author  blanchet 
Thu, 16 Jan 2014 20:52:54 +0100  
changeset 55023  38db7814481d 
parent 54841  af71b753c459 
permissions  rwrr 
49509
163914705f8d
renamed toplevel theory from "Codatatype" to "BNF"
blanchet
parents:
49326
diff
changeset

1 
(* Title: HOL/BNF/BNF_LFP.thy 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

2 
Author: Dmitriy Traytel, TU Muenchen 
53305  3 
Author: Lorenz Panny, TU Muenchen 
4 
Author: Jasmin Blanchette, TU Muenchen 

5 
Copyright 2012, 2013 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

6 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

7 
Least fixed point operation on bounded natural functors. 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

8 
*) 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

9 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

10 
header {* Least Fixed Point Operation on Bounded Natural Functors *} 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

11 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

12 
theory BNF_LFP 
53311  13 
imports BNF_FP_Base 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

14 
keywords 
53305  15 
"datatype_new" :: thy_decl and 
53310  16 
"datatype_new_compat" :: thy_decl and 
17 
"primrec_new" :: thy_decl 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

18 
begin 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

19 

49312  20 
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}" 
21 
by blast 

22 

23 
lemma image_Collect_subsetI: 

24 
"(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B" 

25 
by blast 

26 

27 
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X" 

28 
by auto 

29 

30 
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x" 

31 
by auto 

32 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

33 
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

34 
unfolding underS_def by simp 
49312  35 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

36 
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

37 
unfolding underS_def by simp 
49312  38 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

39 
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

40 
unfolding underS_def Field_def by auto 
49312  41 

42 
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R" 

43 
unfolding Field_def by auto 

44 

45 
lemma fst_convol': "fst (<f, g> x) = f x" 

46 
using fst_convol unfolding convol_def by simp 

47 

48 
lemma snd_convol': "snd (<f, g> x) = g x" 

49 
using snd_convol unfolding convol_def by simp 

50 

51 
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f" 

52 
unfolding convol_def by auto 

53 

51739
3514b90d0a8b
(co)rec is (just as the (un)fold) the unique morphism;
traytel
parents:
49635
diff
changeset

54 
lemma convol_expand_snd': "(fst o f = g) \<Longrightarrow> (h = snd o f) \<longleftrightarrow> (<g, h> = f)" 
3514b90d0a8b
(co)rec is (just as the (un)fold) the unique morphism;
traytel
parents:
49635
diff
changeset

55 
by (metis convol_expand_snd snd_convol) 
3514b90d0a8b
(co)rec is (just as the (un)fold) the unique morphism;
traytel
parents:
49635
diff
changeset

56 

49312  57 
definition inver where 
58 
"inver g f A = (ALL a : A. g (f a) = a)" 

59 

60 
lemma bij_betw_iff_ex: 

61 
"bij_betw f A B = (EX g. g ` B = A \<and> inver g f A \<and> inver f g B)" (is "?L = ?R") 

62 
proof (rule iffI) 

63 
assume ?L 

64 
hence f: "f ` A = B" and inj_f: "inj_on f A" unfolding bij_betw_def by auto 

65 
let ?phi = "% b a. a : A \<and> f a = b" 

66 
have "ALL b : B. EX a. ?phi b a" using f by blast 

67 
then obtain g where g: "ALL b : B. g b : A \<and> f (g b) = b" 

68 
using bchoice[of B ?phi] by blast 

69 
hence gg: "ALL b : f ` A. g b : A \<and> f (g b) = b" using f by blast 

49326  70 
have gf: "inver g f A" unfolding inver_def 
71 
by (metis (no_types) gg imageI[of _ A f] the_inv_into_f_f[OF inj_f]) 

49312  72 
moreover have "g ` B \<le> A \<and> inver f g B" using g unfolding inver_def by blast 
73 
moreover have "A \<le> g ` B" 

74 
proof safe 

75 
fix a assume a: "a : A" 

76 
hence "f a : B" using f by auto 

77 
moreover have "a = g (f a)" using a gf unfolding inver_def by auto 

78 
ultimately show "a : g ` B" by blast 

79 
qed 

80 
ultimately show ?R by blast 

81 
next 

82 
assume ?R 

83 
then obtain g where g: "g ` B = A \<and> inver g f A \<and> inver f g B" by blast 

84 
show ?L unfolding bij_betw_def 

85 
proof safe 

86 
show "inj_on f A" unfolding inj_on_def 

87 
proof safe 

88 
fix a1 a2 assume a: "a1 : A" "a2 : A" and "f a1 = f a2" 

89 
hence "g (f a1) = g (f a2)" by simp 

90 
thus "a1 = a2" using a g unfolding inver_def by simp 

91 
qed 

92 
next 

93 
fix a assume "a : A" 

94 
then obtain b where b: "b : B" and a: "a = g b" using g by blast 

95 
hence "b = f (g b)" using g unfolding inver_def by auto 

96 
thus "f a : B" unfolding a using b by simp 

97 
next 

98 
fix b assume "b : B" 

99 
hence "g b : A \<and> b = f (g b)" using g unfolding inver_def by auto 

100 
thus "b : f ` A" by auto 

101 
qed 

102 
qed 

103 

104 
lemma bij_betw_ex_weakE: 

105 
"\<lbrakk>bij_betw f A B\<rbrakk> \<Longrightarrow> \<exists>g. g ` B \<subseteq> A \<and> inver g f A \<and> inver f g B" 

106 
by (auto simp only: bij_betw_iff_ex) 

107 

108 
lemma inver_surj: "\<lbrakk>g ` B \<subseteq> A; f ` A \<subseteq> B; inver g f A\<rbrakk> \<Longrightarrow> g ` B = A" 

109 
unfolding inver_def by auto (rule rev_image_eqI, auto) 

110 

111 
lemma inver_mono: "\<lbrakk>A \<subseteq> B; inver f g B\<rbrakk> \<Longrightarrow> inver f g A" 

112 
unfolding inver_def by auto 

113 

114 
lemma inver_pointfree: "inver f g A = (\<forall>a \<in> A. (f o g) a = a)" 

115 
unfolding inver_def by simp 

116 

117 
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B" 

118 
unfolding bij_betw_def by auto 

119 

120 
lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B" 

121 
unfolding bij_betw_def by auto 

122 

123 
lemma inverE: "\<lbrakk>inver f f' A; x \<in> A\<rbrakk> \<Longrightarrow> f (f' x) = x" 

124 
unfolding inver_def by auto 

125 

126 
lemma bij_betw_inver1: "bij_betw f A B \<Longrightarrow> inver (inv_into A f) f A" 

127 
unfolding bij_betw_def inver_def by auto 

128 

129 
lemma bij_betw_inver2: "bij_betw f A B \<Longrightarrow> inver f (inv_into A f) B" 

130 
unfolding bij_betw_def inver_def by auto 

131 

132 
lemma bij_betwI: "\<lbrakk>bij_betw g B A; inver g f A; inver f g B\<rbrakk> \<Longrightarrow> bij_betw f A B" 

49326  133 
by (drule bij_betw_imageE, unfold bij_betw_iff_ex) blast 
49312  134 

135 
lemma bij_betwI': 

136 
"\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y); 

137 
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y; 

138 
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y" 

53695  139 
unfolding bij_betw_def inj_on_def by blast 
49312  140 

141 
lemma surj_fun_eq: 

142 
assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x" 

143 
shows "g1 = g2" 

144 
proof (rule ext) 

145 
fix y 

146 
from surj_on obtain x where "x \<in> X" and "y = f x" by blast 

147 
thus "g1 y = g2 y" using eq_on by simp 

148 
qed 

149 

150 
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r" 

49514  151 
unfolding wo_rel_def card_order_on_def by blast 
49312  152 

153 
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow> 

154 
\<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r" 

155 
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit) 

156 

157 
lemma Card_order_trans: 

158 
"\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r" 

159 
unfolding card_order_on_def well_order_on_def linear_order_on_def 

160 
partial_order_on_def preorder_on_def trans_def antisym_def by blast 

161 

162 
lemma Cinfinite_limit2: 

163 
assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r" 

164 
shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)" 

165 
proof  

166 
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r" 

167 
unfolding card_order_on_def well_order_on_def linear_order_on_def 

168 
partial_order_on_def preorder_on_def by auto 

169 
obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r" 

170 
using Cinfinite_limit[OF x1 r] by blast 

171 
obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r" 

172 
using Cinfinite_limit[OF x2 r] by blast 

173 
show ?thesis 

174 
proof (cases "y1 = y2") 

175 
case True with y1 y2 show ?thesis by blast 

176 
next 

177 
case False 

178 
with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r" 

179 
unfolding total_on_def by auto 

180 
thus ?thesis 

181 
proof 

182 
assume *: "(y1, y2) \<in> r" 

183 
with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast 

184 
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def) 

185 
next 

186 
assume *: "(y2, y1) \<in> r" 

187 
with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast 

188 
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def) 

189 
qed 

190 
qed 

191 
qed 

192 

193 
lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk> 

194 
\<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" 

195 
proof (induct X rule: finite_induct) 

196 
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto 

197 
next 

198 
case (insert x X) 

199 
then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast 

200 
then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r" 

201 
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast 

49326  202 
show ?case 
203 
apply (intro bexI ballI) 

204 
apply (erule insertE) 

205 
apply hypsubst 

206 
apply (rule z(2)) 

207 
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3) 

208 
apply blast 

209 
apply (rule z(1)) 

210 
done 

49312  211 
qed 
212 

213 
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A" 

214 
by auto 

215 

216 
(*helps resolution*) 

217 
lemma well_order_induct_imp: 

218 
"wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow> 

219 
x \<in> Field r \<longrightarrow> P x" 

220 
by (erule wo_rel.well_order_induct) 

221 

222 
lemma meta_spec2: 

223 
assumes "(\<And>x y. PROP P x y)" 

224 
shows "PROP P x y" 

225 
by (rule `(\<And>x y. PROP P x y)`) 

226 

54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

227 
lemma nchotomy_relcomppE: 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

228 
"\<lbrakk>\<And>y. \<exists>x. y = f x; (r OO s) a c; (\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P)\<rbrakk> \<Longrightarrow> P" 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

229 
by (metis relcompp.cases) 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

230 

52731  231 
lemma vimage2p_fun_rel: "(fun_rel (vimage2p f g R) R) f g" 
232 
unfolding fun_rel_def vimage2p_def by auto 

233 

234 
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)" 

235 
unfolding vimage2p_def by auto 

236 

54246
8fdb4dc08ed1
split 'primrec_new' and 'primcorec' code (to ease bootstrapping, e.g. dependency on datatype 'String' in 'primcorec')
blanchet
parents:
53695
diff
changeset

237 
ML_file "Tools/bnf_lfp_rec_sugar.ML" 
49309
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset

238 
ML_file "Tools/bnf_lfp_util.ML" 
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset

239 
ML_file "Tools/bnf_lfp_tactics.ML" 
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset

240 
ML_file "Tools/bnf_lfp.ML" 
53305  241 
ML_file "Tools/bnf_lfp_compat.ML" 
49309
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset

242 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

243 
end 