519
    val Abs_inverse_thms = map (fn r => r RS subst) (Abs_inverse_thms' @
wenzelm@11435
   520
      map mk_funs_inv Abs_inverse_thms');
berghofe@5177
   521
berghofe@5177
   522
    (******************* freeness theorems for constructors *******************)
berghofe@5177
   523
wenzelm@6427
   524
    val _ = message "Proving freeness of constructors ...";
berghofe@5177
   525
berghofe@5177
   526
    (* prove theorem  Rep_i (Constr_j ...) = Inj_j ...  *)
berghofe@5177
   527
    
berghofe@5177
   528
    fun prove_constr_rep_thm eqn =
berghofe@5177
   529
      let
berghofe@5177
   530
        val inj_thms = map (fn (r, _) => r RS inj_onD) newT_iso_inj_thms;
berghofe@7015
   531
        val rewrites = o_def :: constr_defs @ (map (mk_meta_eq o #2) newT_iso_axms)
wenzelm@6394
   532
      in prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) eqn) (fn _ =>
berghofe@5177
   533
        [resolve_tac inj_thms 1,
berghofe@5177
   534
         rewrite_goals_tac rewrites,
berghofe@5177
   535
         rtac refl 1,
berghofe@5177
   536
         resolve_tac rep_intrs 2,
berghofe@7015
   537
         REPEAT (resolve_tac (FunsI :: iso_elem_thms) 1)])
berghofe@5177
   538
      end;
berghofe@5177
   539
berghofe@5177
   540
    (*--------------------------------------------------------------*)
berghofe@5177
   541
    (* constr_rep_thms and rep_congs are used to prove distinctness *)
berghofe@7015
   542
    (* of constructors.                                             *)
berghofe@5177
   543
    (*--------------------------------------------------------------*)
berghofe@5177
   544
berghofe@5177
   545
    val constr_rep_thms = map (map prove_constr_rep_thm) constr_rep_eqns;
berghofe@5177
   546
berghofe@5177
   547
    val dist_rewrites = map (fn (rep_thms, dist_lemma) =>
berghofe@5177
   548
      dist_lemma::(rep_thms @ [In0_eq, In1_eq, In0_not_In1, In1_not_In0]))
berghofe@5177
   549
        (constr_rep_thms ~~ dist_lemmas);
berghofe@5177
   550
berghofe@7015
   551
    fun prove_distinct_thms (_, []) = []
berghofe@7015
   552
      | prove_distinct_thms (dist_rewrites', t::_::ts) =
berghofe@7015
   553
          let
berghofe@7015
   554
            val dist_thm = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) t) (fn _ =>
berghofe@7015
   555
              [simp_tac (HOL_ss addsimps dist_rewrites') 1])
berghofe@7015
   556
          in dist_thm::(standard (dist_thm RS not_sym))::
berghofe@7015
   557
            (prove_distinct_thms (dist_rewrites', ts))
berghofe@7015
   558
          end;
berghofe@7015
   559
berghofe@7015
   560
    val distinct_thms = map prove_distinct_thms (dist_rewrites ~~
berghofe@7015
   561
      DatatypeProp.make_distincts new_type_names descr sorts thy5);
berghofe@7015
   562
berghofe@7015
   563
    val simproc_dists = map (fn ((((_, (_, _, constrs)), rep_thms), congr), dists) =>
berghofe@7015
   564
      if length constrs < !DatatypeProp.dtK then FewConstrs dists
berghofe@7015
   565
      else ManyConstrs (congr, HOL_basic_ss addsimps rep_thms)) (hd descr ~~
berghofe@7015
   566
        constr_rep_thms ~~ rep_congs ~~ distinct_thms);
berghofe@7015
   567
berghofe@5177
   568
    (* prove injectivity of constructors *)
berghofe@5177
   569
berghofe@5177
   570
    fun prove_constr_inj_thm rep_thms t =
berghofe@7015
   571
      let val inj_thms = Scons_inject::sum_case_inject::(map make_elim
berghofe@5177
   572
        ((map (fn r => r RS injD) iso_inj_thms) @
berghofe@7015
   573
          [In0_inject, In1_inject, Leaf_inject, Inl_inject, Inr_inject, Lim_inject]))
wenzelm@6394
   574
      in prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) t) (fn _ =>
berghofe@5177
   575
        [rtac iffI 1,
berghofe@5177
   576
         REPEAT (etac conjE 2), hyp_subst_tac 2, rtac refl 2,
berghofe@5177
   577
         dresolve_tac rep_congs 1, dtac box_equals 1,
wenzelm@7499
   578
         REPEAT (resolve_tac rep_thms 1), rewtac o_def,
berghofe@5177
   579
         REPEAT (eresolve_tac inj_thms 1),
berghofe@7015
   580
         REPEAT (ares_tac [conjI] 1 ORELSE (EVERY [rtac ext 1, dtac fun_cong 1,
berghofe@7015
   581
                  eresolve_tac inj_thms 1, atac 1]))])
berghofe@5177
   582
      end;
berghofe@5177
   583
berghofe@5177
   584
    val constr_inject = map (fn (ts, thms) => map (prove_constr_inj_thm thms) ts)
berghofe@5177
   585
      ((DatatypeProp.make_injs descr sorts) ~~ constr_rep_thms);
berghofe@5177
   586
berghofe@8479
   587
    val (thy6, (constr_inject', distinct_thms'))= thy5 |> parent_path flat_names |>
berghofe@8479
   588
      store_thmss "inject" new_type_names constr_inject |>>>
berghofe@8479
   589
      store_thmss "distinct" new_type_names distinct_thms;
berghofe@5177
   590
berghofe@5177
   591
    (*************************** induction theorem ****************************)
berghofe@5177
   592
wenzelm@6427
   593
    val _ = message "Proving induction rule for datatypes ...";
berghofe@5177
   594
berghofe@5177
   595
    val Rep_inverse_thms = (map (fn (_, iso, _) => iso RS subst) newT_iso_axms) @
berghofe@11471
   596
      (map (fn r => r RS myinv_f_f RS subst) iso_inj_thms_unfolded);
berghofe@11471
   597
    val Rep_inverse_thms' = map (fn r => r RS myinv_f_f) iso_inj_thms_unfolded;
berghofe@5177
   598
berghofe@5177
   599
    fun mk_indrule_lemma ((prems, concls), ((i, _), T)) =
berghofe@5177
   600
      let
berghofe@5177
   601
        val Rep_t = Const (nth_elem (i, all_rep_names), T --> Univ_elT) $
berghofe@5177
   602
          mk_Free "x" T i;
berghofe@5177
   603
berghofe@5177
   604
        val Abs_t = if i < length newTs then
wenzelm@6394
   605
            Const (Sign.intern_const (Theory.sign_of thy6)
berghofe@5177
   606
              ("Abs_" ^ (nth_elem (i, new_type_names))), Univ_elT --> T)
wenzelm@11435
   607
          else Const ("Inductive.myinv", [T --> Univ_elT, Univ_elT] ---> T) $
berghofe@5177
   608
            Const (nth_elem (i, all_rep_names), T --> Univ_elT)
berghofe@5177
   609
berghofe@5177
   610
      in (prems @ [HOLogic.imp $ HOLogic.mk_mem (Rep_t,
berghofe@5177
   611
            Const (nth_elem (i, rep_set_names), UnivT)) $
berghofe@5177
   612
              (mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ (Abs_t $ Rep_t))],
berghofe@5177
   613
          concls @ [mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ mk_Free "x" T i])
berghofe@5177
   614
      end;
berghofe@5177
   615
berghofe@5177
   616
    val (indrule_lemma_prems, indrule_lemma_concls) =
berghofe@5177
   617
      foldl mk_indrule_lemma (([], []), (descr' ~~ recTs));
berghofe@5177
   618
wenzelm@6394
   619
    val cert = cterm_of (Theory.sign_of thy6);
berghofe@5177
   620
berghofe@5177
   621
    val indrule_lemma = prove_goalw_cterm [] (cert
berghofe@5177
   622
      (Logic.mk_implies
berghofe@5177
   623
        (HOLogic.mk_Trueprop (mk_conj indrule_lemma_prems),
berghofe@5177
   624
         HOLogic.mk_Trueprop (mk_conj indrule_lemma_concls)))) (fn prems =>
berghofe@5177
   625
           [cut_facts_tac prems 1, REPEAT (etac conjE 1),
berghofe@5177
   626
            REPEAT (EVERY
berghofe@5177
   627
              [TRY (rtac conjI 1), resolve_tac Rep_inverse_thms 1,
berghofe@5177
   628
               etac mp 1, resolve_tac iso_elem_thms 1])]);
berghofe@5177
   629
wenzelm@8305
   630
    val Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of indrule_lemma)));
berghofe@5177
   631
    val frees = if length Ps = 1 then [Free ("P", snd (dest_Var (hd Ps)))] else
berghofe@5177
   632
      map (Free o apfst fst o dest_Var) Ps;
berghofe@5177
   633
    val indrule_lemma' = cterm_instantiate (map cert Ps ~~ map cert frees) indrule_lemma;
berghofe@5177
   634
wenzelm@10911
   635
    val dt_induct = prove_goalw_cterm [InductivePackage.inductive_forall_def] (cert
berghofe@5177
   636
      (DatatypeProp.make_ind descr sorts)) (fn prems =>
berghofe@5177
   637
        [rtac indrule_lemma' 1, indtac rep_induct 1,
berghofe@5177
   638
         EVERY (map (fn (prem, r) => (EVERY
berghofe@7015
   639
           [REPEAT (eresolve_tac (Funs_IntE::Abs_inverse_thms) 1),
berghofe@5177
   640
            simp_tac (HOL_basic_ss addsimps ((symmetric r)::Rep_inverse_thms')) 1,
wenzelm@7499
   641
            DEPTH_SOLVE_1 (ares_tac [prem] 1 ORELSE (EVERY [rewtac o_def,
berghofe@7015
   642
              rtac allI 1, dtac FunsD 1, etac CollectD 1]))]))
berghofe@7015
   643
                (prems ~~ (constr_defs @ (map mk_meta_eq iso_char_thms))))]);
berghofe@5177
   644
wenzelm@8436
   645
    val (thy7, [dt_induct']) = thy6 |>
berghofe@5661
   646
      Theory.add_path big_name |>
wenzelm@10911
   647
      PureThy.add_thms [(("induct", dt_induct),
wenzelm@10911
   648
        [Drule.rule_attribute (K InductivePackage.rulify), case_names_induct])] |>>
berghofe@5661
   649
      Theory.parent_path;
berghofe@5177
   650
berghofe@8479
   651
  in (thy7, constr_inject', distinct_thms', dist_rewrites, simproc_dists, dt_induct')
berghofe@5177
   652
  end;
berghofe@5177
   653
berghofe@5177
   654
end;