src/Pure/Pure.thy
author haftmann
Tue Sep 19 15:22:03 2006 +0200 (2006-09-19)
changeset 20596 3950e65f48f8
parent 19800 5f764272183e
child 20627 30da2841553e
permissions -rw-r--r--
(void)
wenzelm@15803
     1
(*  Title:      Pure/Pure.thy
wenzelm@15803
     2
    ID:         $Id$
wenzelm@18466
     3
*)
wenzelm@15803
     4
wenzelm@18466
     5
header {* The Pure theory *}
wenzelm@15803
     6
wenzelm@15803
     7
theory Pure
wenzelm@15803
     8
imports ProtoPure
wenzelm@15803
     9
begin
wenzelm@19800
    10
wenzelm@19048
    11
setup  -- {* Common setup of internal components *}
wenzelm@15803
    12
wenzelm@18466
    13
subsection {* Meta-level connectives in assumptions *}
wenzelm@15803
    14
wenzelm@15803
    15
lemma meta_mp:
wenzelm@18019
    16
  assumes "PROP P ==> PROP Q" and "PROP P"
wenzelm@15803
    17
  shows "PROP Q"
wenzelm@18019
    18
    by (rule `PROP P ==> PROP Q` [OF `PROP P`])
wenzelm@15803
    19
wenzelm@15803
    20
lemma meta_spec:
wenzelm@18019
    21
  assumes "!!x. PROP P(x)"
wenzelm@15803
    22
  shows "PROP P(x)"
wenzelm@18019
    23
    by (rule `!!x. PROP P(x)`)
wenzelm@15803
    24
wenzelm@15803
    25
lemmas meta_allE = meta_spec [elim_format]
wenzelm@15803
    26
wenzelm@18466
    27
wenzelm@18466
    28
subsection {* Meta-level conjunction *}
wenzelm@18466
    29
wenzelm@18466
    30
locale (open) meta_conjunction_syntax =
wenzelm@18466
    31
  fixes meta_conjunction :: "prop => prop => prop"  (infixr "&&" 2)
wenzelm@18466
    32
wenzelm@18466
    33
parse_translation {*
wenzelm@18466
    34
  [("\<^fixed>meta_conjunction", fn [t, u] => Logic.mk_conjunction (t, u))]
wenzelm@18466
    35
*}
wenzelm@18466
    36
wenzelm@18466
    37
lemma all_conjunction:
wenzelm@18466
    38
  includes meta_conjunction_syntax
wenzelm@18466
    39
  shows "(!!x. PROP A(x) && PROP B(x)) == ((!!x. PROP A(x)) && (!!x. PROP B(x)))"
wenzelm@18466
    40
proof
wenzelm@18466
    41
  assume conj: "!!x. PROP A(x) && PROP B(x)"
wenzelm@19121
    42
  show "(\<And>x. PROP A(x)) && (\<And>x. PROP B(x))"
wenzelm@19121
    43
  proof -
wenzelm@18466
    44
    fix x
wenzelm@19121
    45
    from conj show "PROP A(x)" by (rule conjunctionD1)
wenzelm@19121
    46
    from conj show "PROP B(x)" by (rule conjunctionD2)
wenzelm@18466
    47
  qed
wenzelm@18466
    48
next
wenzelm@18466
    49
  assume conj: "(!!x. PROP A(x)) && (!!x. PROP B(x))"
wenzelm@18466
    50
  fix x
wenzelm@19121
    51
  show "PROP A(x) && PROP B(x)"
wenzelm@19121
    52
  proof -
wenzelm@19121
    53
    show "PROP A(x)" by (rule conj [THEN conjunctionD1, rule_format])
wenzelm@19121
    54
    show "PROP B(x)" by (rule conj [THEN conjunctionD2, rule_format])
wenzelm@18466
    55
  qed
wenzelm@18466
    56
qed
wenzelm@18466
    57
wenzelm@19121
    58
lemma imp_conjunction:
wenzelm@18466
    59
  includes meta_conjunction_syntax
wenzelm@19121
    60
  shows "(PROP A ==> PROP B && PROP C) == (PROP A ==> PROP B) && (PROP A ==> PROP C)"
wenzelm@18836
    61
proof
wenzelm@18466
    62
  assume conj: "PROP A ==> PROP B && PROP C"
wenzelm@19121
    63
  show "(PROP A ==> PROP B) && (PROP A ==> PROP C)"
wenzelm@19121
    64
  proof -
wenzelm@18466
    65
    assume "PROP A"
wenzelm@19121
    66
    from conj [OF `PROP A`] show "PROP B" by (rule conjunctionD1)
wenzelm@19121
    67
    from conj [OF `PROP A`] show "PROP C" by (rule conjunctionD2)
wenzelm@18466
    68
  qed
wenzelm@18466
    69
next
wenzelm@18466
    70
  assume conj: "(PROP A ==> PROP B) && (PROP A ==> PROP C)"
wenzelm@18466
    71
  assume "PROP A"
wenzelm@19121
    72
  show "PROP B && PROP C"
wenzelm@19121
    73
  proof -
wenzelm@19121
    74
    from `PROP A` show "PROP B" by (rule conj [THEN conjunctionD1])
wenzelm@19121
    75
    from `PROP A` show "PROP C" by (rule conj [THEN conjunctionD2])
wenzelm@18466
    76
  qed
wenzelm@18466
    77
qed
wenzelm@18466
    78
wenzelm@18466
    79
lemma conjunction_imp:
wenzelm@18466
    80
  includes meta_conjunction_syntax
wenzelm@18466
    81
  shows "(PROP A && PROP B ==> PROP C) == (PROP A ==> PROP B ==> PROP C)"
wenzelm@18466
    82
proof
wenzelm@18466
    83
  assume r: "PROP A && PROP B ==> PROP C"
wenzelm@18466
    84
  assume "PROP A" and "PROP B"
wenzelm@18466
    85
  show "PROP C" by (rule r) -
wenzelm@18466
    86
next
wenzelm@18466
    87
  assume r: "PROP A ==> PROP B ==> PROP C"
wenzelm@18466
    88
  assume conj: "PROP A && PROP B"
wenzelm@18466
    89
  show "PROP C"
wenzelm@18466
    90
  proof (rule r)
wenzelm@19121
    91
    from conj show "PROP A" by (rule conjunctionD1)
wenzelm@19121
    92
    from conj show "PROP B" by (rule conjunctionD2)
wenzelm@18466
    93
  qed
wenzelm@18466
    94
qed
wenzelm@18466
    95
wenzelm@15803
    96
end