src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
author haftmann
Mon Apr 26 11:34:17 2010 +0200 (2010-04-26)
changeset 36349 39be26d1bc28
parent 35416 d8d7d1b785af
child 36409 d323e7773aa8
permissions -rw-r--r--
class division_ring_inverse_zero
chaieb@33154
     1
(*  Title:      HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
chaieb@33154
     2
    Author:     Amine Chaieb
chaieb@33154
     3
*)
chaieb@33154
     4
haftmann@35046
     5
header {* Implementation and verification of multivariate polynomials *}
chaieb@33154
     6
chaieb@33154
     7
theory Reflected_Multivariate_Polynomial
haftmann@35046
     8
imports Complex_Main Abstract_Rat Polynomial_List
chaieb@33154
     9
begin
chaieb@33154
    10
haftmann@35046
    11
  (* Implementation *)
chaieb@33154
    12
chaieb@33154
    13
subsection{* Datatype of polynomial expressions *} 
chaieb@33154
    14
chaieb@33154
    15
datatype poly = C Num| Bound nat| Add poly poly|Sub poly poly
chaieb@33154
    16
  | Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly
chaieb@33154
    17
wenzelm@35054
    18
abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)"
wenzelm@35054
    19
abbreviation poly_p :: "int \<Rightarrow> poly" ("_\<^sub>p") where "i\<^sub>p \<equiv> C (i\<^sub>N)"
chaieb@33154
    20
chaieb@33154
    21
subsection{* Boundedness, substitution and all that *}
chaieb@33154
    22
consts polysize:: "poly \<Rightarrow> nat"
chaieb@33154
    23
primrec
chaieb@33154
    24
  "polysize (C c) = 1"
chaieb@33154
    25
  "polysize (Bound n) = 1"
chaieb@33154
    26
  "polysize (Neg p) = 1 + polysize p"
chaieb@33154
    27
  "polysize (Add p q) = 1 + polysize p + polysize q"
chaieb@33154
    28
  "polysize (Sub p q) = 1 + polysize p + polysize q"
chaieb@33154
    29
  "polysize (Mul p q) = 1 + polysize p + polysize q"
chaieb@33154
    30
  "polysize (Pw p n) = 1 + polysize p"
chaieb@33154
    31
  "polysize (CN c n p) = 4 + polysize c + polysize p"
chaieb@33154
    32
chaieb@33154
    33
consts 
chaieb@33154
    34
  polybound0:: "poly \<Rightarrow> bool" (* a poly is INDEPENDENT of Bound 0 *)
chaieb@33154
    35
  polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" (* substitute a poly into a poly for Bound 0 *)
chaieb@33154
    36
primrec
chaieb@33154
    37
  "polybound0 (C c) = True"
chaieb@33154
    38
  "polybound0 (Bound n) = (n>0)"
chaieb@33154
    39
  "polybound0 (Neg a) = polybound0 a"
chaieb@33154
    40
  "polybound0 (Add a b) = (polybound0 a \<and> polybound0 b)"
chaieb@33154
    41
  "polybound0 (Sub a b) = (polybound0 a \<and> polybound0 b)" 
chaieb@33154
    42
  "polybound0 (Mul a b) = (polybound0 a \<and> polybound0 b)"
chaieb@33154
    43
  "polybound0 (Pw p n) = (polybound0 p)"
chaieb@33154
    44
  "polybound0 (CN c n p) = (n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p)"
chaieb@33154
    45
primrec
chaieb@33154
    46
  "polysubst0 t (C c) = (C c)"
chaieb@33154
    47
  "polysubst0 t (Bound n) = (if n=0 then t else Bound n)"
chaieb@33154
    48
  "polysubst0 t (Neg a) = Neg (polysubst0 t a)"
chaieb@33154
    49
  "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)"
chaieb@33154
    50
  "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)" 
chaieb@33154
    51
  "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)"
chaieb@33154
    52
  "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n"
chaieb@33154
    53
  "polysubst0 t (CN c n p) = (if n=0 then Add (polysubst0 t c) (Mul t (polysubst0 t p))
chaieb@33154
    54
                             else CN (polysubst0 t c) n (polysubst0 t p))"
chaieb@33154
    55
chaieb@33154
    56
consts 
chaieb@33154
    57
  decrpoly:: "poly \<Rightarrow> poly" 
chaieb@33154
    58
recdef decrpoly "measure polysize"
chaieb@33154
    59
  "decrpoly (Bound n) = Bound (n - 1)"
chaieb@33154
    60
  "decrpoly (Neg a) = Neg (decrpoly a)"
chaieb@33154
    61
  "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)"
chaieb@33154
    62
  "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)"
chaieb@33154
    63
  "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)"
chaieb@33154
    64
  "decrpoly (Pw p n) = Pw (decrpoly p) n"
chaieb@33154
    65
  "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)"
chaieb@33154
    66
  "decrpoly a = a"
chaieb@33154
    67
chaieb@33154
    68
subsection{* Degrees and heads and coefficients *}
chaieb@33154
    69
chaieb@33154
    70
consts degree:: "poly \<Rightarrow> nat"
chaieb@33154
    71
recdef degree "measure size"
chaieb@33154
    72
  "degree (CN c 0 p) = 1 + degree p"
chaieb@33154
    73
  "degree p = 0"
chaieb@33154
    74
consts head:: "poly \<Rightarrow> poly"
chaieb@33154
    75
chaieb@33154
    76
recdef head "measure size"
chaieb@33154
    77
  "head (CN c 0 p) = head p"
chaieb@33154
    78
  "head p = p"
chaieb@33154
    79
  (* More general notions of degree and head *)
chaieb@33154
    80
consts degreen:: "poly \<Rightarrow> nat \<Rightarrow> nat"
chaieb@33154
    81
recdef degreen "measure size"
chaieb@33154
    82
  "degreen (CN c n p) = (\<lambda>m. if n=m then 1 + degreen p n else 0)"
chaieb@33154
    83
  "degreen p = (\<lambda>m. 0)"
chaieb@33154
    84
chaieb@33154
    85
consts headn:: "poly \<Rightarrow> nat \<Rightarrow> poly"
chaieb@33154
    86
recdef headn "measure size"
chaieb@33154
    87
  "headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)"
chaieb@33154
    88
  "headn p = (\<lambda>m. p)"
chaieb@33154
    89
chaieb@33154
    90
consts coefficients:: "poly \<Rightarrow> poly list"
chaieb@33154
    91
recdef coefficients "measure size"
chaieb@33154
    92
  "coefficients (CN c 0 p) = c#(coefficients p)"
chaieb@33154
    93
  "coefficients p = [p]"
chaieb@33154
    94
chaieb@33154
    95
consts isconstant:: "poly \<Rightarrow> bool"
chaieb@33154
    96
recdef isconstant "measure size"
chaieb@33154
    97
  "isconstant (CN c 0 p) = False"
chaieb@33154
    98
  "isconstant p = True"
chaieb@33154
    99
chaieb@33154
   100
consts behead:: "poly \<Rightarrow> poly"
chaieb@33154
   101
recdef behead "measure size"
chaieb@33154
   102
  "behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')"
chaieb@33154
   103
  "behead p = 0\<^sub>p"
chaieb@33154
   104
chaieb@33154
   105
consts headconst:: "poly \<Rightarrow> Num"
chaieb@33154
   106
recdef headconst "measure size"
chaieb@33154
   107
  "headconst (CN c n p) = headconst p"
chaieb@33154
   108
  "headconst (C n) = n"
chaieb@33154
   109
chaieb@33154
   110
subsection{* Operations for normalization *}
chaieb@33154
   111
consts 
chaieb@33154
   112
  polyadd :: "poly\<times>poly \<Rightarrow> poly"
chaieb@33154
   113
  polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
chaieb@33154
   114
  polysub :: "poly\<times>poly \<Rightarrow> poly"
chaieb@33154
   115
  polymul :: "poly\<times>poly \<Rightarrow> poly"
chaieb@33154
   116
  polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly"
wenzelm@35054
   117
abbreviation poly_add :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60)
wenzelm@35054
   118
  where "a +\<^sub>p b \<equiv> polyadd (a,b)"
wenzelm@35054
   119
abbreviation poly_mul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60)
wenzelm@35054
   120
  where "a *\<^sub>p b \<equiv> polymul (a,b)"
wenzelm@35054
   121
abbreviation poly_sub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60)
wenzelm@35054
   122
  where "a -\<^sub>p b \<equiv> polysub (a,b)"
wenzelm@35054
   123
abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60)
wenzelm@35054
   124
  where "a ^\<^sub>p k \<equiv> polypow k a"
chaieb@33154
   125
chaieb@33154
   126
recdef polyadd "measure (\<lambda> (a,b). polysize a + polysize b)"
chaieb@33154
   127
  "polyadd (C c, C c') = C (c+\<^sub>Nc')"
chaieb@33154
   128
  "polyadd (C c, CN c' n' p') = CN (polyadd (C c, c')) n' p'"
chaieb@33154
   129
  "polyadd (CN c n p, C c') = CN (polyadd (c, C c')) n p"
chaieb@33154
   130
stupid:  "polyadd (CN c n p, CN c' n' p') = 
chaieb@33154
   131
    (if n < n' then CN (polyadd(c,CN c' n' p')) n p
chaieb@33154
   132
     else if n'<n then CN (polyadd(CN c n p, c')) n' p'
chaieb@33154
   133
     else (let cc' = polyadd (c,c') ; 
chaieb@33154
   134
               pp' = polyadd (p,p')
chaieb@33154
   135
           in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
chaieb@33154
   136
  "polyadd (a, b) = Add a b"
chaieb@33154
   137
(hints recdef_simp add: Let_def measure_def split_def inv_image_def)
chaieb@33154
   138
chaieb@33154
   139
(*
chaieb@33154
   140
declare stupid [simp del, code del]
chaieb@33154
   141
chaieb@33154
   142
lemma [simp,code]: "polyadd (CN c n p, CN c' n' p') = 
chaieb@33154
   143
    (if n < n' then CN (polyadd(c,CN c' n' p')) n p
chaieb@33154
   144
     else if n'<n then CN (polyadd(CN c n p, c')) n' p'
chaieb@33154
   145
     else (let cc' = polyadd (c,c') ; 
chaieb@33154
   146
               pp' = polyadd (p,p')
chaieb@33154
   147
           in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
chaieb@33154
   148
  by (simp add: Let_def stupid)
chaieb@33154
   149
*)
chaieb@33154
   150
chaieb@33154
   151
recdef polyneg "measure size"
chaieb@33154
   152
  "polyneg (C c) = C (~\<^sub>N c)"
chaieb@33154
   153
  "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)"
chaieb@33154
   154
  "polyneg a = Neg a"
chaieb@33154
   155
chaieb@33154
   156
defs polysub_def[code]: "polysub \<equiv> \<lambda> (p,q). polyadd (p,polyneg q)"
chaieb@33154
   157
chaieb@33154
   158
recdef polymul "measure (\<lambda>(a,b). size a + size b)"
chaieb@33154
   159
  "polymul(C c, C c') = C (c*\<^sub>Nc')"
chaieb@33154
   160
  "polymul(C c, CN c' n' p') = 
chaieb@33154
   161
      (if c = 0\<^sub>N then 0\<^sub>p else CN (polymul(C c,c')) n' (polymul(C c, p')))"
chaieb@33154
   162
  "polymul(CN c n p, C c') = 
chaieb@33154
   163
      (if c' = 0\<^sub>N  then 0\<^sub>p else CN (polymul(c,C c')) n (polymul(p, C c')))"
chaieb@33154
   164
  "polymul(CN c n p, CN c' n' p') = 
chaieb@33154
   165
  (if n<n' then CN (polymul(c,CN c' n' p')) n (polymul(p,CN c' n' p'))
chaieb@33154
   166
  else if n' < n 
chaieb@33154
   167
  then CN (polymul(CN c n p,c')) n' (polymul(CN c n p,p'))
chaieb@33154
   168
  else polyadd(polymul(CN c n p, c'),CN 0\<^sub>p n' (polymul(CN c n p, p'))))"
chaieb@33154
   169
  "polymul (a,b) = Mul a b"
chaieb@33154
   170
recdef polypow "measure id"
chaieb@33154
   171
  "polypow 0 = (\<lambda>p. 1\<^sub>p)"
chaieb@33154
   172
  "polypow n = (\<lambda>p. let q = polypow (n div 2) p ; d = polymul(q,q) in 
chaieb@33154
   173
                    if even n then d else polymul(p,d))"
chaieb@33154
   174
chaieb@33154
   175
consts polynate :: "poly \<Rightarrow> poly"
chaieb@33154
   176
recdef polynate "measure polysize"
chaieb@33154
   177
  "polynate (Bound n) = CN 0\<^sub>p n 1\<^sub>p"
chaieb@33154
   178
  "polynate (Add p q) = (polynate p +\<^sub>p polynate q)"
chaieb@33154
   179
  "polynate (Sub p q) = (polynate p -\<^sub>p polynate q)"
chaieb@33154
   180
  "polynate (Mul p q) = (polynate p *\<^sub>p polynate q)"
chaieb@33154
   181
  "polynate (Neg p) = (~\<^sub>p (polynate p))"
chaieb@33154
   182
  "polynate (Pw p n) = ((polynate p) ^\<^sub>p n)"
chaieb@33154
   183
  "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))"
chaieb@33154
   184
  "polynate (C c) = C (normNum c)"
chaieb@33154
   185
chaieb@33154
   186
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly" where
chaieb@33154
   187
  "poly_cmul y (C x) = C (y *\<^sub>N x)"
chaieb@33154
   188
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)"
chaieb@33154
   189
| "poly_cmul y p = C y *\<^sub>p p"
chaieb@33154
   190
haftmann@35416
   191
definition monic :: "poly \<Rightarrow> (poly \<times> bool)" where
chaieb@33154
   192
  "monic p \<equiv> (let h = headconst p in if h = 0\<^sub>N then (p,False) else ((C (Ninv h)) *\<^sub>p p, 0>\<^sub>N h))"
chaieb@33154
   193
chaieb@33154
   194
subsection{* Pseudo-division *}
chaieb@33154
   195
haftmann@35416
   196
definition shift1 :: "poly \<Rightarrow> poly" where
chaieb@33154
   197
  "shift1 p \<equiv> CN 0\<^sub>p 0 p"
chaieb@33154
   198
consts funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
chaieb@33154
   199
chaieb@33154
   200
primrec
chaieb@33154
   201
  "funpow 0 f x = x"
chaieb@33154
   202
  "funpow (Suc n) f x = funpow n f (f x)"
chaieb@33154
   203
function (tailrec) polydivide_aux :: "(poly \<times> nat \<times> poly \<times> nat \<times> poly) \<Rightarrow> (nat \<times> poly)"
chaieb@33154
   204
  where
chaieb@33154
   205
  "polydivide_aux (a,n,p,k,s) = 
chaieb@33154
   206
  (if s = 0\<^sub>p then (k,s)
chaieb@33154
   207
  else (let b = head s; m = degree s in
chaieb@33154
   208
  (if m < n then (k,s) else 
chaieb@33154
   209
  (let p'= funpow (m - n) shift1 p in 
chaieb@33154
   210
  (if a = b then polydivide_aux (a,n,p,k,s -\<^sub>p p') 
chaieb@33154
   211
  else polydivide_aux (a,n,p,Suc k, (a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))))))"
chaieb@33154
   212
  by pat_completeness auto
chaieb@33154
   213
chaieb@33154
   214
haftmann@35416
   215
definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> (nat \<times> poly)" where
chaieb@33154
   216
  "polydivide s p \<equiv> polydivide_aux (head p,degree p,p,0, s)"
chaieb@33154
   217
chaieb@33154
   218
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" where
chaieb@33154
   219
  "poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)"
chaieb@33154
   220
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p"
chaieb@33154
   221
chaieb@33154
   222
fun poly_deriv :: "poly \<Rightarrow> poly" where
chaieb@33154
   223
  "poly_deriv (CN c 0 p) = poly_deriv_aux 1 p"
chaieb@33154
   224
| "poly_deriv p = 0\<^sub>p"
chaieb@33154
   225
chaieb@33154
   226
  (* Verification *)
chaieb@33154
   227
lemma nth_pos2[simp]: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)"
chaieb@33154
   228
using Nat.gr0_conv_Suc
chaieb@33154
   229
by clarsimp
chaieb@33154
   230
chaieb@33154
   231
subsection{* Semantics of the polynomial representation *}
chaieb@33154
   232
haftmann@36349
   233
consts Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{ring_char_0,power,division_ring_inverse_zero,field}"
chaieb@33154
   234
primrec
chaieb@33154
   235
  "Ipoly bs (C c) = INum c"
chaieb@33154
   236
  "Ipoly bs (Bound n) = bs!n"
chaieb@33154
   237
  "Ipoly bs (Neg a) = - Ipoly bs a"
chaieb@33154
   238
  "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b"
chaieb@33154
   239
  "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b"
chaieb@33154
   240
  "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b"
chaieb@33154
   241
  "Ipoly bs (Pw t n) = (Ipoly bs t) ^ n"
chaieb@33154
   242
  "Ipoly bs (CN c n p) = (Ipoly bs c) + (bs!n)*(Ipoly bs p)"
wenzelm@35054
   243
abbreviation
haftmann@36349
   244
  Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{ring_char_0,power,division_ring_inverse_zero,field}" ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
wenzelm@35054
   245
  where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p"
chaieb@33154
   246
chaieb@33154
   247
lemma Ipoly_CInt: "Ipoly bs (C (i,1)) = of_int i" 
chaieb@33154
   248
  by (simp add: INum_def)
chaieb@33154
   249
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j" 
chaieb@33154
   250
  by (simp  add: INum_def)
chaieb@33154
   251
chaieb@33154
   252
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat
chaieb@33154
   253
chaieb@33154
   254
subsection {* Normal form and normalization *}
chaieb@33154
   255
chaieb@33154
   256
consts isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool"
chaieb@33154
   257
recdef isnpolyh "measure size"
chaieb@33154
   258
  "isnpolyh (C c) = (\<lambda>k. isnormNum c)"
chaieb@33154
   259
  "isnpolyh (CN c n p) = (\<lambda>k. n\<ge> k \<and> (isnpolyh c (Suc n)) \<and> (isnpolyh p n) \<and> (p \<noteq> 0\<^sub>p))"
chaieb@33154
   260
  "isnpolyh p = (\<lambda>k. False)"
chaieb@33154
   261
chaieb@33154
   262
lemma isnpolyh_mono: "\<lbrakk>n' \<le> n ; isnpolyh p n\<rbrakk> \<Longrightarrow> isnpolyh p n'"
chaieb@33154
   263
by (induct p rule: isnpolyh.induct, auto)
chaieb@33154
   264
haftmann@35416
   265
definition isnpoly :: "poly \<Rightarrow> bool" where
chaieb@33154
   266
  "isnpoly p \<equiv> isnpolyh p 0"
chaieb@33154
   267
chaieb@33154
   268
text{* polyadd preserves normal forms *}
chaieb@33154
   269
chaieb@33154
   270
lemma polyadd_normh: "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> 
chaieb@33154
   271
      \<Longrightarrow> isnpolyh (polyadd(p,q)) (min n0 n1)"
chaieb@33154
   272
proof(induct p q arbitrary: n0 n1 rule: polyadd.induct)
chaieb@33154
   273
  case (2 a b c' n' p' n0 n1)
chaieb@33154
   274
  from prems have  th1: "isnpolyh (C (a,b)) (Suc n')" by simp 
chaieb@33154
   275
  from prems(3) have th2: "isnpolyh c' (Suc n')"  and nplen1: "n' \<ge> n1" by simp_all
chaieb@33154
   276
  with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
chaieb@33154
   277
  with prems(1)[OF th1 th2] have th3:"isnpolyh (C (a,b) +\<^sub>p c') (Suc n')" by simp
chaieb@33154
   278
  from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp 
chaieb@33154
   279
  thus ?case using prems th3 by simp
chaieb@33154
   280
next
chaieb@33154
   281
  case (3 c' n' p' a b n1 n0)
chaieb@33154
   282
  from prems have  th1: "isnpolyh (C (a,b)) (Suc n')" by simp 
chaieb@33154
   283
  from prems(2) have th2: "isnpolyh c' (Suc n')"  and nplen1: "n' \<ge> n1" by simp_all
chaieb@33154
   284
  with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
chaieb@33154
   285
  with prems(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C (a,b)) (Suc n')" by simp
chaieb@33154
   286
  from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp 
chaieb@33154
   287
  thus ?case using prems th3 by simp
chaieb@33154
   288
next
chaieb@33154
   289
  case (4 c n p c' n' p' n0 n1)
chaieb@33154
   290
  hence nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" by simp_all
chaieb@33154
   291
  from prems have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" by simp_all 
chaieb@33154
   292
  from prems have ngen0: "n \<ge> n0" by simp
chaieb@33154
   293
  from prems have n'gen1: "n' \<ge> n1" by simp 
chaieb@33154
   294
  have "n < n' \<or> n' < n \<or> n = n'" by auto
chaieb@33154
   295
  moreover {assume eq: "n = n'" hence eq': "\<not> n' < n \<and> \<not> n < n'" by simp
chaieb@33154
   296
    with prems(2)[rule_format, OF eq' nc nc'] 
chaieb@33154
   297
    have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" by auto
chaieb@33154
   298
    hence ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)"
chaieb@33154
   299
      using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 by auto
chaieb@33154
   300
    from eq prems(1)[rule_format, OF eq' np np'] have npp': "isnpolyh (p +\<^sub>p p') n" by simp
chaieb@33154
   301
    have minle: "min n0 n1 \<le> n'" using ngen0 n'gen1 eq by simp
chaieb@33154
   302
    from minle npp' ncc'n01 prems ngen0 n'gen1 ncc' have ?case by (simp add: Let_def)}
chaieb@33154
   303
  moreover {assume lt: "n < n'"
chaieb@33154
   304
    have "min n0 n1 \<le> n0" by simp
chaieb@33154
   305
    with prems have th1:"min n0 n1 \<le> n" by auto 
chaieb@33154
   306
    from prems have th21: "isnpolyh c (Suc n)" by simp
chaieb@33154
   307
    from prems have th22: "isnpolyh (CN c' n' p') n'" by simp
chaieb@33154
   308
    from lt have th23: "min (Suc n) n' = Suc n" by arith
chaieb@33154
   309
    from prems(4)[rule_format, OF lt th21 th22]
chaieb@33154
   310
    have "isnpolyh (polyadd (c, CN c' n' p')) (Suc n)" using th23 by simp
chaieb@33154
   311
    with prems th1 have ?case by simp } 
chaieb@33154
   312
  moreover {assume gt: "n' < n" hence gt': "n' < n \<and> \<not> n < n'" by simp
chaieb@33154
   313
    have "min n0 n1 \<le> n1"  by simp
chaieb@33154
   314
    with prems have th1:"min n0 n1 \<le> n'" by auto
chaieb@33154
   315
    from prems have th21: "isnpolyh c' (Suc n')" by simp_all
chaieb@33154
   316
    from prems have th22: "isnpolyh (CN c n p) n" by simp
chaieb@33154
   317
    from gt have th23: "min n (Suc n') = Suc n'" by arith
chaieb@33154
   318
    from prems(3)[rule_format, OF  gt' th22 th21]
chaieb@33154
   319
    have "isnpolyh (polyadd (CN c n p,c')) (Suc n')" using th23 by simp
chaieb@33154
   320
    with prems th1 have ?case by simp}
chaieb@33154
   321
      ultimately show ?case by blast
chaieb@33154
   322
qed auto
chaieb@33154
   323
chaieb@33154
   324
lemma polyadd[simp]: "Ipoly bs (polyadd (p,q)) = (Ipoly bs p) + (Ipoly bs q)"
haftmann@36349
   325
by (induct p q rule: polyadd.induct, auto simp add: Let_def field_simps right_distrib[symmetric] simp del: right_distrib)
chaieb@33154
   326
chaieb@33154
   327
lemma polyadd_norm: "\<lbrakk> isnpoly p ; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polyadd(p,q))"
chaieb@33154
   328
  using polyadd_normh[of "p" "0" "q" "0"] isnpoly_def by simp
chaieb@33154
   329
chaieb@33154
   330
text{* The degree of addition and other general lemmas needed for the normal form of polymul*}
chaieb@33154
   331
chaieb@33154
   332
lemma polyadd_different_degreen: 
chaieb@33154
   333
  "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degreen p m \<noteq> degreen q m ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow> 
chaieb@33154
   334
  degreen (polyadd(p,q)) m = max (degreen p m) (degreen q m)"
chaieb@33154
   335
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct)
chaieb@33154
   336
  case (4 c n p c' n' p' m n0 n1)
chaieb@33154
   337
  thus ?case 
chaieb@33154
   338
    apply (cases "n' < n", simp_all add: Let_def)
chaieb@33154
   339
    apply (cases "n = n'", simp_all)
chaieb@33154
   340
    apply (cases "n' = m", simp_all add: Let_def)
chaieb@33154
   341
    by (erule allE[where x="m"], erule allE[where x="Suc m"], 
chaieb@33154
   342
           erule allE[where x="m"], erule allE[where x="Suc m"], 
chaieb@33154
   343
           clarsimp,erule allE[where x="m"],erule allE[where x="Suc m"], simp)
chaieb@33154
   344
qed simp_all 
chaieb@33154
   345
chaieb@33154
   346
lemma headnz[simp]: "\<lbrakk>isnpolyh p n ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> headn p m \<noteq> 0\<^sub>p"
chaieb@33154
   347
  by (induct p arbitrary: n rule: headn.induct, auto)
chaieb@33154
   348
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0"
chaieb@33154
   349
  by (induct p arbitrary: n rule: degree.induct, auto)
chaieb@33154
   350
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0"
chaieb@33154
   351
  by (induct p arbitrary: n rule: degreen.induct, auto)
chaieb@33154
   352
chaieb@33154
   353
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0"
chaieb@33154
   354
  by (induct p arbitrary: n rule: degree.induct, auto)
chaieb@33154
   355
chaieb@33154
   356
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0"
chaieb@33154
   357
  using degree_isnpolyh_Suc by auto
chaieb@33154
   358
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0"
chaieb@33154
   359
  using degreen_0 by auto
chaieb@33154
   360
chaieb@33154
   361
chaieb@33154
   362
lemma degreen_polyadd:
chaieb@33154
   363
  assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> max n0 n1"
chaieb@33154
   364
  shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)"
chaieb@33154
   365
  using np nq m
chaieb@33154
   366
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct)
chaieb@33154
   367
  case (2 c c' n' p' n0 n1) thus ?case  by (cases n', simp_all)
chaieb@33154
   368
next
chaieb@33154
   369
  case (3 c n p c' n0 n1) thus ?case by (cases n, auto)
chaieb@33154
   370
next
chaieb@33154
   371
  case (4 c n p c' n' p' n0 n1 m) 
chaieb@33154
   372
  thus ?case 
chaieb@33154
   373
    apply (cases "n < n'", simp_all add: Let_def)
chaieb@33154
   374
    apply (cases "n' < n", simp_all)
chaieb@33154
   375
    apply (erule allE[where x="n"],erule allE[where x="Suc n"],clarify)
chaieb@33154
   376
    apply (erule allE[where x="n'"],erule allE[where x="Suc n'"],clarify)
chaieb@33154
   377
    by (erule allE[where x="m"],erule allE[where x="m"], auto)
chaieb@33154
   378
qed auto
chaieb@33154
   379
chaieb@33154
   380
chaieb@33154
   381
lemma polyadd_eq_const_degreen: "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd (p,q) = C c\<rbrakk> 
chaieb@33154
   382
  \<Longrightarrow> degreen p m = degreen q m"
chaieb@33154
   383
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct)
chaieb@33154
   384
  case (4 c n p c' n' p' m n0 n1 x) 
chaieb@33154
   385
  hence z: "CN c n p +\<^sub>p CN c' n' p' = C x" by simp
chaieb@33154
   386
  {assume nn': "n' < n" hence ?case using prems by simp}
chaieb@33154
   387
  moreover 
chaieb@33154
   388
  {assume nn':"\<not> n' < n" hence "n < n' \<or> n = n'" by arith
chaieb@33154
   389
    moreover {assume "n < n'" with prems have ?case by simp }
chaieb@33154
   390
    moreover {assume eq: "n = n'" hence ?case using prems 
wenzelm@33268
   391
        by (cases "p +\<^sub>p p' = 0\<^sub>p", auto simp add: Let_def) }
chaieb@33154
   392
    ultimately have ?case by blast}
chaieb@33154
   393
  ultimately show ?case by blast
chaieb@33154
   394
qed simp_all
chaieb@33154
   395
chaieb@33154
   396
lemma polymul_properties:
haftmann@36349
   397
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   398
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> min n0 n1"
chaieb@33154
   399
  shows "isnpolyh (p *\<^sub>p q) (min n0 n1)" 
chaieb@33154
   400
  and "(p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p)" 
chaieb@33154
   401
  and "degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 
chaieb@33154
   402
                             else degreen p m + degreen q m)"
chaieb@33154
   403
  using np nq m
chaieb@33154
   404
proof(induct p q arbitrary: n0 n1 m rule: polymul.induct)
chaieb@33154
   405
  case (2 a b c' n' p') 
chaieb@33154
   406
  let ?c = "(a,b)"
chaieb@33154
   407
  { case (1 n0 n1) 
chaieb@33154
   408
    hence n: "isnpolyh (C ?c) n'" "isnpolyh c' (Suc n')" "isnpolyh p' n'" "isnormNum ?c" 
chaieb@33154
   409
      "isnpolyh (CN c' n' p') n1"
chaieb@33154
   410
      by simp_all
chaieb@33154
   411
    {assume "?c = 0\<^sub>N" hence ?case by auto}
chaieb@33154
   412
      moreover {assume cnz: "?c \<noteq> 0\<^sub>N" 
wenzelm@33268
   413
        from "2.hyps"(1)[rule_format,where xb="n'",  OF cnz n(1) n(3)] 
wenzelm@33268
   414
          "2.hyps"(2)[rule_format, where x="Suc n'" 
wenzelm@33268
   415
          and xa="Suc n'" and xb = "n'", OF cnz ] cnz n have ?case
wenzelm@33268
   416
          by (auto simp add: min_def)}
chaieb@33154
   417
      ultimately show ?case by blast
chaieb@33154
   418
  next
chaieb@33154
   419
    case (2 n0 n1) thus ?case by auto 
chaieb@33154
   420
  next
chaieb@33154
   421
    case (3 n0 n1) thus ?case  using "2.hyps" by auto } 
chaieb@33154
   422
next
chaieb@33154
   423
  case (3 c n p a b){
chaieb@33154
   424
    let ?c' = "(a,b)"
chaieb@33154
   425
    case (1 n0 n1) 
chaieb@33154
   426
    hence n: "isnpolyh (C ?c') n" "isnpolyh c (Suc n)" "isnpolyh p n" "isnormNum ?c'" 
chaieb@33154
   427
      "isnpolyh (CN c n p) n0"
chaieb@33154
   428
      by simp_all
chaieb@33154
   429
    {assume "?c' = 0\<^sub>N" hence ?case by auto}
chaieb@33154
   430
      moreover {assume cnz: "?c' \<noteq> 0\<^sub>N"
wenzelm@33268
   431
        from "3.hyps"(1)[rule_format,where xb="n",  OF cnz n(3) n(1)] 
wenzelm@33268
   432
          "3.hyps"(2)[rule_format, where x="Suc n" 
wenzelm@33268
   433
          and xa="Suc n" and xb = "n", OF cnz ] cnz n have ?case
wenzelm@33268
   434
          by (auto simp add: min_def)}
chaieb@33154
   435
      ultimately show ?case by blast
chaieb@33154
   436
  next
chaieb@33154
   437
    case (2 n0 n1) thus ?case apply auto done
chaieb@33154
   438
  next
chaieb@33154
   439
    case (3 n0 n1) thus ?case  using "3.hyps" by auto } 
chaieb@33154
   440
next
chaieb@33154
   441
  case (4 c n p c' n' p')
chaieb@33154
   442
  let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'"
chaieb@33154
   443
    {fix n0 n1
chaieb@33154
   444
      assume "isnpolyh ?cnp n0" and "isnpolyh ?cnp' n1"
chaieb@33154
   445
      hence cnp: "isnpolyh ?cnp n" and cnp': "isnpolyh ?cnp' n'"
wenzelm@33268
   446
        and np: "isnpolyh p n" and nc: "isnpolyh c (Suc n)" 
wenzelm@33268
   447
        and np': "isnpolyh p' n'" and nc': "isnpolyh c' (Suc n')"
wenzelm@33268
   448
        and nn0: "n \<ge> n0" and nn1:"n' \<ge> n1"
wenzelm@33268
   449
        by simp_all
chaieb@33154
   450
      have "n < n' \<or> n' < n \<or> n' = n" by auto
chaieb@33154
   451
      moreover
chaieb@33154
   452
      {assume nn': "n < n'"
wenzelm@33268
   453
        with "4.hyps"(5)[rule_format, OF nn' np cnp', where xb ="n"] 
wenzelm@33268
   454
          "4.hyps"(6)[rule_format, OF nn' nc cnp', where xb="n"] nn' nn0 nn1 cnp
wenzelm@33268
   455
        have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
wenzelm@33268
   456
          by (simp add: min_def) }
chaieb@33154
   457
      moreover
chaieb@33154
   458
chaieb@33154
   459
      {assume nn': "n > n'" hence stupid: "n' < n \<and> \<not> n < n'" by arith
wenzelm@33268
   460
        with "4.hyps"(3)[rule_format, OF stupid cnp np', where xb="n'"]
wenzelm@33268
   461
          "4.hyps"(4)[rule_format, OF stupid cnp nc', where xb="Suc n'"] 
wenzelm@33268
   462
          nn' nn0 nn1 cnp'
wenzelm@33268
   463
        have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
wenzelm@33268
   464
          by (cases "Suc n' = n", simp_all add: min_def)}
chaieb@33154
   465
      moreover
chaieb@33154
   466
      {assume nn': "n' = n" hence stupid: "\<not> n' < n \<and> \<not> n < n'" by arith
wenzelm@33268
   467
        from "4.hyps"(1)[rule_format, OF stupid cnp np', where xb="n"]
wenzelm@33268
   468
          "4.hyps"(2)[rule_format, OF stupid cnp nc', where xb="n"] nn' cnp cnp' nn1
wenzelm@33268
   469
        
wenzelm@33268
   470
        have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
wenzelm@33268
   471
          by simp (rule polyadd_normh,simp_all add: min_def isnpolyh_mono[OF nn0]) }
chaieb@33154
   472
      ultimately show "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)" by blast }
chaieb@33154
   473
    note th = this
chaieb@33154
   474
    {fix n0 n1 m
chaieb@33154
   475
      assume np: "isnpolyh ?cnp n0" and np':"isnpolyh ?cnp' n1"
chaieb@33154
   476
      and m: "m \<le> min n0 n1"
chaieb@33154
   477
      let ?d = "degreen (?cnp *\<^sub>p ?cnp') m"
chaieb@33154
   478
      let ?d1 = "degreen ?cnp m"
chaieb@33154
   479
      let ?d2 = "degreen ?cnp' m"
chaieb@33154
   480
      let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0  else ?d1 + ?d2)"
chaieb@33154
   481
      have "n'<n \<or> n < n' \<or> n' = n" by auto
chaieb@33154
   482
      moreover 
chaieb@33154
   483
      {assume "n' < n \<or> n < n'"
wenzelm@33268
   484
        with "4.hyps" np np' m 
wenzelm@33268
   485
        have ?eq apply (cases "n' < n", simp_all)
wenzelm@33268
   486
        apply (erule allE[where x="n"],erule allE[where x="n"],auto) 
wenzelm@33268
   487
        done }
chaieb@33154
   488
      moreover
chaieb@33154
   489
      {assume nn': "n' = n"  hence nn:"\<not> n' < n \<and> \<not> n < n'" by arith
wenzelm@33268
   490
        from "4.hyps"(1)[rule_format, OF nn, where x="n" and xa ="n'" and xb="n"]
wenzelm@33268
   491
          "4.hyps"(2)[rule_format, OF nn, where x="n" and xa ="Suc n'" and xb="n"] 
wenzelm@33268
   492
          np np' nn'
wenzelm@33268
   493
        have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
wenzelm@33268
   494
          "isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
wenzelm@33268
   495
          "(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)" 
wenzelm@33268
   496
          "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" by (auto simp add: min_def)
wenzelm@33268
   497
        {assume mn: "m = n" 
wenzelm@33268
   498
          from "4.hyps"(1)[rule_format, OF nn norm(1,4), where xb="n"]
wenzelm@33268
   499
            "4.hyps"(2)[rule_format, OF nn norm(1,2), where xb="n"] norm nn' mn
wenzelm@33268
   500
          have degs:  "degreen (?cnp *\<^sub>p c') n = 
wenzelm@33268
   501
            (if c'=0\<^sub>p then 0 else ?d1 + degreen c' n)"
wenzelm@33268
   502
            "degreen (?cnp *\<^sub>p p') n = ?d1  + degreen p' n" by (simp_all add: min_def)
wenzelm@33268
   503
          from degs norm
wenzelm@33268
   504
          have th1: "degreen(?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" by simp
wenzelm@33268
   505
          hence neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
wenzelm@33268
   506
            by simp
wenzelm@33268
   507
          have nmin: "n \<le> min n n" by (simp add: min_def)
wenzelm@33268
   508
          from polyadd_different_degreen[OF norm(3,6) neq nmin] th1
wenzelm@33268
   509
          have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp 
wenzelm@33268
   510
          from "4.hyps"(1)[rule_format, OF nn norm(1,4), where xb="n"]
wenzelm@33268
   511
            "4.hyps"(2)[rule_format, OF nn norm(1,2), where xb="n"]
wenzelm@33268
   512
            mn norm m nn' deg
wenzelm@33268
   513
          have ?eq by simp}
wenzelm@33268
   514
        moreover
wenzelm@33268
   515
        {assume mn: "m \<noteq> n" hence mn': "m < n" using m np by auto
wenzelm@33268
   516
          from nn' m np have max1: "m \<le> max n n"  by simp 
wenzelm@33268
   517
          hence min1: "m \<le> min n n" by simp     
wenzelm@33268
   518
          hence min2: "m \<le> min n (Suc n)" by simp
wenzelm@33268
   519
          {assume "c' = 0\<^sub>p"
wenzelm@33268
   520
            from `c' = 0\<^sub>p` have ?eq
wenzelm@33268
   521
              using "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
wenzelm@33268
   522
            "4.hyps"(2)[rule_format, OF nn norm(1,2) min2] mn nn'
wenzelm@33268
   523
              apply simp
wenzelm@33268
   524
              done}
wenzelm@33268
   525
          moreover
wenzelm@33268
   526
          {assume cnz: "c' \<noteq> 0\<^sub>p"
wenzelm@33268
   527
            from "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
wenzelm@33268
   528
              "4.hyps"(2)[rule_format, OF nn norm(1,2) min2]
wenzelm@33268
   529
              degreen_polyadd[OF norm(3,6) max1]
chaieb@33154
   530
wenzelm@33268
   531
            have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m 
wenzelm@33268
   532
              \<le> max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)"
wenzelm@33268
   533
              using mn nn' cnz np np' by simp
wenzelm@33268
   534
            with "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
wenzelm@33268
   535
              "4.hyps"(2)[rule_format, OF nn norm(1,2) min2]
wenzelm@33268
   536
              degreen_0[OF norm(3) mn'] have ?eq using nn' mn cnz np np' by clarsimp}
wenzelm@33268
   537
          ultimately have ?eq by blast }
wenzelm@33268
   538
        ultimately have ?eq by blast}
chaieb@33154
   539
      ultimately show ?eq by blast}
chaieb@33154
   540
    note degth = this
chaieb@33154
   541
    { case (2 n0 n1)
chaieb@33154
   542
      hence np: "isnpolyh ?cnp n0" and np': "isnpolyh ?cnp' n1" 
wenzelm@33268
   543
        and m: "m \<le> min n0 n1" by simp_all
chaieb@33154
   544
      hence mn: "m \<le> n" by simp
chaieb@33154
   545
      let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')"
chaieb@33154
   546
      {assume C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n"
wenzelm@33268
   547
        hence nn: "\<not>n' < n \<and> \<not> n<n'" by simp
wenzelm@33268
   548
        from "4.hyps"(1) [rule_format, OF nn, where x="n" and xa = "n" and xb="n"] 
wenzelm@33268
   549
          "4.hyps"(2) [rule_format, OF nn, where x="n" and xa = "Suc n" and xb="n"] 
wenzelm@33268
   550
          np np' C(2) mn
wenzelm@33268
   551
        have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
wenzelm@33268
   552
          "isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
wenzelm@33268
   553
          "(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)" 
wenzelm@33268
   554
          "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" 
wenzelm@33268
   555
          "degreen (?cnp *\<^sub>p c') n = (if c'=0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)"
wenzelm@33268
   556
            "degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n"
wenzelm@33268
   557
          by (simp_all add: min_def)
wenzelm@33268
   558
            
wenzelm@33268
   559
          from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
wenzelm@33268
   560
          have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" 
wenzelm@33268
   561
            using norm by simp
wenzelm@33268
   562
        from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"]  degneq
wenzelm@33268
   563
        have "False" by simp }
chaieb@33154
   564
      thus ?case using "4.hyps" by clarsimp}
chaieb@33154
   565
qed auto
chaieb@33154
   566
chaieb@33154
   567
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = (Ipoly bs p) * (Ipoly bs q)"
haftmann@36349
   568
by(induct p q rule: polymul.induct, auto simp add: field_simps)
chaieb@33154
   569
chaieb@33154
   570
lemma polymul_normh: 
haftmann@36349
   571
    assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   572
  shows "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)"
chaieb@33154
   573
  using polymul_properties(1)  by blast
chaieb@33154
   574
lemma polymul_eq0_iff: 
haftmann@36349
   575
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   576
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p) "
chaieb@33154
   577
  using polymul_properties(2)  by blast
chaieb@33154
   578
lemma polymul_degreen:  
haftmann@36349
   579
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   580
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow> degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 else degreen p m + degreen q m)"
chaieb@33154
   581
  using polymul_properties(3) by blast
chaieb@33154
   582
lemma polymul_norm:   
haftmann@36349
   583
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   584
  shows "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polymul (p,q))"
chaieb@33154
   585
  using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp
chaieb@33154
   586
chaieb@33154
   587
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p"
chaieb@33154
   588
  by (induct p arbitrary: n0 rule: headconst.induct, auto)
chaieb@33154
   589
chaieb@33154
   590
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)"
chaieb@33154
   591
  by (induct p arbitrary: n0, auto)
chaieb@33154
   592
chaieb@33154
   593
lemma monic_eqI: assumes np: "isnpolyh p n0" 
haftmann@36349
   594
  shows "INum (headconst p) * Ipoly bs (fst (monic p)) = (Ipoly bs p ::'a::{ring_char_0,power,division_ring_inverse_zero,field})"
chaieb@33154
   595
  unfolding monic_def Let_def
chaieb@33154
   596
proof(cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np])
chaieb@33154
   597
  let ?h = "headconst p"
chaieb@33154
   598
  assume pz: "p \<noteq> 0\<^sub>p"
chaieb@33154
   599
  {assume hz: "INum ?h = (0::'a)"
chaieb@33154
   600
    from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" by simp_all
chaieb@33154
   601
    from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" by simp
chaieb@33154
   602
    with headconst_zero[OF np] have "p =0\<^sub>p" by blast with pz have "False" by blast}
chaieb@33154
   603
  thus "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by blast
chaieb@33154
   604
qed
chaieb@33154
   605
chaieb@33154
   606
chaieb@33154
   607
 
chaieb@33154
   608
chaieb@33154
   609
text{* polyneg is a negation and preserves normal form *}
chaieb@33154
   610
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p"
chaieb@33154
   611
by (induct p rule: polyneg.induct, auto)
chaieb@33154
   612
chaieb@33154
   613
lemma polyneg0: "isnpolyh p n \<Longrightarrow> ((~\<^sub>p p) = 0\<^sub>p) = (p = 0\<^sub>p)"
chaieb@33154
   614
  by (induct p arbitrary: n rule: polyneg.induct, auto simp add: Nneg_def)
chaieb@33154
   615
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p"
chaieb@33154
   616
  by (induct p arbitrary: n0 rule: polyneg.induct, auto)
chaieb@33154
   617
lemma polyneg_normh: "\<And>n. isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n "
chaieb@33154
   618
by (induct p rule: polyneg.induct, auto simp add: polyneg0)
chaieb@33154
   619
chaieb@33154
   620
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)"
chaieb@33154
   621
  using isnpoly_def polyneg_normh by simp
chaieb@33154
   622
chaieb@33154
   623
chaieb@33154
   624
text{* polysub is a substraction and preserves normalform *}
chaieb@33154
   625
lemma polysub[simp]: "Ipoly bs (polysub (p,q)) = (Ipoly bs p) - (Ipoly bs q)"
chaieb@33154
   626
by (simp add: polysub_def polyneg polyadd)
chaieb@33154
   627
lemma polysub_normh: "\<And> n0 n1. \<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (polysub(p,q)) (min n0 n1)"
chaieb@33154
   628
by (simp add: polysub_def polyneg_normh polyadd_normh)
chaieb@33154
   629
chaieb@33154
   630
lemma polysub_norm: "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polysub(p,q))"
chaieb@33154
   631
  using polyadd_norm polyneg_norm by (simp add: polysub_def) 
haftmann@36349
   632
lemma polysub_same_0[simp]:   assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   633
  shows "isnpolyh p n0 \<Longrightarrow> polysub (p, p) = 0\<^sub>p"
chaieb@33154
   634
unfolding polysub_def split_def fst_conv snd_conv
chaieb@33154
   635
by (induct p arbitrary: n0,auto simp add: Let_def Nsub0[simplified Nsub_def])
chaieb@33154
   636
chaieb@33154
   637
lemma polysub_0: 
haftmann@36349
   638
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   639
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p -\<^sub>p q = 0\<^sub>p) = (p = q)"
chaieb@33154
   640
  unfolding polysub_def split_def fst_conv snd_conv
chaieb@33154
   641
  apply (induct p q arbitrary: n0 n1 rule:polyadd.induct, simp_all add: Nsub0[simplified Nsub_def])
chaieb@33154
   642
  apply (clarsimp simp add: Let_def)
chaieb@33154
   643
  apply (case_tac "n < n'", simp_all)
chaieb@33154
   644
  apply (case_tac "n' < n", simp_all)
chaieb@33154
   645
  apply (erule impE)+
chaieb@33154
   646
  apply (rule_tac x="Suc n" in exI, simp)
chaieb@33154
   647
  apply (rule_tac x="n" in exI, simp)
chaieb@33154
   648
  apply (erule impE)+
chaieb@33154
   649
  apply (rule_tac x="n" in exI, simp)
chaieb@33154
   650
  apply (rule_tac x="Suc n" in exI, simp)
chaieb@33154
   651
  apply (erule impE)+
chaieb@33154
   652
  apply (rule_tac x="Suc n" in exI, simp)
chaieb@33154
   653
  apply (rule_tac x="n" in exI, simp)
chaieb@33154
   654
  apply (erule impE)+
chaieb@33154
   655
  apply (rule_tac x="Suc n" in exI, simp)
chaieb@33154
   656
  apply clarsimp
chaieb@33154
   657
  done
chaieb@33154
   658
chaieb@33154
   659
text{* polypow is a power function and preserves normal forms *}
haftmann@36349
   660
lemma polypow[simp]: "Ipoly bs (polypow n p) = ((Ipoly bs p :: 'a::{field, division_ring_inverse_zero, ring_char_0})) ^ n"
chaieb@33154
   661
proof(induct n rule: polypow.induct)
chaieb@33154
   662
  case 1 thus ?case by simp
chaieb@33154
   663
next
chaieb@33154
   664
  case (2 n)
chaieb@33154
   665
  let ?q = "polypow ((Suc n) div 2) p"
chaieb@33154
   666
  let ?d = "polymul(?q,?q)"
chaieb@33154
   667
  have "odd (Suc n) \<or> even (Suc n)" by simp
chaieb@33154
   668
  moreover 
chaieb@33154
   669
  {assume odd: "odd (Suc n)"
chaieb@33154
   670
    have th: "(Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat))))) = Suc n div 2 + Suc n div 2 + 1" by arith
chaieb@33154
   671
    from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul(p, ?d))" by (simp add: Let_def)
chaieb@33154
   672
    also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2)*(Ipoly bs p)^(Suc n div 2)"
chaieb@33154
   673
      using "2.hyps" by simp
chaieb@33154
   674
    also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)"
chaieb@33154
   675
      apply (simp only: power_add power_one_right) by simp
chaieb@33154
   676
    also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat)))))"
chaieb@33154
   677
      by (simp only: th)
chaieb@33154
   678
    finally have ?case 
chaieb@33154
   679
    using odd_nat_div_two_times_two_plus_one[OF odd, symmetric] by simp  }
chaieb@33154
   680
  moreover 
chaieb@33154
   681
  {assume even: "even (Suc n)"
chaieb@33154
   682
    have th: "(Suc (Suc (0\<Colon>nat))) * (Suc n div Suc (Suc (0\<Colon>nat))) = Suc n div 2 + Suc n div 2" by arith
chaieb@33154
   683
    from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" by (simp add: Let_def)
chaieb@33154
   684
    also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2)"
chaieb@33154
   685
      using "2.hyps" apply (simp only: power_add) by simp
chaieb@33154
   686
    finally have ?case using even_nat_div_two_times_two[OF even] by (simp only: th)}
chaieb@33154
   687
  ultimately show ?case by blast
chaieb@33154
   688
qed
chaieb@33154
   689
chaieb@33154
   690
lemma polypow_normh: 
haftmann@36349
   691
    assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   692
  shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n"
chaieb@33154
   693
proof (induct k arbitrary: n rule: polypow.induct)
chaieb@33154
   694
  case (2 k n)
chaieb@33154
   695
  let ?q = "polypow (Suc k div 2) p"
chaieb@33154
   696
  let ?d = "polymul (?q,?q)"
chaieb@33154
   697
  from prems have th1:"isnpolyh ?q n" and th2: "isnpolyh p n" by blast+
chaieb@33154
   698
  from polymul_normh[OF th1 th1] have dn: "isnpolyh ?d n" by simp
chaieb@33154
   699
  from polymul_normh[OF th2 dn] have on: "isnpolyh (polymul(p,?d)) n" by simp
chaieb@33154
   700
  from dn on show ?case by (simp add: Let_def)
chaieb@33154
   701
qed auto 
chaieb@33154
   702
chaieb@33154
   703
lemma polypow_norm:   
haftmann@36349
   704
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   705
  shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)"
chaieb@33154
   706
  by (simp add: polypow_normh isnpoly_def)
chaieb@33154
   707
chaieb@33154
   708
text{* Finally the whole normalization*}
chaieb@33154
   709
haftmann@36349
   710
lemma polynate[simp]: "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   711
by (induct p rule:polynate.induct, auto)
chaieb@33154
   712
chaieb@33154
   713
lemma polynate_norm[simp]: 
haftmann@36349
   714
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   715
  shows "isnpoly (polynate p)"
chaieb@33154
   716
  by (induct p rule: polynate.induct, simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm) (simp_all add: isnpoly_def)
chaieb@33154
   717
chaieb@33154
   718
text{* shift1 *}
chaieb@33154
   719
chaieb@33154
   720
chaieb@33154
   721
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)"
chaieb@33154
   722
by (simp add: shift1_def polymul)
chaieb@33154
   723
chaieb@33154
   724
lemma shift1_isnpoly: 
chaieb@33154
   725
  assumes pn: "isnpoly p" and pnz: "p \<noteq> 0\<^sub>p" shows "isnpoly (shift1 p) "
chaieb@33154
   726
  using pn pnz by (simp add: shift1_def isnpoly_def )
chaieb@33154
   727
chaieb@33154
   728
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p"
chaieb@33154
   729
  by (simp add: shift1_def)
chaieb@33154
   730
lemma funpow_shift1_isnpoly: 
chaieb@33154
   731
  "\<lbrakk> isnpoly p ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> isnpoly (funpow n shift1 p)"
chaieb@33154
   732
  by (induct n arbitrary: p, auto simp add: shift1_isnpoly)
chaieb@33154
   733
chaieb@33154
   734
lemma funpow_isnpolyh: 
chaieb@33154
   735
  assumes f: "\<And> p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n "and np: "isnpolyh p n"
chaieb@33154
   736
  shows "isnpolyh (funpow k f p) n"
chaieb@33154
   737
  using f np by (induct k arbitrary: p, auto)
chaieb@33154
   738
haftmann@36349
   739
lemma funpow_shift1: "(Ipoly bs (funpow n shift1 p) :: 'a :: {field, division_ring_inverse_zero, ring_char_0}) = Ipoly bs (Mul (Pw (Bound 0) n) p)"
chaieb@33154
   740
  by (induct n arbitrary: p, simp_all add: shift1_isnpoly shift1 power_Suc )
chaieb@33154
   741
chaieb@33154
   742
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0"
chaieb@33154
   743
  using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def)
chaieb@33154
   744
chaieb@33154
   745
lemma funpow_shift1_1: 
haftmann@36349
   746
  "(Ipoly bs (funpow n shift1 p) :: 'a :: {field, division_ring_inverse_zero, ring_char_0}) = Ipoly bs (funpow n shift1 1\<^sub>p *\<^sub>p p)"
chaieb@33154
   747
  by (simp add: funpow_shift1)
chaieb@33154
   748
chaieb@33154
   749
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)"
haftmann@36349
   750
by (induct p  arbitrary: n0 rule: poly_cmul.induct, auto simp add: field_simps)
chaieb@33154
   751
chaieb@33154
   752
lemma behead:
chaieb@33154
   753
  assumes np: "isnpolyh p n"
haftmann@36349
   754
  shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = (Ipoly bs p :: 'a :: {field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
   755
  using np
chaieb@33154
   756
proof (induct p arbitrary: n rule: behead.induct)
chaieb@33154
   757
  case (1 c p n) hence pn: "isnpolyh p n" by simp
chaieb@33154
   758
  from prems(2)[OF pn] 
chaieb@33154
   759
  have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" . 
chaieb@33154
   760
  then show ?case using "1.hyps" apply (simp add: Let_def,cases "behead p = 0\<^sub>p")
haftmann@36349
   761
    by (simp_all add: th[symmetric] field_simps power_Suc)
chaieb@33154
   762
qed (auto simp add: Let_def)
chaieb@33154
   763
chaieb@33154
   764
lemma behead_isnpolyh:
chaieb@33154
   765
  assumes np: "isnpolyh p n" shows "isnpolyh (behead p) n"
chaieb@33154
   766
  using np by (induct p rule: behead.induct, auto simp add: Let_def isnpolyh_mono)
chaieb@33154
   767
chaieb@33154
   768
subsection{* Miscilanious lemmas about indexes, decrementation, substitution  etc ... *}
chaieb@33154
   769
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p"
chaieb@33154
   770
proof(induct p arbitrary: n rule: polybound0.induct, auto)
chaieb@33154
   771
  case (goal1 c n p n')
chaieb@33154
   772
  hence "n = Suc (n - 1)" by simp
chaieb@33154
   773
  hence "isnpolyh p (Suc (n - 1))"  using `isnpolyh p n` by simp
chaieb@33154
   774
  with prems(2) show ?case by simp
chaieb@33154
   775
qed
chaieb@33154
   776
chaieb@33154
   777
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p"
chaieb@33154
   778
by (induct p arbitrary: n0 rule: isconstant.induct, auto simp add: isnpolyh_polybound0)
chaieb@33154
   779
chaieb@33154
   780
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" by (induct p, auto)
chaieb@33154
   781
chaieb@33154
   782
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)"
chaieb@33154
   783
  apply (induct p arbitrary: n0, auto)
chaieb@33154
   784
  apply (atomize)
chaieb@33154
   785
  apply (erule_tac x = "Suc nat" in allE)
chaieb@33154
   786
  apply auto
chaieb@33154
   787
  done
chaieb@33154
   788
chaieb@33154
   789
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)"
chaieb@33154
   790
 by (induct p  arbitrary: n0 rule: head.induct, auto intro: isnpolyh_polybound0)
chaieb@33154
   791
chaieb@33154
   792
lemma polybound0_I:
chaieb@33154
   793
  assumes nb: "polybound0 a"
chaieb@33154
   794
  shows "Ipoly (b#bs) a = Ipoly (b'#bs) a"
chaieb@33154
   795
using nb
chaieb@33154
   796
by (induct a rule: polybound0.induct) auto 
chaieb@33154
   797
lemma polysubst0_I:
chaieb@33154
   798
  shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b#bs) a)#bs) t"
chaieb@33154
   799
  by (induct t) simp_all
chaieb@33154
   800
chaieb@33154
   801
lemma polysubst0_I':
chaieb@33154
   802
  assumes nb: "polybound0 a"
chaieb@33154
   803
  shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b'#bs) a)#bs) t"
chaieb@33154
   804
  by (induct t) (simp_all add: polybound0_I[OF nb, where b="b" and b'="b'"])
chaieb@33154
   805
chaieb@33154
   806
lemma decrpoly: assumes nb: "polybound0 t"
chaieb@33154
   807
  shows "Ipoly (x#bs) t = Ipoly bs (decrpoly t)"
chaieb@33154
   808
  using nb by (induct t rule: decrpoly.induct, simp_all)
chaieb@33154
   809
chaieb@33154
   810
lemma polysubst0_polybound0: assumes nb: "polybound0 t"
chaieb@33154
   811
  shows "polybound0 (polysubst0 t a)"
chaieb@33154
   812
using nb by (induct a rule: polysubst0.induct, auto)
chaieb@33154
   813
chaieb@33154
   814
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p"
chaieb@33154
   815
  by (induct p arbitrary: n rule: degree.induct, auto simp add: isnpolyh_polybound0)
chaieb@33154
   816
chaieb@33154
   817
fun maxindex :: "poly \<Rightarrow> nat" where
chaieb@33154
   818
  "maxindex (Bound n) = n + 1"
chaieb@33154
   819
| "maxindex (CN c n p) = max  (n + 1) (max (maxindex c) (maxindex p))"
chaieb@33154
   820
| "maxindex (Add p q) = max (maxindex p) (maxindex q)"
chaieb@33154
   821
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)"
chaieb@33154
   822
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)"
chaieb@33154
   823
| "maxindex (Neg p) = maxindex p"
chaieb@33154
   824
| "maxindex (Pw p n) = maxindex p"
chaieb@33154
   825
| "maxindex (C x) = 0"
chaieb@33154
   826
chaieb@33154
   827
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool" where
chaieb@33154
   828
  "wf_bs bs p = (length bs \<ge> maxindex p)"
chaieb@33154
   829
chaieb@33154
   830
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall> c \<in> set (coefficients p). wf_bs bs c"
chaieb@33154
   831
proof(induct p rule: coefficients.induct)
chaieb@33154
   832
  case (1 c p) 
chaieb@33154
   833
  show ?case 
chaieb@33154
   834
  proof
chaieb@33154
   835
    fix x assume xc: "x \<in> set (coefficients (CN c 0 p))"
chaieb@33154
   836
    hence "x = c \<or> x \<in> set (coefficients p)" by simp
chaieb@33154
   837
    moreover 
chaieb@33154
   838
    {assume "x = c" hence "wf_bs bs x" using "1.prems"  unfolding wf_bs_def by simp}
chaieb@33154
   839
    moreover 
chaieb@33154
   840
    {assume H: "x \<in> set (coefficients p)" 
chaieb@33154
   841
      from "1.prems" have "wf_bs bs p" unfolding wf_bs_def by simp
chaieb@33154
   842
      with "1.hyps" H have "wf_bs bs x" by blast }
chaieb@33154
   843
    ultimately  show "wf_bs bs x" by blast
chaieb@33154
   844
  qed
chaieb@33154
   845
qed simp_all
chaieb@33154
   846
chaieb@33154
   847
lemma maxindex_coefficients: " \<forall>c\<in> set (coefficients p). maxindex c \<le> maxindex p"
chaieb@33154
   848
by (induct p rule: coefficients.induct, auto)
chaieb@33154
   849
chaieb@33154
   850
lemma length_exists: "\<exists>xs. length xs = n" by (rule exI[where x="replicate n x"], simp)
chaieb@33154
   851
chaieb@33154
   852
lemma wf_bs_I: "wf_bs bs p ==> Ipoly (bs@bs') p = Ipoly bs p"
chaieb@33154
   853
  unfolding wf_bs_def by (induct p, auto simp add: nth_append)
chaieb@33154
   854
chaieb@33154
   855
lemma take_maxindex_wf: assumes wf: "wf_bs bs p" 
chaieb@33154
   856
  shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p"
chaieb@33154
   857
proof-
chaieb@33154
   858
  let ?ip = "maxindex p"
chaieb@33154
   859
  let ?tbs = "take ?ip bs"
chaieb@33154
   860
  from wf have "length ?tbs = ?ip" unfolding wf_bs_def by simp
chaieb@33154
   861
  hence wf': "wf_bs ?tbs p" unfolding wf_bs_def by  simp
chaieb@33154
   862
  have eq: "bs = ?tbs @ (drop ?ip bs)" by simp
chaieb@33154
   863
  from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis using eq by simp
chaieb@33154
   864
qed
chaieb@33154
   865
chaieb@33154
   866
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1"
chaieb@33154
   867
  by (induct p, auto)
chaieb@33154
   868
chaieb@33154
   869
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p"
chaieb@33154
   870
  unfolding wf_bs_def by simp
chaieb@33154
   871
chaieb@33154
   872
lemma wf_bs_insensitive': "wf_bs (x#bs) p = wf_bs (y#bs) p"
chaieb@33154
   873
  unfolding wf_bs_def by simp
chaieb@33154
   874
chaieb@33154
   875
chaieb@33154
   876
chaieb@33154
   877
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x#bs) p"
chaieb@33154
   878
by(induct p rule: coefficients.induct, auto simp add: wf_bs_def)
chaieb@33154
   879
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []"
chaieb@33154
   880
  by (induct p rule: coefficients.induct, simp_all)
chaieb@33154
   881
chaieb@33154
   882
chaieb@33154
   883
lemma coefficients_head: "last (coefficients p) = head p"
chaieb@33154
   884
  by (induct p rule: coefficients.induct, auto)
chaieb@33154
   885
chaieb@33154
   886
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x#bs) p"
chaieb@33154
   887
  unfolding wf_bs_def by (induct p rule: decrpoly.induct, auto)
chaieb@33154
   888
chaieb@33154
   889
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists> ys. length (xs @ ys) = n"
chaieb@33154
   890
  apply (rule exI[where x="replicate (n - length xs) z"])
chaieb@33154
   891
  by simp
chaieb@33154
   892
lemma isnpolyh_Suc_const:"isnpolyh p (Suc n) \<Longrightarrow> isconstant p"
chaieb@33154
   893
by (cases p, auto) (case_tac "nat", simp_all)
chaieb@33154
   894
chaieb@33154
   895
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)"
chaieb@33154
   896
  unfolding wf_bs_def 
chaieb@33154
   897
  apply (induct p q rule: polyadd.induct)
chaieb@33154
   898
  apply (auto simp add: Let_def)
chaieb@33154
   899
  done
chaieb@33154
   900
chaieb@33154
   901
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)"
chaieb@33154
   902
chaieb@33154
   903
 unfolding wf_bs_def 
chaieb@33154
   904
  apply (induct p q arbitrary: bs rule: polymul.induct) 
chaieb@33154
   905
  apply (simp_all add: wf_bs_polyadd)
chaieb@33154
   906
  apply clarsimp
chaieb@33154
   907
  apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format])
chaieb@33154
   908
  apply auto
chaieb@33154
   909
  done
chaieb@33154
   910
chaieb@33154
   911
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)"
chaieb@33154
   912
  unfolding wf_bs_def by (induct p rule: polyneg.induct, auto)
chaieb@33154
   913
chaieb@33154
   914
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)"
chaieb@33154
   915
  unfolding polysub_def split_def fst_conv snd_conv using wf_bs_polyadd wf_bs_polyneg by blast
chaieb@33154
   916
chaieb@33154
   917
subsection{* Canonicity of polynomial representation, see lemma isnpolyh_unique*}
chaieb@33154
   918
chaieb@33154
   919
definition "polypoly bs p = map (Ipoly bs) (coefficients p)"
chaieb@33154
   920
definition "polypoly' bs p = map ((Ipoly bs o decrpoly)) (coefficients p)"
chaieb@33154
   921
definition "poly_nate bs p = map ((Ipoly bs o decrpoly)) (coefficients (polynate p))"
chaieb@33154
   922
chaieb@33154
   923
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall> q \<in> set (coefficients p). isnpolyh q n0"
chaieb@33154
   924
proof (induct p arbitrary: n0 rule: coefficients.induct)
chaieb@33154
   925
  case (1 c p n0)
chaieb@33154
   926
  have cp: "isnpolyh (CN c 0 p) n0" by fact
chaieb@33154
   927
  hence norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0"
chaieb@33154
   928
    by (auto simp add: isnpolyh_mono[where n'=0])
chaieb@33154
   929
  from "1.hyps"[OF norm(2)] norm(1) norm(4)  show ?case by simp 
chaieb@33154
   930
qed auto
chaieb@33154
   931
chaieb@33154
   932
lemma coefficients_isconst:
chaieb@33154
   933
  "isnpolyh p n \<Longrightarrow> \<forall>q\<in>set (coefficients p). isconstant q"
chaieb@33154
   934
  by (induct p arbitrary: n rule: coefficients.induct, 
chaieb@33154
   935
    auto simp add: isnpolyh_Suc_const)
chaieb@33154
   936
chaieb@33154
   937
lemma polypoly_polypoly':
chaieb@33154
   938
  assumes np: "isnpolyh p n0"
chaieb@33154
   939
  shows "polypoly (x#bs) p = polypoly' bs p"
chaieb@33154
   940
proof-
chaieb@33154
   941
  let ?cf = "set (coefficients p)"
chaieb@33154
   942
  from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" .
chaieb@33154
   943
  {fix q assume q: "q \<in> ?cf"
chaieb@33154
   944
    from q cn_norm have th: "isnpolyh q n0" by blast
chaieb@33154
   945
    from coefficients_isconst[OF np] q have "isconstant q" by blast
chaieb@33154
   946
    with isconstant_polybound0[OF th] have "polybound0 q" by blast}
chaieb@33154
   947
  hence "\<forall>q \<in> ?cf. polybound0 q" ..
chaieb@33154
   948
  hence "\<forall>q \<in> ?cf. Ipoly (x#bs) q = Ipoly bs (decrpoly q)"
chaieb@33154
   949
    using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs]
chaieb@33154
   950
    by auto
chaieb@33154
   951
  
chaieb@33154
   952
  thus ?thesis unfolding polypoly_def polypoly'_def by simp 
chaieb@33154
   953
qed
chaieb@33154
   954
chaieb@33154
   955
lemma polypoly_poly:
chaieb@33154
   956
  assumes np: "isnpolyh p n0" shows "Ipoly (x#bs) p = poly (polypoly (x#bs) p) x"
chaieb@33154
   957
  using np 
chaieb@33154
   958
by (induct p arbitrary: n0 bs rule: coefficients.induct, auto simp add: polypoly_def)
chaieb@33154
   959
chaieb@33154
   960
lemma polypoly'_poly: 
chaieb@33154
   961
  assumes np: "isnpolyh p n0" shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x"
chaieb@33154
   962
  using polypoly_poly[OF np, simplified polypoly_polypoly'[OF np]] .
chaieb@33154
   963
chaieb@33154
   964
chaieb@33154
   965
lemma polypoly_poly_polybound0:
chaieb@33154
   966
  assumes np: "isnpolyh p n0" and nb: "polybound0 p"
chaieb@33154
   967
  shows "polypoly bs p = [Ipoly bs p]"
chaieb@33154
   968
  using np nb unfolding polypoly_def 
chaieb@33154
   969
  by (cases p, auto, case_tac nat, auto)
chaieb@33154
   970
chaieb@33154
   971
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0" 
chaieb@33154
   972
  by (induct p rule: head.induct, auto)
chaieb@33154
   973
chaieb@33154
   974
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (headn p m = 0\<^sub>p) = (p = 0\<^sub>p)"
chaieb@33154
   975
  by (cases p,auto)
chaieb@33154
   976
chaieb@33154
   977
lemma head_eq_headn0: "head p = headn p 0"
chaieb@33154
   978
  by (induct p rule: head.induct, simp_all)
chaieb@33154
   979
chaieb@33154
   980
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (head p = 0\<^sub>p) = (p = 0\<^sub>p)"
chaieb@33154
   981
  by (simp add: head_eq_headn0)
chaieb@33154
   982
chaieb@33154
   983
lemma isnpolyh_zero_iff: 
haftmann@36349
   984
  assumes nq: "isnpolyh p n0" and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{ring_char_0,power,division_ring_inverse_zero,field})"
chaieb@33154
   985
  shows "p = 0\<^sub>p"
chaieb@33154
   986
using nq eq
berghofe@34915
   987
proof (induct "maxindex p" arbitrary: p n0 rule: less_induct)
berghofe@34915
   988
  case less
berghofe@34915
   989
  note np = `isnpolyh p n0` and zp = `\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)`
berghofe@34915
   990
  {assume nz: "maxindex p = 0"
berghofe@34915
   991
    then obtain c where "p = C c" using np by (cases p, auto)
chaieb@33154
   992
    with zp np have "p = 0\<^sub>p" unfolding wf_bs_def by simp}
chaieb@33154
   993
  moreover
berghofe@34915
   994
  {assume nz: "maxindex p \<noteq> 0"
chaieb@33154
   995
    let ?h = "head p"
chaieb@33154
   996
    let ?hd = "decrpoly ?h"
chaieb@33154
   997
    let ?ihd = "maxindex ?hd"
chaieb@33154
   998
    from head_isnpolyh[OF np] head_polybound0[OF np] have h:"isnpolyh ?h n0" "polybound0 ?h" 
chaieb@33154
   999
      by simp_all
chaieb@33154
  1000
    hence nhd: "isnpolyh ?hd (n0 - 1)" using decrpoly_normh by blast
chaieb@33154
  1001
    
chaieb@33154
  1002
    from maxindex_coefficients[of p] coefficients_head[of p, symmetric]
berghofe@34915
  1003
    have mihn: "maxindex ?h \<le> maxindex p" by auto
berghofe@34915
  1004
    with decr_maxindex[OF h(2)] nz  have ihd_lt_n: "?ihd < maxindex p" by auto
chaieb@33154
  1005
    {fix bs:: "'a list"  assume bs: "wf_bs bs ?hd"
chaieb@33154
  1006
      let ?ts = "take ?ihd bs"
chaieb@33154
  1007
      let ?rs = "drop ?ihd bs"
chaieb@33154
  1008
      have ts: "wf_bs ?ts ?hd" using bs unfolding wf_bs_def by simp
chaieb@33154
  1009
      have bs_ts_eq: "?ts@ ?rs = bs" by simp
chaieb@33154
  1010
      from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x#?ts) ?h" by simp
berghofe@34915
  1011
      from ihd_lt_n have "ALL x. length (x#?ts) \<le> maxindex p" by simp
berghofe@34915
  1012
      with length_le_list_ex obtain xs where xs:"length ((x#?ts) @ xs) = maxindex p" by blast
berghofe@34915
  1013
      hence "\<forall> x. wf_bs ((x#?ts) @ xs) p" unfolding wf_bs_def by simp
chaieb@33154
  1014
      with zp have "\<forall> x. Ipoly ((x#?ts) @ xs) p = 0" by blast
chaieb@33154
  1015
      hence "\<forall> x. Ipoly (x#(?ts @ xs)) p = 0" by simp
chaieb@33154
  1016
      with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a]
chaieb@33154
  1017
      have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x"  by simp
chaieb@33154
  1018
      hence "poly (polypoly' (?ts @ xs) p) = poly []" by (auto intro: ext) 
chaieb@33154
  1019
      hence "\<forall> c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0"
wenzelm@33268
  1020
        using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff)
chaieb@33154
  1021
      with coefficients_head[of p, symmetric]
chaieb@33154
  1022
      have th0: "Ipoly (?ts @ xs) ?hd = 0" by simp
chaieb@33154
  1023
      from bs have wf'': "wf_bs ?ts ?hd" unfolding wf_bs_def by simp
chaieb@33154
  1024
      with th0 wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" by simp
chaieb@33154
  1025
      with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by simp }
chaieb@33154
  1026
    then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" by blast
chaieb@33154
  1027
    
berghofe@34915
  1028
    from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" by blast
chaieb@33154
  1029
    hence "?h = 0\<^sub>p" by simp
chaieb@33154
  1030
    with head_nz[OF np] have "p = 0\<^sub>p" by simp}
chaieb@33154
  1031
  ultimately show "p = 0\<^sub>p" by blast
chaieb@33154
  1032
qed
chaieb@33154
  1033
chaieb@33154
  1034
lemma isnpolyh_unique:  
chaieb@33154
  1035
  assumes np:"isnpolyh p n0" and nq: "isnpolyh q n1"
haftmann@36349
  1036
  shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{ring_char_0,power,division_ring_inverse_zero,field})) \<longleftrightarrow>  p = q"
chaieb@33154
  1037
proof(auto)
chaieb@33154
  1038
  assume H: "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a)= \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>"
chaieb@33154
  1039
  hence "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" by simp
chaieb@33154
  1040
  hence "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" 
chaieb@33154
  1041
    using wf_bs_polysub[where p=p and q=q] by auto
chaieb@33154
  1042
  with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq]
chaieb@33154
  1043
  show "p = q" by blast
chaieb@33154
  1044
qed
chaieb@33154
  1045
chaieb@33154
  1046
chaieb@33154
  1047
text{* consequenses of unicity on the algorithms for polynomial normalization *}
chaieb@33154
  1048
haftmann@36349
  1049
lemma polyadd_commute:   assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1050
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1" shows "p +\<^sub>p q = q +\<^sub>p p"
chaieb@33154
  1051
  using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] by simp
chaieb@33154
  1052
chaieb@33154
  1053
lemma zero_normh: "isnpolyh 0\<^sub>p n" by simp
chaieb@33154
  1054
lemma one_normh: "isnpolyh 1\<^sub>p n" by simp
chaieb@33154
  1055
lemma polyadd_0[simp]: 
haftmann@36349
  1056
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1057
  and np: "isnpolyh p n0" shows "p +\<^sub>p 0\<^sub>p = p" and "0\<^sub>p +\<^sub>p p = p"
chaieb@33154
  1058
  using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np] 
chaieb@33154
  1059
    isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all
chaieb@33154
  1060
chaieb@33154
  1061
lemma polymul_1[simp]: 
haftmann@36349
  1062
    assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1063
  and np: "isnpolyh p n0" shows "p *\<^sub>p 1\<^sub>p = p" and "1\<^sub>p *\<^sub>p p = p"
chaieb@33154
  1064
  using isnpolyh_unique[OF polymul_normh[OF np one_normh] np] 
chaieb@33154
  1065
    isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all
chaieb@33154
  1066
lemma polymul_0[simp]: 
haftmann@36349
  1067
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1068
  and np: "isnpolyh p n0" shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" and "0\<^sub>p *\<^sub>p p = 0\<^sub>p"
chaieb@33154
  1069
  using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh] 
chaieb@33154
  1070
    isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all
chaieb@33154
  1071
chaieb@33154
  1072
lemma polymul_commute: 
haftmann@36349
  1073
    assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1074
  and np:"isnpolyh p n0" and nq: "isnpolyh q n1"
chaieb@33154
  1075
  shows "p *\<^sub>p q = q *\<^sub>p p"
haftmann@36349
  1076
using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], where ?'a = "'a\<Colon>{ring_char_0,power,division_ring_inverse_zero,field}"] by simp
chaieb@33154
  1077
chaieb@33154
  1078
declare polyneg_polyneg[simp]
chaieb@33154
  1079
  
chaieb@33154
  1080
lemma isnpolyh_polynate_id[simp]: 
haftmann@36349
  1081
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1082
  and np:"isnpolyh p n0" shows "polynate p = p"
haftmann@36349
  1083
  using isnpolyh_unique[where ?'a= "'a::{field, division_ring_inverse_zero, ring_char_0}", OF polynate_norm[of p, unfolded isnpoly_def] np] polynate[where ?'a = "'a::{field, division_ring_inverse_zero, ring_char_0}"] by simp
chaieb@33154
  1084
chaieb@33154
  1085
lemma polynate_idempotent[simp]: 
haftmann@36349
  1086
    assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1087
  shows "polynate (polynate p) = polynate p"
chaieb@33154
  1088
  using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] .
chaieb@33154
  1089
chaieb@33154
  1090
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)"
chaieb@33154
  1091
  unfolding poly_nate_def polypoly'_def ..
haftmann@36349
  1092
lemma poly_nate_poly: shows "poly (poly_nate bs p) = (\<lambda>x:: 'a ::{field, division_ring_inverse_zero, ring_char_0}. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
chaieb@33154
  1093
  using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p]
chaieb@33154
  1094
  unfolding poly_nate_polypoly' by (auto intro: ext)
chaieb@33154
  1095
chaieb@33154
  1096
subsection{* heads, degrees and all that *}
chaieb@33154
  1097
lemma degree_eq_degreen0: "degree p = degreen p 0"
chaieb@33154
  1098
  by (induct p rule: degree.induct, simp_all)
chaieb@33154
  1099
chaieb@33154
  1100
lemma degree_polyneg: assumes n: "isnpolyh p n"
chaieb@33154
  1101
  shows "degree (polyneg p) = degree p"
chaieb@33154
  1102
  using n
chaieb@33154
  1103
  by (induct p arbitrary: n rule: polyneg.induct, simp_all) (case_tac na, auto)
chaieb@33154
  1104
chaieb@33154
  1105
lemma degree_polyadd:
chaieb@33154
  1106
  assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
chaieb@33154
  1107
  shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)"
chaieb@33154
  1108
using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp
chaieb@33154
  1109
chaieb@33154
  1110
chaieb@33154
  1111
lemma degree_polysub: assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
chaieb@33154
  1112
  shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)"
chaieb@33154
  1113
proof-
chaieb@33154
  1114
  from nq have nq': "isnpolyh (~\<^sub>p q) n1" using polyneg_normh by simp
chaieb@33154
  1115
  from degree_polyadd[OF np nq'] show ?thesis by (simp add: polysub_def degree_polyneg[OF nq])
chaieb@33154
  1116
qed
chaieb@33154
  1117
chaieb@33154
  1118
lemma degree_polysub_samehead: 
haftmann@36349
  1119
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1120
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and h: "head p = head q" 
chaieb@33154
  1121
  and d: "degree p = degree q"
chaieb@33154
  1122
  shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)"
chaieb@33154
  1123
unfolding polysub_def split_def fst_conv snd_conv
chaieb@33154
  1124
using np nq h d
chaieb@33154
  1125
proof(induct p q rule:polyadd.induct)
chaieb@33154
  1126
  case (1 a b a' b') thus ?case by (simp add: Nsub_def Nsub0[simplified Nsub_def]) 
chaieb@33154
  1127
next
chaieb@33154
  1128
  case (2 a b c' n' p') 
chaieb@33154
  1129
  let ?c = "(a,b)"
chaieb@33154
  1130
  from prems have "degree (C ?c) = degree (CN c' n' p')" by simp
chaieb@33154
  1131
  hence nz:"n' > 0" by (cases n', auto)
chaieb@33154
  1132
  hence "head (CN c' n' p') = CN c' n' p'" by (cases n', auto)
chaieb@33154
  1133
  with prems show ?case by simp
chaieb@33154
  1134
next
chaieb@33154
  1135
  case (3 c n p a' b') 
chaieb@33154
  1136
  let ?c' = "(a',b')"
chaieb@33154
  1137
  from prems have "degree (C ?c') = degree (CN c n p)" by simp
chaieb@33154
  1138
  hence nz:"n > 0" by (cases n, auto)
chaieb@33154
  1139
  hence "head (CN c n p) = CN c n p" by (cases n, auto)
chaieb@33154
  1140
  with prems show ?case by simp
chaieb@33154
  1141
next
chaieb@33154
  1142
  case (4 c n p c' n' p')
chaieb@33154
  1143
  hence H: "isnpolyh (CN c n p) n0" "isnpolyh (CN c' n' p') n1" 
chaieb@33154
  1144
    "head (CN c n p) = head (CN c' n' p')" "degree (CN c n p) = degree (CN c' n' p')" by simp+
chaieb@33154
  1145
  hence degc: "degree c = 0" and degc': "degree c' = 0" by simp_all  
chaieb@33154
  1146
  hence degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0" 
chaieb@33154
  1147
    using H(1-2) degree_polyneg by auto
chaieb@33154
  1148
  from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')"  by simp+
chaieb@33154
  1149
  from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' have degcmc': "degree (c +\<^sub>p  ~\<^sub>pc') = 0"  by simp
chaieb@33154
  1150
  from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" by auto
chaieb@33154
  1151
  have "n = n' \<or> n < n' \<or> n > n'" by arith
chaieb@33154
  1152
  moreover
chaieb@33154
  1153
  {assume nn': "n = n'"
chaieb@33154
  1154
    have "n = 0 \<or> n >0" by arith
chaieb@33154
  1155
    moreover {assume nz: "n = 0" hence ?case using prems by (auto simp add: Let_def degcmc')}
chaieb@33154
  1156
    moreover {assume nz: "n > 0"
chaieb@33154
  1157
      with nn' H(3) have  cc':"c = c'" and pp': "p = p'" by (cases n, auto)+
chaieb@33154
  1158
      hence ?case using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] polysub_same_0[OF c'nh, simplified polysub_def split_def fst_conv snd_conv] using nn' prems by (simp add: Let_def)}
chaieb@33154
  1159
    ultimately have ?case by blast}
chaieb@33154
  1160
  moreover
chaieb@33154
  1161
  {assume nn': "n < n'" hence n'p: "n' > 0" by simp 
chaieb@33154
  1162
    hence headcnp':"head (CN c' n' p') = CN c' n' p'"  by (cases n', simp_all)
chaieb@33154
  1163
    have degcnp': "degree (CN c' n' p') = 0" and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')" using prems by (cases n', simp_all)
chaieb@33154
  1164
    hence "n > 0" by (cases n, simp_all)
chaieb@33154
  1165
    hence headcnp: "head (CN c n p) = CN c n p" by (cases n, auto)
chaieb@33154
  1166
    from H(3) headcnp headcnp' nn' have ?case by auto}
chaieb@33154
  1167
  moreover
chaieb@33154
  1168
  {assume nn': "n > n'"  hence np: "n > 0" by simp 
chaieb@33154
  1169
    hence headcnp:"head (CN c n p) = CN c n p"  by (cases n, simp_all)
chaieb@33154
  1170
    from prems have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" by simp
chaieb@33154
  1171
    from np have degcnp: "degree (CN c n p) = 0" by (cases n, simp_all)
chaieb@33154
  1172
    with degcnpeq have "n' > 0" by (cases n', simp_all)
chaieb@33154
  1173
    hence headcnp': "head (CN c' n' p') = CN c' n' p'" by (cases n', auto)
chaieb@33154
  1174
    from H(3) headcnp headcnp' nn' have ?case by auto}
chaieb@33154
  1175
  ultimately show ?case  by blast
chaieb@33154
  1176
qed auto 
chaieb@33154
  1177
 
chaieb@33154
  1178
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p"
chaieb@33154
  1179
by (induct p arbitrary: n0 rule: head.induct, simp_all add: shift1_def)
chaieb@33154
  1180
chaieb@33154
  1181
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p"
chaieb@33154
  1182
proof(induct k arbitrary: n0 p)
chaieb@33154
  1183
  case (Suc k n0 p) hence "isnpolyh (shift1 p) 0" by (simp add: shift1_isnpolyh)
chaieb@33154
  1184
  with prems have "head (funpow k shift1 (shift1 p)) = head (shift1 p)"
chaieb@33154
  1185
    and "head (shift1 p) = head p" by (simp_all add: shift1_head) 
chaieb@33154
  1186
  thus ?case by simp
chaieb@33154
  1187
qed auto  
chaieb@33154
  1188
chaieb@33154
  1189
lemma shift1_degree: "degree (shift1 p) = 1 + degree p"
chaieb@33154
  1190
  by (simp add: shift1_def)
chaieb@33154
  1191
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p "
chaieb@33154
  1192
  by (induct k arbitrary: p, auto simp add: shift1_degree)
chaieb@33154
  1193
chaieb@33154
  1194
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p"
chaieb@33154
  1195
  by (induct n arbitrary: p, simp_all add: funpow_def)
chaieb@33154
  1196
chaieb@33154
  1197
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p"
chaieb@33154
  1198
  by (induct p arbitrary: n rule: degree.induct, auto)
chaieb@33154
  1199
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p"
chaieb@33154
  1200
  by (induct p arbitrary: n rule: degreen.induct, auto)
chaieb@33154
  1201
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p"
chaieb@33154
  1202
  by (induct p arbitrary: n rule: degree.induct, auto)
chaieb@33154
  1203
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p"
chaieb@33154
  1204
  by (induct p rule: head.induct, auto)
chaieb@33154
  1205
chaieb@33154
  1206
lemma polyadd_eq_const_degree: 
chaieb@33154
  1207
  "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd (p,q) = C c\<rbrakk> \<Longrightarrow> degree p = degree q" 
chaieb@33154
  1208
  using polyadd_eq_const_degreen degree_eq_degreen0 by simp
chaieb@33154
  1209
chaieb@33154
  1210
lemma polyadd_head: assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
chaieb@33154
  1211
  and deg: "degree p \<noteq> degree q"
chaieb@33154
  1212
  shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)"
chaieb@33154
  1213
using np nq deg
chaieb@33154
  1214
apply(induct p q arbitrary: n0 n1 rule: polyadd.induct,simp_all)
chaieb@33154
  1215
apply (case_tac n', simp, simp)
chaieb@33154
  1216
apply (case_tac n, simp, simp)
chaieb@33154
  1217
apply (case_tac n, case_tac n', simp add: Let_def)
chaieb@33154
  1218
apply (case_tac "pa +\<^sub>p p' = 0\<^sub>p")
chaieb@33154
  1219
apply (clarsimp simp add: polyadd_eq_const_degree)
chaieb@33154
  1220
apply clarsimp
chaieb@33154
  1221
apply (erule_tac impE,blast)
chaieb@33154
  1222
apply (erule_tac impE,blast)
chaieb@33154
  1223
apply clarsimp
chaieb@33154
  1224
apply simp
chaieb@33154
  1225
apply (case_tac n', simp_all)
chaieb@33154
  1226
done
chaieb@33154
  1227
chaieb@33154
  1228
lemma polymul_head_polyeq: 
haftmann@36349
  1229
   assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1230
  shows "\<lbrakk>isnpolyh p n0; isnpolyh q n1 ; p \<noteq> 0\<^sub>p ; q \<noteq> 0\<^sub>p \<rbrakk> \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q"
chaieb@33154
  1231
proof (induct p q arbitrary: n0 n1 rule: polymul.induct)
chaieb@33154
  1232
  case (2 a b c' n' p' n0 n1)
chaieb@33154
  1233
  hence "isnpolyh (head (CN c' n' p')) n1" "isnormNum (a,b)"  by (simp_all add: head_isnpolyh)
chaieb@33154
  1234
  thus ?case using prems by (cases n', auto) 
chaieb@33154
  1235
next 
chaieb@33154
  1236
  case (3 c n p a' b' n0 n1) 
chaieb@33154
  1237
  hence "isnpolyh (head (CN c n p)) n0" "isnormNum (a',b')"  by (simp_all add: head_isnpolyh)
chaieb@33154
  1238
  thus ?case using prems by (cases n, auto)
chaieb@33154
  1239
next
chaieb@33154
  1240
  case (4 c n p c' n' p' n0 n1)
chaieb@33154
  1241
  hence norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')"
chaieb@33154
  1242
    "isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'"
chaieb@33154
  1243
    by simp_all
chaieb@33154
  1244
  have "n < n' \<or> n' < n \<or> n = n'" by arith
chaieb@33154
  1245
  moreover 
chaieb@33154
  1246
  {assume nn': "n < n'" hence ?case 
chaieb@33154
  1247
      thm prems
chaieb@33154
  1248
      using norm 
chaieb@33154
  1249
    prems(6)[rule_format, OF nn' norm(1,6)]
chaieb@33154
  1250
    prems(7)[rule_format, OF nn' norm(2,6)] by (simp, cases n, simp,cases n', simp_all)}
chaieb@33154
  1251
  moreover {assume nn': "n'< n"
chaieb@33154
  1252
    hence stupid: "n' < n \<and> \<not> n < n'" by simp
chaieb@33154
  1253
    hence ?case using norm prems(4) [rule_format, OF stupid norm(5,3)]
chaieb@33154
  1254
      prems(5)[rule_format, OF stupid norm(5,4)] 
chaieb@33154
  1255
      by (simp,cases n',simp,cases n,auto)}
chaieb@33154
  1256
  moreover {assume nn': "n' = n"
chaieb@33154
  1257
    hence stupid: "\<not> n' < n \<and> \<not> n < n'" by simp
chaieb@33154
  1258
    from nn' polymul_normh[OF norm(5,4)] 
chaieb@33154
  1259
    have ncnpc':"isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def)
chaieb@33154
  1260
    from nn' polymul_normh[OF norm(5,3)] norm 
chaieb@33154
  1261
    have ncnpp':"isnpolyh (CN c n p *\<^sub>p p') n" by simp
chaieb@33154
  1262
    from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6)
chaieb@33154
  1263
    have ncnpp0':"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp 
chaieb@33154
  1264
    from polyadd_normh[OF ncnpc' ncnpp0'] 
chaieb@33154
  1265
    have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n" 
chaieb@33154
  1266
      by (simp add: min_def)
chaieb@33154
  1267
    {assume np: "n > 0"
chaieb@33154
  1268
      with nn' head_isnpolyh_Suc'[OF np nth]
wenzelm@33268
  1269
        head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']]
chaieb@33154
  1270
      have ?case by simp}
chaieb@33154
  1271
    moreover
chaieb@33154
  1272
    {moreover assume nz: "n = 0"
chaieb@33154
  1273
      from polymul_degreen[OF norm(5,4), where m="0"]
wenzelm@33268
  1274
        polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0
chaieb@33154
  1275
      norm(5,6) degree_npolyhCN[OF norm(6)]
chaieb@33154
  1276
    have dth:"degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
chaieb@33154
  1277
    hence dth':"degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
chaieb@33154
  1278
    from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth
chaieb@33154
  1279
    have ?case   using norm prems(2)[rule_format, OF stupid norm(5,3)]
wenzelm@33268
  1280
        prems(3)[rule_format, OF stupid norm(5,4)] nn' nz by simp }
chaieb@33154
  1281
    ultimately have ?case by (cases n) auto} 
chaieb@33154
  1282
  ultimately show ?case by blast
chaieb@33154
  1283
qed simp_all
chaieb@33154
  1284
chaieb@33154
  1285
lemma degree_coefficients: "degree p = length (coefficients p) - 1"
chaieb@33154
  1286
  by(induct p rule: degree.induct, auto)
chaieb@33154
  1287
chaieb@33154
  1288
lemma degree_head[simp]: "degree (head p) = 0"
chaieb@33154
  1289
  by (induct p rule: head.induct, auto)
chaieb@33154
  1290
chaieb@33154
  1291
lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1+ degree p"
chaieb@33154
  1292
  by (cases n, simp_all)
chaieb@33154
  1293
lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge>  degree p"
chaieb@33154
  1294
  by (cases n, simp_all)
chaieb@33154
  1295
chaieb@33154
  1296
lemma polyadd_different_degree: "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degree p \<noteq> degree q\<rbrakk> \<Longrightarrow> degree (polyadd(p,q)) = max (degree p) (degree q)"
chaieb@33154
  1297
  using polyadd_different_degreen degree_eq_degreen0 by simp
chaieb@33154
  1298
chaieb@33154
  1299
lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m"
chaieb@33154
  1300
  by (induct p arbitrary: n0 rule: polyneg.induct, auto)
chaieb@33154
  1301
chaieb@33154
  1302
lemma degree_polymul:
haftmann@36349
  1303
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1304
  and np: "isnpolyh p n0" and nq: "isnpolyh q n1"
chaieb@33154
  1305
  shows "degree (p *\<^sub>p q) \<le> degree p + degree q"
chaieb@33154
  1306
  using polymul_degreen[OF np nq, where m="0"]  degree_eq_degreen0 by simp
chaieb@33154
  1307
chaieb@33154
  1308
lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p"
chaieb@33154
  1309
  by (induct p arbitrary: n rule: degree.induct, auto)
chaieb@33154
  1310
chaieb@33154
  1311
lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head(polyneg p) = polyneg (head p)"
chaieb@33154
  1312
  by (induct p arbitrary: n rule: degree.induct, auto)
chaieb@33154
  1313
chaieb@33154
  1314
subsection {* Correctness of polynomial pseudo division *}
chaieb@33154
  1315
chaieb@33154
  1316
lemma polydivide_aux_real_domintros:
chaieb@33154
  1317
  assumes call1: "\<lbrakk>s \<noteq> 0\<^sub>p; \<not> degree s < n; a = head s\<rbrakk> 
chaieb@33154
  1318
  \<Longrightarrow> polydivide_aux_dom (a, n, p, k, s -\<^sub>p funpow (degree s - n) shift1 p)"
chaieb@33154
  1319
  and call2 : "\<lbrakk>s \<noteq> 0\<^sub>p; \<not> degree s < n; a \<noteq> head s\<rbrakk> 
chaieb@33154
  1320
  \<Longrightarrow> polydivide_aux_dom(a, n, p,Suc k, a *\<^sub>p s -\<^sub>p (head s *\<^sub>p funpow (degree s - n) shift1 p))"
chaieb@33154
  1321
  shows "polydivide_aux_dom (a, n, p, k, s)"
chaieb@33154
  1322
proof (rule accpI, erule polydivide_aux_rel.cases)
chaieb@33154
  1323
  fix y aa ka na pa sa x xa xb
chaieb@33154
  1324
  assume eqs: "y = (aa, na, pa, ka, sa -\<^sub>p xb)" "(a, n, p, k, s) = (aa, na, pa, ka, sa)"
chaieb@33154
  1325
     and \<Gamma>1': "sa \<noteq> 0\<^sub>p" "x = head sa" "xa = degree sa" "\<not> xa < na" 
chaieb@33154
  1326
    "xb = funpow (xa - na) shift1 pa" "aa = x"
chaieb@33154
  1327
chaieb@33154
  1328
  hence \<Gamma>1: "s \<noteq> 0\<^sub>p" "a = head s" "xa = degree s" "\<not> degree s < n" "\<not> xa < na" 
chaieb@33154
  1329
    "xb = funpow (xa - na) shift1 pa" "aa = x" by auto
chaieb@33154
  1330
chaieb@33154
  1331
  with call1 have "polydivide_aux_dom (a, n, p, k, s -\<^sub>p funpow (degree s - n) shift1 p)"
chaieb@33154
  1332
    by auto
chaieb@33154
  1333
  with eqs \<Gamma>1 show "polydivide_aux_dom y" by auto
chaieb@33154
  1334
next
chaieb@33154
  1335
  fix y aa ka na pa sa x xa xb
chaieb@33154
  1336
  assume eqs: "y = (aa, na, pa, Suc ka, aa *\<^sub>p sa -\<^sub>p (x *\<^sub>p xb))" 
chaieb@33154
  1337
    "(a, n, p, k, s) =(aa, na, pa, ka, sa)"
chaieb@33154
  1338
    and \<Gamma>2': "sa \<noteq> 0\<^sub>p" "x = head sa" "xa = degree sa" "\<not> xa < na"
chaieb@33154
  1339
    "xb = funpow (xa - na) shift1 pa" "aa \<noteq> x"
chaieb@33154
  1340
  hence \<Gamma>2: "s \<noteq> 0\<^sub>p" "a \<noteq> head s" "xa = degree s" "\<not> degree s < n"
chaieb@33154
  1341
    "xb = funpow (xa - na) shift1 pa" "aa \<noteq> x" by auto
chaieb@33154
  1342
  with call2 have "polydivide_aux_dom (a, n, p, Suc k, a *\<^sub>p s -\<^sub>p (head s *\<^sub>p funpow (degree s - n) shift1 p))" by auto
chaieb@33154
  1343
  with eqs \<Gamma>2'  show "polydivide_aux_dom y" by auto
chaieb@33154
  1344
qed
chaieb@33154
  1345
chaieb@33154
  1346
lemma polydivide_aux_properties:
haftmann@36349
  1347
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1348
  and np: "isnpolyh p n0" and ns: "isnpolyh s n1"
chaieb@33154
  1349
  and ap: "head p = a" and ndp: "degree p = n" and pnz: "p \<noteq> 0\<^sub>p"
chaieb@33154
  1350
  shows "polydivide_aux_dom (a,n,p,k,s) \<and> 
chaieb@33154
  1351
  (polydivide_aux (a,n,p,k,s) = (k',r) \<longrightarrow> (k' \<ge> k) \<and> (degree r = 0 \<or> degree r < degree p) 
chaieb@33154
  1352
          \<and> (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> ((polypow (k' - k) a) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)))"
chaieb@33154
  1353
  using ns
berghofe@34915
  1354
proof(induct "degree s" arbitrary: s k k' r n1 rule: less_induct)
berghofe@34915
  1355
  case less
chaieb@33154
  1356
  let ?D = "polydivide_aux_dom"
chaieb@33154
  1357
  let ?dths = "?D (a, n, p, k, s)"
chaieb@33154
  1358
  let ?qths = "\<exists>q n1. isnpolyh q n1 \<and> (a ^\<^sub>p (k' - k) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)"
chaieb@33154
  1359
  let ?qrths = "polydivide_aux (a, n, p, k, s) = (k', r) \<longrightarrow>  k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) 
chaieb@33154
  1360
    \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths"
chaieb@33154
  1361
  let ?ths = "?dths \<and> ?qrths"
chaieb@33154
  1362
  let ?b = "head s"
berghofe@34915
  1363
  let ?p' = "funpow (degree s - n) shift1 p"
berghofe@34915
  1364
  let ?xdn = "funpow (degree s - n) shift1 1\<^sub>p"
chaieb@33154
  1365
  let ?akk' = "a ^\<^sub>p (k' - k)"
berghofe@34915
  1366
  note ns = `isnpolyh s n1`
chaieb@33154
  1367
  from np have np0: "isnpolyh p 0" 
chaieb@33154
  1368
    using isnpolyh_mono[where n="n0" and n'="0" and p="p"]  by simp
berghofe@34915
  1369
  have np': "isnpolyh ?p' 0" using funpow_shift1_isnpoly[OF np0[simplified isnpoly_def[symmetric]] pnz, where n="degree s - n"] isnpoly_def by simp
chaieb@33154
  1370
  have headp': "head ?p' = head p" using funpow_shift1_head[OF np pnz] by simp
chaieb@33154
  1371
  from funpow_shift1_isnpoly[where p="1\<^sub>p"] have nxdn: "isnpolyh ?xdn 0" by (simp add: isnpoly_def)
chaieb@33154
  1372
  from polypow_normh [OF head_isnpolyh[OF np0], where k="k' - k"] ap 
chaieb@33154
  1373
  have nakk':"isnpolyh ?akk' 0" by blast
chaieb@33154
  1374
  {assume sz: "s = 0\<^sub>p"
chaieb@33154
  1375
    hence dom: ?dths apply - apply (rule polydivide_aux_real_domintros) apply simp_all done
chaieb@33154
  1376
    from polydivide_aux.psimps[OF dom] sz
chaieb@33154
  1377
    have ?qrths using np apply clarsimp by (rule exI[where x="0\<^sub>p"], simp)
chaieb@33154
  1378
    hence ?ths using dom by blast}
chaieb@33154
  1379
  moreover
chaieb@33154
  1380
  {assume sz: "s \<noteq> 0\<^sub>p"
berghofe@34915
  1381
    {assume dn: "degree s < n"
berghofe@34915
  1382
      with sz have dom:"?dths" by - (rule polydivide_aux_real_domintros,simp_all) 
berghofe@34915
  1383
      from polydivide_aux.psimps[OF dom] sz dn
chaieb@33154
  1384
      have "?qrths" using ns ndp np by auto (rule exI[where x="0\<^sub>p"],simp)
chaieb@33154
  1385
      with dom have ?ths by blast}
chaieb@33154
  1386
    moreover 
berghofe@34915
  1387
    {assume dn': "\<not> degree s < n" hence dn: "degree s \<ge> n" by arith
chaieb@33154
  1388
      have degsp': "degree s = degree ?p'" 
berghofe@34915
  1389
        using dn ndp funpow_shift1_degree[where k = "degree s - n" and p="p"] by simp
chaieb@33154
  1390
      {assume ba: "?b = a"
wenzelm@33268
  1391
        hence headsp': "head s = head ?p'" using ap headp' by simp
wenzelm@33268
  1392
        have nr: "isnpolyh (s -\<^sub>p ?p') 0" using polysub_normh[OF ns np'] by simp
berghofe@34915
  1393
        from degree_polysub_samehead[OF ns np' headsp' degsp']
berghofe@34915
  1394
        have "degree (s -\<^sub>p ?p') < degree s \<or> s -\<^sub>p ?p' = 0\<^sub>p" by simp
wenzelm@33268
  1395
        moreover 
berghofe@34915
  1396
        {assume deglt:"degree (s -\<^sub>p ?p') < degree s"
berghofe@34915
  1397
          from  less(1)[OF deglt nr] 
wenzelm@33268
  1398
          have domsp: "?D (a, n, p, k, s -\<^sub>p ?p')" by blast 
wenzelm@33268
  1399
          have dom: ?dths apply (rule polydivide_aux_real_domintros) 
berghofe@34915
  1400
            using ba dn' domsp by simp_all
berghofe@34915
  1401
          from polydivide_aux.psimps[OF dom] sz dn' ba
wenzelm@33268
  1402
          have eq: "polydivide_aux (a,n,p,k,s) = polydivide_aux (a,n,p,k, s -\<^sub>p ?p')"
wenzelm@33268
  1403
            by (simp add: Let_def)
wenzelm@33268
  1404
          {assume h1: "polydivide_aux (a, n, p, k, s) = (k', r)"
berghofe@34915
  1405
            from less(1)[OF deglt nr, of k k' r]
wenzelm@33268
  1406
              trans[OF eq[symmetric] h1]
wenzelm@33268
  1407
            have kk': "k \<le> k'" and nr:"\<exists>nr. isnpolyh r nr" and dr: "degree r = 0 \<or> degree r < degree p"
wenzelm@33268
  1408
              and q1:"\<exists>q nq. isnpolyh q nq \<and> (a ^\<^sub>p k' - k *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r)" by auto
wenzelm@33268
  1409
            from q1 obtain q n1 where nq: "isnpolyh q n1" 
wenzelm@33268
  1410
              and asp:"a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r"  by blast
wenzelm@33268
  1411
            from nr obtain nr where nr': "isnpolyh r nr" by blast
wenzelm@33268
  1412
            from polymul_normh[OF nakk' ns] have nakks': "isnpolyh (a ^\<^sub>p (k' - k) *\<^sub>p s) 0" by simp
wenzelm@33268
  1413
            from polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]
wenzelm@33268
  1414
            have nq': "isnpolyh (?akk' *\<^sub>p ?xdn +\<^sub>p q) 0" by simp
wenzelm@33268
  1415
            from polyadd_normh[OF polymul_normh[OF np 
wenzelm@33268
  1416
              polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]] nr']
wenzelm@33268
  1417
            have nqr': "isnpolyh (p *\<^sub>p (?akk' *\<^sub>p ?xdn +\<^sub>p q) +\<^sub>p r) 0" by simp 
haftmann@36349
  1418
            from asp have "\<forall> (bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p')) = 
wenzelm@33268
  1419
              Ipoly bs (p *\<^sub>p q +\<^sub>p r)" by simp
haftmann@36349
  1420
            hence " \<forall>(bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a^\<^sub>p (k' - k)*\<^sub>p s) = 
wenzelm@33268
  1421
              Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs ?p' + Ipoly bs p * Ipoly bs q + Ipoly bs r" 
haftmann@36349
  1422
              by (simp add: field_simps)
haftmann@36349
  1423
            hence " \<forall>(bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
berghofe@34915
  1424
              Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 1\<^sub>p *\<^sub>p p) 
wenzelm@33268
  1425
              + Ipoly bs p * Ipoly bs q + Ipoly bs r"
wenzelm@33268
  1426
              by (auto simp only: funpow_shift1_1) 
haftmann@36349
  1427
            hence "\<forall>(bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
berghofe@34915
  1428
              Ipoly bs p * (Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 1\<^sub>p) 
haftmann@36349
  1429
              + Ipoly bs q) + Ipoly bs r" by (simp add: field_simps)
haftmann@36349
  1430
            hence "\<forall>(bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
berghofe@34915
  1431
              Ipoly bs (p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 1\<^sub>p) +\<^sub>p q) +\<^sub>p r)" by simp
wenzelm@33268
  1432
            with isnpolyh_unique[OF nakks' nqr']
wenzelm@33268
  1433
            have "a ^\<^sub>p (k' - k) *\<^sub>p s = 
berghofe@34915
  1434
              p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 1\<^sub>p) +\<^sub>p q) +\<^sub>p r" by blast
wenzelm@33268
  1435
            hence ?qths using nq'
berghofe@34915
  1436
              apply (rule_tac x="(a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 1\<^sub>p) +\<^sub>p q" in exI)
wenzelm@33268
  1437
              apply (rule_tac x="0" in exI) by simp
wenzelm@33268
  1438
            with kk' nr dr have "k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths"
wenzelm@33268
  1439
              by blast } hence ?qrths by blast
wenzelm@33268
  1440
          with dom have ?ths by blast} 
wenzelm@33268
  1441
        moreover 
wenzelm@33268
  1442
        {assume spz:"s -\<^sub>p ?p' = 0\<^sub>p"
wenzelm@33268
  1443
          hence domsp: "?D (a, n, p, k, s -\<^sub>p ?p')" 
wenzelm@33268
  1444
            apply (simp) by (rule polydivide_aux_real_domintros, simp_all)
wenzelm@33268
  1445
          have dom: ?dths apply (rule polydivide_aux_real_domintros) 
berghofe@34915
  1446
            using ba dn' domsp by simp_all
haftmann@36349
  1447
          from spz isnpolyh_unique[OF polysub_normh[OF ns np'], where q="0\<^sub>p", symmetric, where ?'a = "'a::{field, division_ring_inverse_zero, ring_char_0}"]
haftmann@36349
  1448
          have " \<forall>(bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs s = Ipoly bs ?p'" by simp
haftmann@36349
  1449
          hence "\<forall>(bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs s = Ipoly bs (?xdn *\<^sub>p p)" using np nxdn apply simp
wenzelm@33268
  1450
            by (simp only: funpow_shift1_1) simp
wenzelm@33268
  1451
          hence sp': "s = ?xdn *\<^sub>p p" using isnpolyh_unique[OF ns polymul_normh[OF nxdn np]] by blast
wenzelm@33268
  1452
          {assume h1: "polydivide_aux (a,n,p,k,s) = (k',r)"
berghofe@34915
  1453
            from polydivide_aux.psimps[OF dom] sz dn' ba
wenzelm@33268
  1454
            have eq: "polydivide_aux (a,n,p,k,s) = polydivide_aux (a,n,p,k, s -\<^sub>p ?p')"
wenzelm@33268
  1455
              by (simp add: Let_def)
wenzelm@33268
  1456
            also have "\<dots> = (k,0\<^sub>p)" using polydivide_aux.psimps[OF domsp] spz by simp
wenzelm@33268
  1457
            finally have "(k',r) = (k,0\<^sub>p)" using h1 by simp
berghofe@34915
  1458
            with sp'[symmetric] ns np nxdn polyadd_0(1)[OF polymul_normh[OF np nxdn]]
wenzelm@33268
  1459
              polyadd_0(2)[OF polymul_normh[OF np nxdn]] have ?qrths
wenzelm@33268
  1460
              apply auto
wenzelm@33268
  1461
              apply (rule exI[where x="?xdn"])        
berghofe@34915
  1462
              apply (auto simp add: polymul_commute[of p])
wenzelm@33268
  1463
              done}
wenzelm@33268
  1464
          with dom have ?ths by blast}
wenzelm@33268
  1465
        ultimately have ?ths by blast }
chaieb@33154
  1466
      moreover
chaieb@33154
  1467
      {assume ba: "?b \<noteq> a"
wenzelm@33268
  1468
        from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] 
wenzelm@33268
  1469
          polymul_normh[OF head_isnpolyh[OF ns] np']]
wenzelm@33268
  1470
        have nth: "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" by(simp add: min_def)
wenzelm@33268
  1471
        have nzths: "a *\<^sub>p s \<noteq> 0\<^sub>p" "?b *\<^sub>p ?p' \<noteq> 0\<^sub>p"
wenzelm@33268
  1472
          using polymul_eq0_iff[OF head_isnpolyh[OF np0, simplified ap] ns] 
wenzelm@33268
  1473
            polymul_eq0_iff[OF head_isnpolyh[OF ns] np']head_nz[OF np0] ap pnz sz head_nz[OF ns]
wenzelm@33268
  1474
            funpow_shift1_nz[OF pnz] by simp_all
wenzelm@33268
  1475
        from polymul_head_polyeq[OF head_isnpolyh[OF np] ns] head_nz[OF np] sz ap head_head[OF np] pnz
berghofe@34915
  1476
          polymul_head_polyeq[OF head_isnpolyh[OF ns] np'] head_nz [OF ns] sz funpow_shift1_nz[OF pnz, where n="degree s - n"]
wenzelm@33268
  1477
        have hdth: "head (a *\<^sub>p s) = head (?b *\<^sub>p ?p')" 
wenzelm@33268
  1478
          using head_head[OF ns] funpow_shift1_head[OF np pnz]
wenzelm@33268
  1479
            polymul_commute[OF head_isnpolyh[OF np] head_isnpolyh[OF ns]]
wenzelm@33268
  1480
          by (simp add: ap)
wenzelm@33268
  1481
        from polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"]
wenzelm@33268
  1482
          head_nz[OF np] pnz sz ap[symmetric]
berghofe@34915
  1483
          funpow_shift1_nz[OF pnz, where n="degree s - n"]
wenzelm@33268
  1484
          polymul_degreen[OF head_isnpolyh[OF ns] np', where m="0"]  head_nz[OF ns]
berghofe@34915
  1485
          ndp dn
wenzelm@33268
  1486
        have degth: "degree (a *\<^sub>p s) = degree (?b *\<^sub>p ?p') "
wenzelm@33268
  1487
          by (simp add: degree_eq_degreen0[symmetric] funpow_shift1_degree)
berghofe@34915
  1488
        {assume dth: "degree ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) < degree s"
wenzelm@33268
  1489
          have th: "?D (a, n, p, Suc k, (a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))"
berghofe@34915
  1490
            using less(1)[OF dth nth] by blast 
berghofe@34915
  1491
          have dom: ?dths using ba dn' th
berghofe@34915
  1492
            by - (rule polydivide_aux_real_domintros, simp_all)
wenzelm@33268
  1493
          from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np] ns] polymul_normh[OF head_isnpolyh[OF ns]np']]
wenzelm@33268
  1494
          ap have nasbp': "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" by simp
wenzelm@33268
  1495
          {assume h1:"polydivide_aux (a,n,p,k,s) = (k', r)"
berghofe@34915
  1496
            from h1  polydivide_aux.psimps[OF dom] sz dn' ba
wenzelm@33268
  1497
            have eq:"polydivide_aux (a,n,p,Suc k,(a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = (k',r)"
wenzelm@33268
  1498
              by (simp add: Let_def)
berghofe@34915
  1499
            with less(1)[OF dth nasbp', of "Suc k" k' r]
wenzelm@33268
  1500
            obtain q nq nr where kk': "Suc k \<le> k'" and nr: "isnpolyh r nr" and nq: "isnpolyh q nq" 
wenzelm@33268
  1501
              and dr: "degree r = 0 \<or> degree r < degree p"
wenzelm@33268
  1502
              and qr: "a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = p *\<^sub>p q +\<^sub>p r" by auto
wenzelm@33268
  1503
            from kk' have kk'':"Suc (k' - Suc k) = k' - k" by arith
haftmann@36349
  1504
            {fix bs:: "'a::{field, division_ring_inverse_zero, ring_char_0} list"
wenzelm@33268
  1505
              
wenzelm@33268
  1506
            from qr isnpolyh_unique[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k", simplified ap] nasbp', symmetric]
wenzelm@33268
  1507
            have "Ipoly bs (a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)" by simp
wenzelm@33268
  1508
            hence "Ipoly bs a ^ (Suc (k' - Suc k)) * Ipoly bs s = Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?p' + Ipoly bs r"
haftmann@36349
  1509
              by (simp add: field_simps power_Suc)
wenzelm@33268
  1510
            hence "Ipoly bs a ^ (k' - k)  * Ipoly bs s = Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn * Ipoly bs p + Ipoly bs r"
berghofe@34915
  1511
              by (simp add:kk'' funpow_shift1_1[where n="degree s - n" and p="p"])
wenzelm@33268
  1512
            hence "Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = Ipoly bs p * (Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn) + Ipoly bs r"
haftmann@36349
  1513
              by (simp add: field_simps)}
haftmann@36349
  1514
            hence ieq:"\<forall>(bs :: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
wenzelm@33268
  1515
              Ipoly bs (p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r)" by auto 
wenzelm@33268
  1516
            let ?q = "q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)"
wenzelm@33268
  1517
            from polyadd_normh[OF nq polymul_normh[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k"] head_isnpolyh[OF ns], simplified ap ] nxdn]]
wenzelm@33268
  1518
            have nqw: "isnpolyh ?q 0" by simp
wenzelm@33268
  1519
            from ieq isnpolyh_unique[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - k"] ns, simplified ap] polyadd_normh[OF polymul_normh[OF np nqw] nr]]
wenzelm@33268
  1520
            have asth: "(a ^\<^sub>p (k' - k) *\<^sub>p s) = p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r" by blast
wenzelm@33268
  1521
            from dr kk' nr h1 asth nqw have ?qrths apply simp
wenzelm@33268
  1522
              apply (rule conjI)
wenzelm@33268
  1523
              apply (rule exI[where x="nr"], simp)
wenzelm@33268
  1524
              apply (rule exI[where x="(q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn))"], simp)
wenzelm@33268
  1525
              apply (rule exI[where x="0"], simp)
wenzelm@33268
  1526
              done}
wenzelm@33268
  1527
          hence ?qrths by blast
wenzelm@33268
  1528
          with dom have ?ths by blast}
wenzelm@33268
  1529
        moreover 
wenzelm@33268
  1530
        {assume spz: "a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p') = 0\<^sub>p"
wenzelm@33268
  1531
          hence domsp: "?D (a, n, p, Suc k, a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p'))" 
wenzelm@33268
  1532
            apply (simp) by (rule polydivide_aux_real_domintros, simp_all)
berghofe@34915
  1533
          have dom: ?dths using sz ba dn' domsp 
wenzelm@33268
  1534
            by - (rule polydivide_aux_real_domintros, simp_all)
haftmann@36349
  1535
          {fix bs :: "'a::{field, division_ring_inverse_zero, ring_char_0} list"
wenzelm@33268
  1536
            from isnpolyh_unique[OF nth, where ?'a="'a" and q="0\<^sub>p",simplified,symmetric] spz
wenzelm@33268
  1537
          have "Ipoly bs (a*\<^sub>p s) = Ipoly bs ?b * Ipoly bs ?p'" by simp
wenzelm@33268
  1538
          hence "Ipoly bs (a*\<^sub>p s) = Ipoly bs (?b *\<^sub>p ?xdn) * Ipoly bs p" 
berghofe@34915
  1539
            by (simp add: funpow_shift1_1[where n="degree s - n" and p="p"])
wenzelm@33268
  1540
          hence "Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" by simp
wenzelm@33268
  1541
        }
haftmann@36349
  1542
        hence hth: "\<forall> (bs:: 'a::{field, division_ring_inverse_zero, ring_char_0} list). Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" ..
wenzelm@33268
  1543
          from hth
wenzelm@33268
  1544
          have asq: "a *\<^sub>p s = p *\<^sub>p (?b *\<^sub>p ?xdn)" 
haftmann@36349
  1545
            using isnpolyh_unique[where ?'a = "'a::{field, division_ring_inverse_zero, ring_char_0}", OF polymul_normh[OF head_isnpolyh[OF np] ns] 
chaieb@33154
  1546
                    polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]],
wenzelm@33268
  1547
              simplified ap] by simp
wenzelm@33268
  1548
          {assume h1: "polydivide_aux (a,n,p,k,s) = (k', r)"
berghofe@34915
  1549
          from h1 sz ba dn' spz polydivide_aux.psimps[OF dom] polydivide_aux.psimps[OF domsp] 
wenzelm@33268
  1550
          have "(k',r) = (Suc k, 0\<^sub>p)" by (simp add: Let_def)
wenzelm@33268
  1551
          with h1 np head_isnpolyh[OF np, simplified ap] ns polymul_normh[OF head_isnpolyh[OF ns] nxdn]
wenzelm@33268
  1552
            polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]] asq
wenzelm@33268
  1553
          have ?qrths apply (clarsimp simp add: Let_def)
wenzelm@33268
  1554
            apply (rule exI[where x="?b *\<^sub>p ?xdn"]) apply simp
wenzelm@33268
  1555
            apply (rule exI[where x="0"], simp)
wenzelm@33268
  1556
            done}
wenzelm@33268
  1557
        hence ?qrths by blast
wenzelm@33268
  1558
        with dom have ?ths by blast}
wenzelm@33268
  1559
        ultimately have ?ths using  degree_polysub_samehead[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] polymul_normh[OF head_isnpolyh[OF ns] np'] hdth degth] polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"]
berghofe@34915
  1560
          head_nz[OF np] pnz sz ap[symmetric]
wenzelm@33268
  1561
          by (simp add: degree_eq_degreen0[symmetric]) blast }
chaieb@33154
  1562
      ultimately have ?ths by blast
chaieb@33154
  1563
    }
chaieb@33154
  1564
    ultimately have ?ths by blast}
chaieb@33154
  1565
  ultimately show ?ths by blast
chaieb@33154
  1566
qed
chaieb@33154
  1567
chaieb@33154
  1568
lemma polydivide_properties: 
haftmann@36349
  1569
  assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1570
  and np: "isnpolyh p n0" and ns: "isnpolyh s n1" and pnz: "p \<noteq> 0\<^sub>p"
chaieb@33154
  1571
  shows "(\<exists> k r. polydivide s p = (k,r) \<and> (\<exists>nr. isnpolyh r nr) \<and> (degree r = 0 \<or> degree r < degree p) 
chaieb@33154
  1572
  \<and> (\<exists>q n1. isnpolyh q n1 \<and> ((polypow k (head p)) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)))"
chaieb@33154
  1573
proof-
chaieb@33154
  1574
  have trv: "head p = head p" "degree p = degree p" by simp_all
chaieb@33154
  1575
  from polydivide_aux_properties[OF np ns trv pnz, where k="0"] 
chaieb@33154
  1576
  have d: "polydivide_aux_dom (head p, degree p, p, 0, s)" by blast
chaieb@33154
  1577
  from polydivide_def[where s="s" and p="p"] polydivide_aux.psimps[OF d]
chaieb@33154
  1578
  have ex: "\<exists> k r. polydivide s p = (k,r)" by auto
chaieb@33154
  1579
  then obtain k r where kr: "polydivide s p = (k,r)" by blast
chaieb@33154
  1580
  from trans[OF meta_eq_to_obj_eq[OF polydivide_def[where s="s" and p="p"], symmetric] kr]
chaieb@33154
  1581
    polydivide_aux_properties[OF np ns trv pnz, where k="0" and k'="k" and r="r"]
chaieb@33154
  1582
  have "(degree r = 0 \<or> degree r < degree p) \<and>
chaieb@33154
  1583
   (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> head p ^\<^sub>p k - 0 *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" by blast
chaieb@33154
  1584
  with kr show ?thesis 
chaieb@33154
  1585
    apply -
chaieb@33154
  1586
    apply (rule exI[where x="k"])
chaieb@33154
  1587
    apply (rule exI[where x="r"])
chaieb@33154
  1588
    apply simp
chaieb@33154
  1589
    done
chaieb@33154
  1590
qed
chaieb@33154
  1591
chaieb@33154
  1592
subsection{* More about polypoly and pnormal etc *}
chaieb@33154
  1593
chaieb@33154
  1594
definition "isnonconstant p = (\<not> isconstant p)"
chaieb@33154
  1595
chaieb@33154
  1596
lemma last_map: "xs \<noteq> [] ==> last (map f xs) = f (last xs)" by (induct xs, auto)
chaieb@33154
  1597
chaieb@33154
  1598
lemma isnonconstant_pnormal_iff: assumes nc: "isnonconstant p" 
chaieb@33154
  1599
  shows "pnormal (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" 
chaieb@33154
  1600
proof
chaieb@33154
  1601
  let ?p = "polypoly bs p"  
chaieb@33154
  1602
  assume H: "pnormal ?p"
chaieb@33154
  1603
  have csz: "coefficients p \<noteq> []" using nc by (cases p, auto)
chaieb@33154
  1604
  
chaieb@33154
  1605
  from coefficients_head[of p] last_map[OF csz, of "Ipoly bs"]  
chaieb@33154
  1606
    pnormal_last_nonzero[OF H]
chaieb@33154
  1607
  show "Ipoly bs (head p) \<noteq> 0" by (simp add: polypoly_def)
chaieb@33154
  1608
next
chaieb@33154
  1609
  assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1610
  let ?p = "polypoly bs p"
chaieb@33154
  1611
  have csz: "coefficients p \<noteq> []" using nc by (cases p, auto)
chaieb@33154
  1612
  hence pz: "?p \<noteq> []" by (simp add: polypoly_def) 
chaieb@33154
  1613
  hence lg: "length ?p > 0" by simp
chaieb@33154
  1614
  from h coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] 
chaieb@33154
  1615
  have lz: "last ?p \<noteq> 0" by (simp add: polypoly_def)
chaieb@33154
  1616
  from pnormal_last_length[OF lg lz] show "pnormal ?p" .
chaieb@33154
  1617
qed
chaieb@33154
  1618
chaieb@33154
  1619
lemma isnonconstant_coefficients_length: "isnonconstant p \<Longrightarrow> length (coefficients p) > 1"
chaieb@33154
  1620
  unfolding isnonconstant_def
chaieb@33154
  1621
  apply (cases p, simp_all)
chaieb@33154
  1622
  apply (case_tac nat, auto)
chaieb@33154
  1623
  done
chaieb@33154
  1624
lemma isnonconstant_nonconstant: assumes inc: "isnonconstant p"
chaieb@33154
  1625
  shows "nonconstant (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0"
chaieb@33154
  1626
proof
chaieb@33154
  1627
  let ?p = "polypoly bs p"
chaieb@33154
  1628
  assume nc: "nonconstant ?p"
chaieb@33154
  1629
  from isnonconstant_pnormal_iff[OF inc, of bs] nc
chaieb@33154
  1630
  show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" unfolding nonconstant_def by blast
chaieb@33154
  1631
next
chaieb@33154
  1632
  let ?p = "polypoly bs p"
chaieb@33154
  1633
  assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1634
  from isnonconstant_pnormal_iff[OF inc, of bs] h
chaieb@33154
  1635
  have pn: "pnormal ?p" by blast
chaieb@33154
  1636
  {fix x assume H: "?p = [x]" 
chaieb@33154
  1637
    from H have "length (coefficients p) = 1" unfolding polypoly_def by auto
chaieb@33154
  1638
    with isnonconstant_coefficients_length[OF inc] have False by arith}
chaieb@33154
  1639
  thus "nonconstant ?p" using pn unfolding nonconstant_def by blast  
chaieb@33154
  1640
qed
chaieb@33154
  1641
chaieb@33154
  1642
lemma pnormal_length: "p\<noteq>[] \<Longrightarrow> pnormal p \<longleftrightarrow> length (pnormalize p) = length p"
chaieb@33154
  1643
  unfolding pnormal_def
chaieb@33154
  1644
 apply (induct p rule: pnormalize.induct, simp_all)
chaieb@33154
  1645
 apply (case_tac "p=[]", simp_all)
chaieb@33154
  1646
 done
chaieb@33154
  1647
chaieb@33154
  1648
lemma degree_degree: assumes inc: "isnonconstant p"
chaieb@33154
  1649
  shows "degree p = Polynomial_List.degree (polypoly bs p) \<longleftrightarrow> \<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1650
proof
chaieb@33154
  1651
  let  ?p = "polypoly bs p"
chaieb@33154
  1652
  assume H: "degree p = Polynomial_List.degree ?p"
chaieb@33154
  1653
  from isnonconstant_coefficients_length[OF inc] have pz: "?p \<noteq> []"
chaieb@33154
  1654
    unfolding polypoly_def by auto
chaieb@33154
  1655
  from H degree_coefficients[of p] isnonconstant_coefficients_length[OF inc]
chaieb@33154
  1656
  have lg:"length (pnormalize ?p) = length ?p"
chaieb@33154
  1657
    unfolding Polynomial_List.degree_def polypoly_def by simp
chaieb@33154
  1658
  hence "pnormal ?p" using pnormal_length[OF pz] by blast 
chaieb@33154
  1659
  with isnonconstant_pnormal_iff[OF inc]  
chaieb@33154
  1660
  show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" by blast
chaieb@33154
  1661
next
chaieb@33154
  1662
  let  ?p = "polypoly bs p"  
chaieb@33154
  1663
  assume H: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1664
  with isnonconstant_pnormal_iff[OF inc] have "pnormal ?p" by blast
chaieb@33154
  1665
  with degree_coefficients[of p] isnonconstant_coefficients_length[OF inc]
chaieb@33154
  1666
  show "degree p = Polynomial_List.degree ?p" 
chaieb@33154
  1667
    unfolding polypoly_def pnormal_def Polynomial_List.degree_def by auto
chaieb@33154
  1668
qed
chaieb@33154
  1669
chaieb@33154
  1670
section{* Swaps ; Division by a certain variable *}
chaieb@33154
  1671
consts swap:: "nat \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> poly"
chaieb@33154
  1672
primrec
chaieb@33154
  1673
  "swap n m (C x) = C x"
chaieb@33154
  1674
  "swap n m (Bound k) = Bound (if k = n then m else if k=m then n else k)"
chaieb@33154
  1675
  "swap n m (Neg t) = Neg (swap n m t)"
chaieb@33154
  1676
  "swap n m (Add s t) = Add (swap n m s) (swap n m t)"
chaieb@33154
  1677
  "swap n m (Sub s t) = Sub (swap n m s) (swap n m t)"
chaieb@33154
  1678
  "swap n m (Mul s t) = Mul (swap n m s) (swap n m t)"
chaieb@33154
  1679
  "swap n m (Pw t k) = Pw (swap n m t) k"
chaieb@33154
  1680
  "swap n m (CN c k p) = CN (swap n m c) (if k = n then m else if k=m then n else k)
chaieb@33154
  1681
  (swap n m p)"
chaieb@33154
  1682
chaieb@33154
  1683
lemma swap: assumes nbs: "n < length bs" and mbs: "m < length bs"
chaieb@33154
  1684
  shows "Ipoly bs (swap n m t) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t"
chaieb@33154
  1685
proof (induct t)
chaieb@33154
  1686
  case (Bound k) thus ?case using nbs mbs by simp 
chaieb@33154
  1687
next
chaieb@33154
  1688
  case (CN c k p) thus ?case using nbs mbs by simp 
chaieb@33154
  1689
qed simp_all
chaieb@33154
  1690
lemma swap_swap_id[simp]: "swap n m (swap m n t) = t"
chaieb@33154
  1691
  by (induct t,simp_all)
chaieb@33154
  1692
chaieb@33154
  1693
lemma swap_commute: "swap n m p = swap m n p" by (induct p, simp_all)
chaieb@33154
  1694
chaieb@33154
  1695
lemma swap_same_id[simp]: "swap n n t = t"
chaieb@33154
  1696
  by (induct t, simp_all)
chaieb@33154
  1697
chaieb@33154
  1698
definition "swapnorm n m t = polynate (swap n m t)"
chaieb@33154
  1699
chaieb@33154
  1700
lemma swapnorm: assumes nbs: "n < length bs" and mbs: "m < length bs"
haftmann@36349
  1701
  shows "((Ipoly bs (swapnorm n m t) :: 'a\<Colon>{field, division_ring_inverse_zero, ring_char_0})) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t"
chaieb@33154
  1702
  using swap[OF prems] swapnorm_def by simp
chaieb@33154
  1703
chaieb@33154
  1704
lemma swapnorm_isnpoly[simp]: 
haftmann@36349
  1705
    assumes "SORT_CONSTRAINT('a::{field, division_ring_inverse_zero, ring_char_0})"
chaieb@33154
  1706
  shows "isnpoly (swapnorm n m p)"
chaieb@33154
  1707
  unfolding swapnorm_def by simp
chaieb@33154
  1708
chaieb@33154
  1709
definition "polydivideby n s p = 
chaieb@33154
  1710
    (let ss = swapnorm 0 n s ; sp = swapnorm 0 n p ; h = head sp; (k,r) = polydivide ss sp
chaieb@33154
  1711
     in (k,swapnorm 0 n h,swapnorm 0 n r))"
chaieb@33154
  1712
chaieb@33154
  1713
lemma swap_nz [simp]: " (swap n m p = 0\<^sub>p) = (p = 0\<^sub>p)" by (induct p, simp_all)
chaieb@33154
  1714
chaieb@33154
  1715
consts isweaknpoly :: "poly \<Rightarrow> bool"
chaieb@33154
  1716
recdef isweaknpoly "measure size"
chaieb@33154
  1717
  "isweaknpoly (C c) = True"
chaieb@33154
  1718
  "isweaknpoly (CN c n p) \<longleftrightarrow> isweaknpoly c \<and> isweaknpoly p"
wenzelm@33268
  1719
  "isweaknpoly p = False"       
chaieb@33154
  1720
chaieb@33154
  1721
lemma isnpolyh_isweaknpoly: "isnpolyh p n0 \<Longrightarrow> isweaknpoly p" 
chaieb@33154
  1722
  by (induct p arbitrary: n0, auto)
chaieb@33154
  1723
chaieb@33154
  1724
lemma swap_isweanpoly: "isweaknpoly p \<Longrightarrow> isweaknpoly (swap n m p)" 
chaieb@33154
  1725
  by (induct p, auto)
chaieb@33154
  1726
chaieb@33154
  1727
end