src/HOL/Inductive.thy
author haftmann
Fri Nov 30 20:13:03 2007 +0100 (2007-11-30)
changeset 25510 38c15efe603b
parent 24915 fc90277c0dd7
child 25534 d0b74fdd6067
permissions -rw-r--r--
adjustions to due to instance target
wenzelm@7700
     1
(*  Title:      HOL/Inductive.thy
wenzelm@7700
     2
    ID:         $Id$
wenzelm@10402
     3
    Author:     Markus Wenzel, TU Muenchen
wenzelm@11688
     4
*)
wenzelm@10727
     5
haftmann@24915
     6
header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
lcp@1187
     7
nipkow@15131
     8
theory Inductive 
haftmann@24915
     9
imports Lattices Sum_Type
haftmann@16417
    10
uses
wenzelm@10402
    11
  ("Tools/inductive_package.ML")
haftmann@24625
    12
  "Tools/dseq.ML"
berghofe@12437
    13
  ("Tools/inductive_codegen.ML")
wenzelm@10402
    14
  ("Tools/datatype_aux.ML")
wenzelm@10402
    15
  ("Tools/datatype_prop.ML")
wenzelm@10402
    16
  ("Tools/datatype_rep_proofs.ML")
wenzelm@10402
    17
  ("Tools/datatype_abs_proofs.ML")
berghofe@22783
    18
  ("Tools/datatype_case.ML")
wenzelm@10402
    19
  ("Tools/datatype_package.ML")
nipkow@15131
    20
  ("Tools/primrec_package.ML")
nipkow@15131
    21
begin
wenzelm@10727
    22
haftmann@24915
    23
subsection {* Least and greatest fixed points *}
haftmann@24915
    24
haftmann@24915
    25
definition
haftmann@24915
    26
  lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@24915
    27
  "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
haftmann@24915
    28
haftmann@24915
    29
definition
haftmann@24915
    30
  gfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@24915
    31
  "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
haftmann@24915
    32
haftmann@24915
    33
haftmann@24915
    34
subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
haftmann@24915
    35
haftmann@24915
    36
text{*@{term "lfp f"} is the least upper bound of 
haftmann@24915
    37
      the set @{term "{u. f(u) \<le> u}"} *}
haftmann@24915
    38
haftmann@24915
    39
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
haftmann@24915
    40
  by (auto simp add: lfp_def intro: Inf_lower)
haftmann@24915
    41
haftmann@24915
    42
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
haftmann@24915
    43
  by (auto simp add: lfp_def intro: Inf_greatest)
haftmann@24915
    44
haftmann@24915
    45
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
haftmann@24915
    46
  by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
haftmann@24915
    47
haftmann@24915
    48
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
haftmann@24915
    49
  by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
haftmann@24915
    50
haftmann@24915
    51
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
haftmann@24915
    52
  by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
haftmann@24915
    53
haftmann@24915
    54
lemma lfp_const: "lfp (\<lambda>x. t) = t"
haftmann@24915
    55
  by (rule lfp_unfold) (simp add:mono_def)
haftmann@24915
    56
haftmann@24915
    57
haftmann@24915
    58
subsection {* General induction rules for least fixed points *}
haftmann@24915
    59
haftmann@24915
    60
theorem lfp_induct:
haftmann@24915
    61
  assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P"
haftmann@24915
    62
  shows "lfp f <= P"
haftmann@24915
    63
proof -
haftmann@24915
    64
  have "inf (lfp f) P <= lfp f" by (rule inf_le1)
haftmann@24915
    65
  with mono have "f (inf (lfp f) P) <= f (lfp f)" ..
haftmann@24915
    66
  also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric])
haftmann@24915
    67
  finally have "f (inf (lfp f) P) <= lfp f" .
haftmann@24915
    68
  from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI)
haftmann@24915
    69
  hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound)
haftmann@24915
    70
  also have "inf (lfp f) P <= P" by (rule inf_le2)
haftmann@24915
    71
  finally show ?thesis .
haftmann@24915
    72
qed
haftmann@24915
    73
haftmann@24915
    74
lemma lfp_induct_set:
haftmann@24915
    75
  assumes lfp: "a: lfp(f)"
haftmann@24915
    76
      and mono: "mono(f)"
haftmann@24915
    77
      and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
haftmann@24915
    78
  shows "P(a)"
haftmann@24915
    79
  by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
haftmann@24915
    80
    (auto simp: inf_set_eq intro: indhyp)
haftmann@24915
    81
haftmann@24915
    82
lemma lfp_ordinal_induct: 
haftmann@24915
    83
  assumes mono: "mono f"
haftmann@24915
    84
  and P_f: "!!S. P S ==> P(f S)"
haftmann@24915
    85
  and P_Union: "!!M. !S:M. P S ==> P(Union M)"
haftmann@24915
    86
  shows "P(lfp f)"
haftmann@24915
    87
proof -
haftmann@24915
    88
  let ?M = "{S. S \<subseteq> lfp f & P S}"
haftmann@24915
    89
  have "P (Union ?M)" using P_Union by simp
haftmann@24915
    90
  also have "Union ?M = lfp f"
haftmann@24915
    91
  proof
haftmann@24915
    92
    show "Union ?M \<subseteq> lfp f" by blast
haftmann@24915
    93
    hence "f (Union ?M) \<subseteq> f (lfp f)" by (rule mono [THEN monoD])
haftmann@24915
    94
    hence "f (Union ?M) \<subseteq> lfp f" using mono [THEN lfp_unfold] by simp
haftmann@24915
    95
    hence "f (Union ?M) \<in> ?M" using P_f P_Union by simp
haftmann@24915
    96
    hence "f (Union ?M) \<subseteq> Union ?M" by (rule Union_upper)
haftmann@24915
    97
    thus "lfp f \<subseteq> Union ?M" by (rule lfp_lowerbound)
haftmann@24915
    98
  qed
haftmann@24915
    99
  finally show ?thesis .
haftmann@24915
   100
qed
haftmann@24915
   101
haftmann@24915
   102
haftmann@24915
   103
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
haftmann@24915
   104
    to control unfolding*}
haftmann@24915
   105
haftmann@24915
   106
lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
haftmann@24915
   107
by (auto intro!: lfp_unfold)
haftmann@24915
   108
haftmann@24915
   109
lemma def_lfp_induct: 
haftmann@24915
   110
    "[| A == lfp(f); mono(f);
haftmann@24915
   111
        f (inf A P) \<le> P
haftmann@24915
   112
     |] ==> A \<le> P"
haftmann@24915
   113
  by (blast intro: lfp_induct)
haftmann@24915
   114
haftmann@24915
   115
lemma def_lfp_induct_set: 
haftmann@24915
   116
    "[| A == lfp(f);  mono(f);   a:A;                    
haftmann@24915
   117
        !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
haftmann@24915
   118
     |] ==> P(a)"
haftmann@24915
   119
  by (blast intro: lfp_induct_set)
haftmann@24915
   120
haftmann@24915
   121
(*Monotonicity of lfp!*)
haftmann@24915
   122
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
haftmann@24915
   123
  by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
haftmann@24915
   124
haftmann@24915
   125
haftmann@24915
   126
subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
haftmann@24915
   127
haftmann@24915
   128
text{*@{term "gfp f"} is the greatest lower bound of 
haftmann@24915
   129
      the set @{term "{u. u \<le> f(u)}"} *}
haftmann@24915
   130
haftmann@24915
   131
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
haftmann@24915
   132
  by (auto simp add: gfp_def intro: Sup_upper)
haftmann@24915
   133
haftmann@24915
   134
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
haftmann@24915
   135
  by (auto simp add: gfp_def intro: Sup_least)
haftmann@24915
   136
haftmann@24915
   137
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
haftmann@24915
   138
  by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
haftmann@24915
   139
haftmann@24915
   140
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
haftmann@24915
   141
  by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
haftmann@24915
   142
haftmann@24915
   143
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
haftmann@24915
   144
  by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
haftmann@24915
   145
haftmann@24915
   146
haftmann@24915
   147
subsection {* Coinduction rules for greatest fixed points *}
haftmann@24915
   148
haftmann@24915
   149
text{*weak version*}
haftmann@24915
   150
lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
haftmann@24915
   151
by (rule gfp_upperbound [THEN subsetD], auto)
haftmann@24915
   152
haftmann@24915
   153
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
haftmann@24915
   154
apply (erule gfp_upperbound [THEN subsetD])
haftmann@24915
   155
apply (erule imageI)
haftmann@24915
   156
done
haftmann@24915
   157
haftmann@24915
   158
lemma coinduct_lemma:
haftmann@24915
   159
     "[| X \<le> f (sup X (gfp f));  mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
haftmann@24915
   160
  apply (frule gfp_lemma2)
haftmann@24915
   161
  apply (drule mono_sup)
haftmann@24915
   162
  apply (rule le_supI)
haftmann@24915
   163
  apply assumption
haftmann@24915
   164
  apply (rule order_trans)
haftmann@24915
   165
  apply (rule order_trans)
haftmann@24915
   166
  apply assumption
haftmann@24915
   167
  apply (rule sup_ge2)
haftmann@24915
   168
  apply assumption
haftmann@24915
   169
  done
haftmann@24915
   170
haftmann@24915
   171
text{*strong version, thanks to Coen and Frost*}
haftmann@24915
   172
lemma coinduct_set: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
haftmann@24915
   173
by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq])
haftmann@24915
   174
haftmann@24915
   175
lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
haftmann@24915
   176
  apply (rule order_trans)
haftmann@24915
   177
  apply (rule sup_ge1)
haftmann@24915
   178
  apply (erule gfp_upperbound [OF coinduct_lemma])
haftmann@24915
   179
  apply assumption
haftmann@24915
   180
  done
haftmann@24915
   181
haftmann@24915
   182
lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
haftmann@24915
   183
by (blast dest: gfp_lemma2 mono_Un)
haftmann@24915
   184
haftmann@24915
   185
haftmann@24915
   186
subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
haftmann@24915
   187
haftmann@24915
   188
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
haftmann@24915
   189
  @{term lfp} and @{term gfp}*}
haftmann@24915
   190
haftmann@24915
   191
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
haftmann@24915
   192
by (iprover intro: subset_refl monoI Un_mono monoD)
haftmann@24915
   193
haftmann@24915
   194
lemma coinduct3_lemma:
haftmann@24915
   195
     "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
haftmann@24915
   196
      ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
haftmann@24915
   197
apply (rule subset_trans)
haftmann@24915
   198
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
haftmann@24915
   199
apply (rule Un_least [THEN Un_least])
haftmann@24915
   200
apply (rule subset_refl, assumption)
haftmann@24915
   201
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
haftmann@24915
   202
apply (rule monoD, assumption)
haftmann@24915
   203
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
haftmann@24915
   204
done
haftmann@24915
   205
haftmann@24915
   206
lemma coinduct3: 
haftmann@24915
   207
  "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
haftmann@24915
   208
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
haftmann@24915
   209
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
haftmann@24915
   210
done
haftmann@24915
   211
haftmann@24915
   212
haftmann@24915
   213
text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
haftmann@24915
   214
    to control unfolding*}
haftmann@24915
   215
haftmann@24915
   216
lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
haftmann@24915
   217
by (auto intro!: gfp_unfold)
haftmann@24915
   218
haftmann@24915
   219
lemma def_coinduct:
haftmann@24915
   220
     "[| A==gfp(f);  mono(f);  X \<le> f(sup X A) |] ==> X \<le> A"
haftmann@24915
   221
by (iprover intro!: coinduct)
haftmann@24915
   222
haftmann@24915
   223
lemma def_coinduct_set:
haftmann@24915
   224
     "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
haftmann@24915
   225
by (auto intro!: coinduct_set)
haftmann@24915
   226
haftmann@24915
   227
(*The version used in the induction/coinduction package*)
haftmann@24915
   228
lemma def_Collect_coinduct:
haftmann@24915
   229
    "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
haftmann@24915
   230
        a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
haftmann@24915
   231
     a : A"
haftmann@24915
   232
apply (erule def_coinduct_set, auto) 
haftmann@24915
   233
done
haftmann@24915
   234
haftmann@24915
   235
lemma def_coinduct3:
haftmann@24915
   236
    "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
haftmann@24915
   237
by (auto intro!: coinduct3)
haftmann@24915
   238
haftmann@24915
   239
text{*Monotonicity of @{term gfp}!*}
haftmann@24915
   240
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
haftmann@24915
   241
  by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
haftmann@24915
   242
haftmann@24915
   243
berghofe@23734
   244
subsection {* Inductive predicates and sets *}
wenzelm@11688
   245
wenzelm@11688
   246
text {* Inversion of injective functions. *}
wenzelm@11436
   247
wenzelm@11436
   248
constdefs
wenzelm@11436
   249
  myinv :: "('a => 'b) => ('b => 'a)"
wenzelm@11436
   250
  "myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y"
wenzelm@11436
   251
wenzelm@11436
   252
lemma myinv_f_f: "inj f ==> myinv f (f x) = x"
wenzelm@11436
   253
proof -
wenzelm@11436
   254
  assume "inj f"
wenzelm@11436
   255
  hence "(THE x'. f x' = f x) = (THE x'. x' = x)"
wenzelm@11436
   256
    by (simp only: inj_eq)
wenzelm@11436
   257
  also have "... = x" by (rule the_eq_trivial)
wenzelm@11439
   258
  finally show ?thesis by (unfold myinv_def)
wenzelm@11436
   259
qed
wenzelm@11436
   260
wenzelm@11436
   261
lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y"
wenzelm@11436
   262
proof (unfold myinv_def)
wenzelm@11436
   263
  assume inj: "inj f"
wenzelm@11436
   264
  assume "y \<in> range f"
wenzelm@11436
   265
  then obtain x where "y = f x" ..
wenzelm@11436
   266
  hence x: "f x = y" ..
wenzelm@11436
   267
  thus "f (THE x. f x = y) = y"
wenzelm@11436
   268
  proof (rule theI)
wenzelm@11436
   269
    fix x' assume "f x' = y"
wenzelm@11436
   270
    with x have "f x' = f x" by simp
wenzelm@11436
   271
    with inj show "x' = x" by (rule injD)
wenzelm@11436
   272
  qed
wenzelm@11436
   273
qed
wenzelm@11436
   274
wenzelm@11436
   275
hide const myinv
wenzelm@11436
   276
wenzelm@11436
   277
wenzelm@11688
   278
text {* Package setup. *}
wenzelm@10402
   279
berghofe@23734
   280
theorems basic_monos =
haftmann@22218
   281
  subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
wenzelm@11688
   282
  Collect_mono in_mono vimage_mono
wenzelm@11688
   283
  imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
wenzelm@11688
   284
  not_all not_ex
wenzelm@11688
   285
  Ball_def Bex_def
wenzelm@18456
   286
  induct_rulify_fallback
wenzelm@11688
   287
haftmann@24915
   288
ML {*
haftmann@24915
   289
val def_lfp_unfold = @{thm def_lfp_unfold}
haftmann@24915
   290
val def_gfp_unfold = @{thm def_gfp_unfold}
haftmann@24915
   291
val def_lfp_induct = @{thm def_lfp_induct}
haftmann@24915
   292
val def_coinduct = @{thm def_coinduct}
haftmann@25510
   293
val inf_bool_eq = @{thm inf_bool_eq} RS @{thm eq_reflection}
haftmann@25510
   294
val inf_fun_eq = @{thm inf_fun_eq} RS @{thm eq_reflection}
haftmann@25510
   295
val sup_bool_eq = @{thm sup_bool_eq} RS @{thm eq_reflection}
haftmann@25510
   296
val sup_fun_eq = @{thm sup_fun_eq} RS @{thm eq_reflection}
haftmann@24915
   297
val le_boolI = @{thm le_boolI}
haftmann@24915
   298
val le_boolI' = @{thm le_boolI'}
haftmann@24915
   299
val le_funI = @{thm le_funI}
haftmann@24915
   300
val le_boolE = @{thm le_boolE}
haftmann@24915
   301
val le_funE = @{thm le_funE}
haftmann@24915
   302
val le_boolD = @{thm le_boolD}
haftmann@24915
   303
val le_funD = @{thm le_funD}
haftmann@25510
   304
val le_bool_def = @{thm le_bool_def} RS @{thm eq_reflection}
haftmann@25510
   305
val le_fun_def = @{thm le_fun_def} RS @{thm eq_reflection}
haftmann@24915
   306
*}
haftmann@24915
   307
berghofe@21018
   308
use "Tools/inductive_package.ML"
berghofe@21018
   309
setup InductivePackage.setup
berghofe@21018
   310
berghofe@23734
   311
theorems [mono] =
haftmann@22218
   312
  imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
berghofe@21018
   313
  imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
berghofe@21018
   314
  not_all not_ex
berghofe@21018
   315
  Ball_def Bex_def
berghofe@21018
   316
  induct_rulify_fallback
berghofe@21018
   317
wenzelm@11688
   318
wenzelm@12023
   319
subsection {* Inductive datatypes and primitive recursion *}
wenzelm@11688
   320
wenzelm@11825
   321
text {* Package setup. *}
wenzelm@11825
   322
wenzelm@10402
   323
use "Tools/datatype_aux.ML"
wenzelm@10402
   324
use "Tools/datatype_prop.ML"
wenzelm@10402
   325
use "Tools/datatype_rep_proofs.ML"
wenzelm@10402
   326
use "Tools/datatype_abs_proofs.ML"
berghofe@22783
   327
use "Tools/datatype_case.ML"
wenzelm@10402
   328
use "Tools/datatype_package.ML"
wenzelm@7700
   329
setup DatatypePackage.setup
haftmann@24699
   330
use "Tools/primrec_package.ML"
berghofe@12437
   331
berghofe@12437
   332
use "Tools/inductive_codegen.ML"
berghofe@12437
   333
setup InductiveCodegen.setup
berghofe@12437
   334
nipkow@23526
   335
text{* Lambda-abstractions with pattern matching: *}
nipkow@23526
   336
nipkow@23526
   337
syntax
nipkow@23529
   338
  "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(%_)" 10)
nipkow@23526
   339
syntax (xsymbols)
nipkow@23529
   340
  "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(\<lambda>_)" 10)
nipkow@23526
   341
nipkow@23529
   342
parse_translation (advanced) {*
nipkow@23529
   343
let
nipkow@23529
   344
  fun fun_tr ctxt [cs] =
nipkow@23529
   345
    let
nipkow@23529
   346
      val x = Free (Name.variant (add_term_free_names (cs, [])) "x", dummyT);
nipkow@24349
   347
      val ft = DatatypeCase.case_tr true DatatypePackage.datatype_of_constr
nipkow@24349
   348
                 ctxt [x, cs]
nipkow@23529
   349
    in lambda x ft end
nipkow@23529
   350
in [("_lam_pats_syntax", fun_tr)] end
nipkow@23526
   351
*}
nipkow@23526
   352
nipkow@23526
   353
end