src/HOL/Nat.thy
author nipkow
Thu Jul 17 13:50:17 2008 +0200 (2008-07-17)
changeset 27625 3a45b555001a
parent 27213 2c7a628ccdcf
child 27627 93016de79b02
permissions -rw-r--r--
added lemmas
clasohm@923
     1
(*  Title:      HOL/Nat.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@21243
     3
    Author:     Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
clasohm@923
     4
wenzelm@9436
     5
Type "nat" is a linear order, and a datatype; arithmetic operators + -
wenzelm@9436
     6
and * (for div, mod and dvd, see theory Divides).
clasohm@923
     7
*)
clasohm@923
     8
berghofe@13449
     9
header {* Natural numbers *}
berghofe@13449
    10
nipkow@15131
    11
theory Nat
haftmann@26072
    12
imports Inductive Ring_and_Field
haftmann@23263
    13
uses
haftmann@23263
    14
  "~~/src/Tools/rat.ML"
haftmann@23263
    15
  "~~/src/Provers/Arith/cancel_sums.ML"
haftmann@23263
    16
  ("arith_data.ML")
wenzelm@24091
    17
  "~~/src/Provers/Arith/fast_lin_arith.ML"
wenzelm@24091
    18
  ("Tools/lin_arith.ML")
nipkow@15131
    19
begin
berghofe@13449
    20
berghofe@13449
    21
subsection {* Type @{text ind} *}
berghofe@13449
    22
berghofe@13449
    23
typedecl ind
berghofe@13449
    24
wenzelm@19573
    25
axiomatization
wenzelm@19573
    26
  Zero_Rep :: ind and
wenzelm@19573
    27
  Suc_Rep :: "ind => ind"
wenzelm@19573
    28
where
berghofe@13449
    29
  -- {* the axiom of infinity in 2 parts *}
wenzelm@19573
    30
  inj_Suc_Rep:          "inj Suc_Rep" and
paulson@14267
    31
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
wenzelm@19573
    32
berghofe@13449
    33
berghofe@13449
    34
subsection {* Type nat *}
berghofe@13449
    35
berghofe@13449
    36
text {* Type definition *}
berghofe@13449
    37
haftmann@26072
    38
inductive Nat :: "ind \<Rightarrow> bool"
berghofe@22262
    39
where
haftmann@26072
    40
    Zero_RepI: "Nat Zero_Rep"
haftmann@26072
    41
  | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"
berghofe@13449
    42
berghofe@13449
    43
global
berghofe@13449
    44
berghofe@13449
    45
typedef (open Nat)
haftmann@27104
    46
  nat = Nat
haftmann@27104
    47
  by (rule exI, unfold mem_def, rule Nat.Zero_RepI)
berghofe@13449
    48
haftmann@26072
    49
constdefs
haftmann@27104
    50
  Suc ::   "nat => nat"
haftmann@27104
    51
  Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
berghofe@13449
    52
berghofe@13449
    53
local
berghofe@13449
    54
haftmann@25510
    55
instantiation nat :: zero
haftmann@25510
    56
begin
haftmann@25510
    57
haftmann@25510
    58
definition Zero_nat_def [code func del]:
haftmann@25510
    59
  "0 = Abs_Nat Zero_Rep"
haftmann@25510
    60
haftmann@25510
    61
instance ..
haftmann@25510
    62
haftmann@25510
    63
end
haftmann@24995
    64
haftmann@27104
    65
lemma Suc_not_Zero: "Suc m \<noteq> 0"
wenzelm@27129
    66
  apply (simp add: Zero_nat_def Suc_def Abs_Nat_inject [unfolded mem_def]
wenzelm@27129
    67
    Rep_Nat [unfolded mem_def] Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def])
wenzelm@27129
    68
  done
berghofe@13449
    69
haftmann@27104
    70
lemma Zero_not_Suc: "0 \<noteq> Suc m"
berghofe@13449
    71
  by (rule not_sym, rule Suc_not_Zero not_sym)
berghofe@13449
    72
haftmann@27104
    73
rep_datatype "0 \<Colon> nat" Suc
wenzelm@27129
    74
  apply (unfold Zero_nat_def Suc_def)
wenzelm@27129
    75
     apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
wenzelm@27129
    76
     apply (erule Rep_Nat [unfolded mem_def, THEN Nat.induct])
wenzelm@27129
    77
     apply (iprover elim: Abs_Nat_inverse [unfolded mem_def, THEN subst])
wenzelm@27129
    78
    apply (simp_all add: Abs_Nat_inject [unfolded mem_def] Rep_Nat [unfolded mem_def]
wenzelm@27129
    79
      Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def]
wenzelm@27129
    80
      Suc_Rep_not_Zero_Rep [unfolded mem_def, symmetric]
wenzelm@27129
    81
      inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject)
wenzelm@27129
    82
  done
berghofe@13449
    83
haftmann@27104
    84
lemma nat_induct [case_names 0 Suc, induct type: nat]:
haftmann@27104
    85
  -- {* for backward compatibility -- naming of variables differs *}
haftmann@27104
    86
  fixes n
haftmann@27104
    87
  assumes "P 0"
haftmann@27104
    88
    and "\<And>n. P n \<Longrightarrow> P (Suc n)"
haftmann@27104
    89
  shows "P n"
haftmann@27104
    90
  using assms by (rule nat.induct) 
haftmann@21411
    91
haftmann@21411
    92
declare nat.exhaust [case_names 0 Suc, cases type: nat]
berghofe@13449
    93
wenzelm@21672
    94
lemmas nat_rec_0 = nat.recs(1)
wenzelm@21672
    95
  and nat_rec_Suc = nat.recs(2)
wenzelm@21672
    96
wenzelm@21672
    97
lemmas nat_case_0 = nat.cases(1)
wenzelm@21672
    98
  and nat_case_Suc = nat.cases(2)
haftmann@27104
    99
   
haftmann@24995
   100
haftmann@24995
   101
text {* Injectiveness and distinctness lemmas *}
haftmann@24995
   102
haftmann@27104
   103
lemma inj_Suc[simp]: "inj_on Suc N"
haftmann@27104
   104
  by (simp add: inj_on_def)
haftmann@27104
   105
haftmann@26072
   106
lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R"
nipkow@25162
   107
by (rule notE, rule Suc_not_Zero)
haftmann@24995
   108
haftmann@26072
   109
lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R"
nipkow@25162
   110
by (rule Suc_neq_Zero, erule sym)
haftmann@24995
   111
haftmann@26072
   112
lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y"
nipkow@25162
   113
by (rule inj_Suc [THEN injD])
haftmann@24995
   114
paulson@14267
   115
lemma n_not_Suc_n: "n \<noteq> Suc n"
nipkow@25162
   116
by (induct n) simp_all
berghofe@13449
   117
haftmann@26072
   118
lemma Suc_n_not_n: "Suc n \<noteq> n"
nipkow@25162
   119
by (rule not_sym, rule n_not_Suc_n)
berghofe@13449
   120
berghofe@13449
   121
text {* A special form of induction for reasoning
berghofe@13449
   122
  about @{term "m < n"} and @{term "m - n"} *}
berghofe@13449
   123
haftmann@26072
   124
lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
berghofe@13449
   125
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
paulson@14208
   126
  apply (rule_tac x = m in spec)
paulson@15251
   127
  apply (induct n)
berghofe@13449
   128
  prefer 2
berghofe@13449
   129
  apply (rule allI)
nipkow@17589
   130
  apply (induct_tac x, iprover+)
berghofe@13449
   131
  done
berghofe@13449
   132
haftmann@24995
   133
haftmann@24995
   134
subsection {* Arithmetic operators *}
haftmann@24995
   135
haftmann@26072
   136
instantiation nat :: "{minus, comm_monoid_add}"
haftmann@25571
   137
begin
haftmann@24995
   138
haftmann@25571
   139
primrec plus_nat
haftmann@25571
   140
where
haftmann@25571
   141
  add_0:      "0 + n = (n\<Colon>nat)"
haftmann@25571
   142
  | add_Suc:  "Suc m + n = Suc (m + n)"
haftmann@24995
   143
haftmann@26072
   144
lemma add_0_right [simp]: "m + 0 = (m::nat)"
haftmann@26072
   145
  by (induct m) simp_all
haftmann@26072
   146
haftmann@26072
   147
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
haftmann@26072
   148
  by (induct m) simp_all
haftmann@26072
   149
haftmann@26072
   150
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
haftmann@26072
   151
  by simp
haftmann@26072
   152
haftmann@25571
   153
primrec minus_nat
haftmann@25571
   154
where
haftmann@25571
   155
  diff_0:     "m - 0 = (m\<Colon>nat)"
haftmann@25571
   156
  | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
haftmann@24995
   157
haftmann@26072
   158
declare diff_Suc [simp del, code del]
haftmann@26072
   159
haftmann@26072
   160
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
haftmann@26072
   161
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   162
haftmann@26072
   163
lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n"
haftmann@26072
   164
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   165
haftmann@26072
   166
instance proof
haftmann@26072
   167
  fix n m q :: nat
haftmann@26072
   168
  show "(n + m) + q = n + (m + q)" by (induct n) simp_all
haftmann@26072
   169
  show "n + m = m + n" by (induct n) simp_all
haftmann@26072
   170
  show "0 + n = n" by simp
haftmann@26072
   171
qed
haftmann@26072
   172
haftmann@26072
   173
end
haftmann@26072
   174
haftmann@26072
   175
instantiation nat :: comm_semiring_1_cancel
haftmann@26072
   176
begin
haftmann@26072
   177
haftmann@26072
   178
definition
haftmann@26072
   179
  One_nat_def [simp]: "1 = Suc 0"
haftmann@26072
   180
haftmann@25571
   181
primrec times_nat
haftmann@25571
   182
where
haftmann@25571
   183
  mult_0:     "0 * n = (0\<Colon>nat)"
haftmann@25571
   184
  | mult_Suc: "Suc m * n = n + (m * n)"
haftmann@25571
   185
haftmann@26072
   186
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
haftmann@26072
   187
  by (induct m) simp_all
haftmann@26072
   188
haftmann@26072
   189
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
haftmann@26072
   190
  by (induct m) (simp_all add: add_left_commute)
haftmann@26072
   191
haftmann@26072
   192
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
haftmann@26072
   193
  by (induct m) (simp_all add: add_assoc)
haftmann@26072
   194
haftmann@26072
   195
instance proof
haftmann@26072
   196
  fix n m q :: nat
haftmann@26072
   197
  show "0 \<noteq> (1::nat)" by simp
haftmann@26072
   198
  show "1 * n = n" by simp
haftmann@26072
   199
  show "n * m = m * n" by (induct n) simp_all
haftmann@26072
   200
  show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib)
haftmann@26072
   201
  show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib)
haftmann@26072
   202
  assume "n + m = n + q" thus "m = q" by (induct n) simp_all
haftmann@26072
   203
qed
haftmann@25571
   204
haftmann@25571
   205
end
haftmann@24995
   206
haftmann@26072
   207
subsubsection {* Addition *}
haftmann@26072
   208
haftmann@26072
   209
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
haftmann@26072
   210
  by (rule add_assoc)
haftmann@26072
   211
haftmann@26072
   212
lemma nat_add_commute: "m + n = n + (m::nat)"
haftmann@26072
   213
  by (rule add_commute)
haftmann@26072
   214
haftmann@26072
   215
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
haftmann@26072
   216
  by (rule add_left_commute)
haftmann@26072
   217
haftmann@26072
   218
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
haftmann@26072
   219
  by (rule add_left_cancel)
haftmann@26072
   220
haftmann@26072
   221
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
haftmann@26072
   222
  by (rule add_right_cancel)
haftmann@26072
   223
haftmann@26072
   224
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
haftmann@26072
   225
haftmann@26072
   226
lemma add_is_0 [iff]:
haftmann@26072
   227
  fixes m n :: nat
haftmann@26072
   228
  shows "(m + n = 0) = (m = 0 & n = 0)"
haftmann@26072
   229
  by (cases m) simp_all
haftmann@26072
   230
haftmann@26072
   231
lemma add_is_1:
haftmann@26072
   232
  "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
haftmann@26072
   233
  by (cases m) simp_all
haftmann@26072
   234
haftmann@26072
   235
lemma one_is_add:
haftmann@26072
   236
  "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
haftmann@26072
   237
  by (rule trans, rule eq_commute, rule add_is_1)
haftmann@26072
   238
haftmann@26072
   239
lemma add_eq_self_zero:
haftmann@26072
   240
  fixes m n :: nat
haftmann@26072
   241
  shows "m + n = m \<Longrightarrow> n = 0"
haftmann@26072
   242
  by (induct m) simp_all
haftmann@26072
   243
haftmann@26072
   244
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
haftmann@26072
   245
  apply (induct k)
haftmann@26072
   246
   apply simp
haftmann@26072
   247
  apply(drule comp_inj_on[OF _ inj_Suc])
haftmann@26072
   248
  apply (simp add:o_def)
haftmann@26072
   249
  done
haftmann@26072
   250
haftmann@26072
   251
haftmann@26072
   252
subsubsection {* Difference *}
haftmann@26072
   253
haftmann@26072
   254
lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0"
haftmann@26072
   255
  by (induct m) simp_all
haftmann@26072
   256
haftmann@26072
   257
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
haftmann@26072
   258
  by (induct i j rule: diff_induct) simp_all
haftmann@26072
   259
haftmann@26072
   260
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
haftmann@26072
   261
  by (simp add: diff_diff_left)
haftmann@26072
   262
haftmann@26072
   263
lemma diff_commute: "(i::nat) - j - k = i - k - j"
haftmann@26072
   264
  by (simp add: diff_diff_left add_commute)
haftmann@26072
   265
haftmann@26072
   266
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
haftmann@26072
   267
  by (induct n) simp_all
haftmann@26072
   268
haftmann@26072
   269
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
haftmann@26072
   270
  by (simp add: diff_add_inverse add_commute [of m n])
haftmann@26072
   271
haftmann@26072
   272
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
haftmann@26072
   273
  by (induct k) simp_all
haftmann@26072
   274
haftmann@26072
   275
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
haftmann@26072
   276
  by (simp add: diff_cancel add_commute)
haftmann@26072
   277
haftmann@26072
   278
lemma diff_add_0: "n - (n + m) = (0::nat)"
haftmann@26072
   279
  by (induct n) simp_all
haftmann@26072
   280
haftmann@26072
   281
text {* Difference distributes over multiplication *}
haftmann@26072
   282
haftmann@26072
   283
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
haftmann@26072
   284
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
haftmann@26072
   285
haftmann@26072
   286
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
haftmann@26072
   287
by (simp add: diff_mult_distrib mult_commute [of k])
haftmann@26072
   288
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
haftmann@26072
   289
haftmann@26072
   290
haftmann@26072
   291
subsubsection {* Multiplication *}
haftmann@26072
   292
haftmann@26072
   293
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
haftmann@26072
   294
  by (rule mult_assoc)
haftmann@26072
   295
haftmann@26072
   296
lemma nat_mult_commute: "m * n = n * (m::nat)"
haftmann@26072
   297
  by (rule mult_commute)
haftmann@26072
   298
haftmann@26072
   299
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
haftmann@26072
   300
  by (rule right_distrib)
haftmann@26072
   301
haftmann@26072
   302
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
haftmann@26072
   303
  by (induct m) auto
haftmann@26072
   304
haftmann@26072
   305
lemmas nat_distrib =
haftmann@26072
   306
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
haftmann@26072
   307
haftmann@26072
   308
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
haftmann@26072
   309
  apply (induct m)
haftmann@26072
   310
   apply simp
haftmann@26072
   311
  apply (induct n)
haftmann@26072
   312
   apply auto
haftmann@26072
   313
  done
haftmann@26072
   314
haftmann@26072
   315
lemma one_eq_mult_iff [simp,noatp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
haftmann@26072
   316
  apply (rule trans)
haftmann@26072
   317
  apply (rule_tac [2] mult_eq_1_iff, fastsimp)
haftmann@26072
   318
  done
haftmann@26072
   319
haftmann@26072
   320
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
haftmann@26072
   321
proof -
haftmann@26072
   322
  have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n"
haftmann@26072
   323
  proof (induct n arbitrary: m)
haftmann@26072
   324
    case 0 then show "m = 0" by simp
haftmann@26072
   325
  next
haftmann@26072
   326
    case (Suc n) then show "m = Suc n"
haftmann@26072
   327
      by (cases m) (simp_all add: eq_commute [of "0"])
haftmann@26072
   328
  qed
haftmann@26072
   329
  then show ?thesis by auto
haftmann@26072
   330
qed
haftmann@26072
   331
haftmann@26072
   332
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
haftmann@26072
   333
  by (simp add: mult_commute)
haftmann@26072
   334
haftmann@26072
   335
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
haftmann@26072
   336
  by (subst mult_cancel1) simp
haftmann@26072
   337
haftmann@24995
   338
haftmann@24995
   339
subsection {* Orders on @{typ nat} *}
haftmann@24995
   340
haftmann@26072
   341
subsubsection {* Operation definition *}
haftmann@24995
   342
haftmann@26072
   343
instantiation nat :: linorder
haftmann@25510
   344
begin
haftmann@25510
   345
haftmann@26072
   346
primrec less_eq_nat where
haftmann@26072
   347
  "(0\<Colon>nat) \<le> n \<longleftrightarrow> True"
haftmann@26072
   348
  | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"
haftmann@26072
   349
haftmann@26072
   350
declare less_eq_nat.simps [simp del, code del]
haftmann@26072
   351
lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps)
haftmann@26072
   352
lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps)
haftmann@26072
   353
haftmann@26072
   354
definition less_nat where
haftmann@26072
   355
  less_eq_Suc_le [code func del]: "n < m \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   356
haftmann@26072
   357
lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m"
haftmann@26072
   358
  by (simp add: less_eq_nat.simps(2))
haftmann@26072
   359
haftmann@26072
   360
lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n"
haftmann@26072
   361
  unfolding less_eq_Suc_le ..
haftmann@26072
   362
haftmann@26072
   363
lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0"
haftmann@26072
   364
  by (induct n) (simp_all add: less_eq_nat.simps(2))
haftmann@26072
   365
haftmann@26072
   366
lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)"
haftmann@26072
   367
  by (simp add: less_eq_Suc_le)
haftmann@26072
   368
haftmann@26072
   369
lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False"
haftmann@26072
   370
  by simp
haftmann@26072
   371
haftmann@26072
   372
lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n"
haftmann@26072
   373
  by (simp add: less_eq_Suc_le)
haftmann@26072
   374
haftmann@26072
   375
lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n"
haftmann@26072
   376
  by (simp add: less_eq_Suc_le)
haftmann@26072
   377
haftmann@26072
   378
lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n"
haftmann@26072
   379
  by (induct m arbitrary: n)
haftmann@26072
   380
    (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   381
haftmann@26072
   382
lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n"
haftmann@26072
   383
  by (cases n) (auto intro: le_SucI)
haftmann@26072
   384
haftmann@26072
   385
lemma less_SucI: "m < n \<Longrightarrow> m < Suc n"
haftmann@26072
   386
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@24995
   387
haftmann@26072
   388
lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n"
haftmann@26072
   389
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@25510
   390
wenzelm@26315
   391
instance
wenzelm@26315
   392
proof
haftmann@26072
   393
  fix n m :: nat
haftmann@26072
   394
  have less_imp_le: "n < m \<Longrightarrow> n \<le> m"
haftmann@26072
   395
    unfolding less_eq_Suc_le by (erule Suc_leD)
haftmann@26072
   396
  have irrefl: "\<not> m < m" by (induct m) auto
haftmann@26072
   397
  have strict: "n \<le> m \<Longrightarrow> n \<noteq> m \<Longrightarrow> n < m"
haftmann@26072
   398
  proof (induct n arbitrary: m)
haftmann@26072
   399
    case 0 then show ?case
haftmann@26072
   400
      by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   401
  next
haftmann@26072
   402
    case (Suc n) then show ?case
haftmann@26072
   403
      by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   404
  qed
haftmann@26072
   405
  show "n < m \<longleftrightarrow> n \<le> m \<and> n \<noteq> m"
haftmann@26072
   406
    by (auto simp add: irrefl intro: less_imp_le strict)
haftmann@26072
   407
next
haftmann@26072
   408
  fix n :: nat show "n \<le> n" by (induct n) simp_all
haftmann@26072
   409
next
haftmann@26072
   410
  fix n m :: nat assume "n \<le> m" and "m \<le> n"
haftmann@26072
   411
  then show "n = m"
haftmann@26072
   412
    by (induct n arbitrary: m)
haftmann@26072
   413
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   414
next
haftmann@26072
   415
  fix n m q :: nat assume "n \<le> m" and "m \<le> q"
haftmann@26072
   416
  then show "n \<le> q"
haftmann@26072
   417
  proof (induct n arbitrary: m q)
haftmann@26072
   418
    case 0 show ?case by simp
haftmann@26072
   419
  next
haftmann@26072
   420
    case (Suc n) then show ?case
haftmann@26072
   421
      by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   422
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   423
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   424
  qed
haftmann@26072
   425
next
haftmann@26072
   426
  fix n m :: nat show "n \<le> m \<or> m \<le> n"
haftmann@26072
   427
    by (induct n arbitrary: m)
haftmann@26072
   428
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   429
qed
haftmann@25510
   430
haftmann@25510
   431
end
berghofe@13449
   432
haftmann@26072
   433
subsubsection {* Introduction properties *}
berghofe@13449
   434
haftmann@26072
   435
lemma lessI [iff]: "n < Suc n"
haftmann@26072
   436
  by (simp add: less_Suc_eq_le)
berghofe@13449
   437
haftmann@26072
   438
lemma zero_less_Suc [iff]: "0 < Suc n"
haftmann@26072
   439
  by (simp add: less_Suc_eq_le)
berghofe@13449
   440
berghofe@13449
   441
berghofe@13449
   442
subsubsection {* Elimination properties *}
berghofe@13449
   443
berghofe@13449
   444
lemma less_not_refl: "~ n < (n::nat)"
haftmann@26072
   445
  by (rule order_less_irrefl)
berghofe@13449
   446
wenzelm@26335
   447
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)"
wenzelm@26335
   448
  by (rule not_sym) (rule less_imp_neq) 
berghofe@13449
   449
paulson@14267
   450
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
haftmann@26072
   451
  by (rule less_imp_neq)
berghofe@13449
   452
wenzelm@26335
   453
lemma less_irrefl_nat: "(n::nat) < n ==> R"
wenzelm@26335
   454
  by (rule notE, rule less_not_refl)
berghofe@13449
   455
berghofe@13449
   456
lemma less_zeroE: "(n::nat) < 0 ==> R"
haftmann@26072
   457
  by (rule notE) (rule not_less0)
berghofe@13449
   458
berghofe@13449
   459
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
haftmann@26072
   460
  unfolding less_Suc_eq_le le_less ..
berghofe@13449
   461
haftmann@26072
   462
lemma less_one [iff, noatp]: "(n < (1::nat)) = (n = 0)"
haftmann@26072
   463
  by (simp add: less_Suc_eq)
berghofe@13449
   464
berghofe@13449
   465
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
haftmann@26072
   466
  by (simp add: less_Suc_eq)
berghofe@13449
   467
berghofe@13449
   468
lemma Suc_mono: "m < n ==> Suc m < Suc n"
haftmann@26072
   469
  by simp
berghofe@13449
   470
nipkow@14302
   471
text {* "Less than" is antisymmetric, sort of *}
nipkow@14302
   472
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
haftmann@26072
   473
  unfolding not_less less_Suc_eq_le by (rule antisym)
nipkow@14302
   474
paulson@14267
   475
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
haftmann@26072
   476
  by (rule linorder_neq_iff)
berghofe@13449
   477
berghofe@13449
   478
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
berghofe@13449
   479
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
berghofe@13449
   480
  shows "P n m"
berghofe@13449
   481
  apply (rule less_linear [THEN disjE])
berghofe@13449
   482
  apply (erule_tac [2] disjE)
berghofe@13449
   483
  apply (erule lessCase)
berghofe@13449
   484
  apply (erule sym [THEN eqCase])
berghofe@13449
   485
  apply (erule major)
berghofe@13449
   486
  done
berghofe@13449
   487
berghofe@13449
   488
berghofe@13449
   489
subsubsection {* Inductive (?) properties *}
berghofe@13449
   490
paulson@14267
   491
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
haftmann@26072
   492
  unfolding less_eq_Suc_le [of m] le_less by simp 
berghofe@13449
   493
haftmann@26072
   494
lemma lessE:
haftmann@26072
   495
  assumes major: "i < k"
haftmann@26072
   496
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
haftmann@26072
   497
  shows P
haftmann@26072
   498
proof -
haftmann@26072
   499
  from major have "\<exists>j. i \<le> j \<and> k = Suc j"
haftmann@26072
   500
    unfolding less_eq_Suc_le by (induct k) simp_all
haftmann@26072
   501
  then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i"
haftmann@26072
   502
    by (clarsimp simp add: less_le)
haftmann@26072
   503
  with p1 p2 show P by auto
haftmann@26072
   504
qed
haftmann@26072
   505
haftmann@26072
   506
lemma less_SucE: assumes major: "m < Suc n"
haftmann@26072
   507
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
haftmann@26072
   508
  apply (rule major [THEN lessE])
haftmann@26072
   509
  apply (rule eq, blast)
haftmann@26072
   510
  apply (rule less, blast)
berghofe@13449
   511
  done
berghofe@13449
   512
berghofe@13449
   513
lemma Suc_lessE: assumes major: "Suc i < k"
berghofe@13449
   514
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
berghofe@13449
   515
  apply (rule major [THEN lessE])
berghofe@13449
   516
  apply (erule lessI [THEN minor])
paulson@14208
   517
  apply (erule Suc_lessD [THEN minor], assumption)
berghofe@13449
   518
  done
berghofe@13449
   519
berghofe@13449
   520
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
haftmann@26072
   521
  by simp
berghofe@13449
   522
berghofe@13449
   523
lemma less_trans_Suc:
berghofe@13449
   524
  assumes le: "i < j" shows "j < k ==> Suc i < k"
paulson@14208
   525
  apply (induct k, simp_all)
berghofe@13449
   526
  apply (insert le)
berghofe@13449
   527
  apply (simp add: less_Suc_eq)
berghofe@13449
   528
  apply (blast dest: Suc_lessD)
berghofe@13449
   529
  done
berghofe@13449
   530
berghofe@13449
   531
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
haftmann@26072
   532
lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
haftmann@26072
   533
  unfolding not_less less_Suc_eq_le ..
berghofe@13449
   534
haftmann@26072
   535
lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   536
  unfolding not_le Suc_le_eq ..
wenzelm@21243
   537
haftmann@24995
   538
text {* Properties of "less than or equal" *}
berghofe@13449
   539
paulson@14267
   540
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
haftmann@26072
   541
  unfolding less_Suc_eq_le .
berghofe@13449
   542
paulson@14267
   543
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
haftmann@26072
   544
  unfolding not_le less_Suc_eq_le ..
berghofe@13449
   545
paulson@14267
   546
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
haftmann@26072
   547
  by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)
berghofe@13449
   548
paulson@14267
   549
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
haftmann@26072
   550
  by (drule le_Suc_eq [THEN iffD1], iprover+)
berghofe@13449
   551
paulson@14267
   552
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
haftmann@26072
   553
  unfolding Suc_le_eq .
berghofe@13449
   554
berghofe@13449
   555
text {* Stronger version of @{text Suc_leD} *}
paulson@14267
   556
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
haftmann@26072
   557
  unfolding Suc_le_eq .
berghofe@13449
   558
wenzelm@26315
   559
lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)"
haftmann@26072
   560
  unfolding less_eq_Suc_le by (rule Suc_leD)
berghofe@13449
   561
paulson@14267
   562
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
wenzelm@26315
   563
lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq
berghofe@13449
   564
berghofe@13449
   565
paulson@14267
   566
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
berghofe@13449
   567
paulson@14267
   568
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
haftmann@26072
   569
  unfolding le_less .
berghofe@13449
   570
paulson@14267
   571
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
haftmann@26072
   572
  by (rule le_less)
berghofe@13449
   573
wenzelm@22718
   574
text {* Useful with @{text blast}. *}
paulson@14267
   575
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
haftmann@26072
   576
  by auto
berghofe@13449
   577
paulson@14267
   578
lemma le_refl: "n \<le> (n::nat)"
haftmann@26072
   579
  by simp
berghofe@13449
   580
paulson@14267
   581
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
haftmann@26072
   582
  by (rule order_trans)
berghofe@13449
   583
paulson@14267
   584
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
haftmann@26072
   585
  by (rule antisym)
berghofe@13449
   586
paulson@14267
   587
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
haftmann@26072
   588
  by (rule less_le)
berghofe@13449
   589
paulson@14267
   590
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
haftmann@26072
   591
  unfolding less_le ..
berghofe@13449
   592
haftmann@26072
   593
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
haftmann@26072
   594
  by (rule linear)
paulson@14341
   595
wenzelm@22718
   596
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
nipkow@15921
   597
haftmann@26072
   598
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
haftmann@26072
   599
  unfolding less_Suc_eq_le by auto
berghofe@13449
   600
haftmann@26072
   601
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
haftmann@26072
   602
  unfolding not_less by (rule le_less_Suc_eq)
berghofe@13449
   603
berghofe@13449
   604
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
berghofe@13449
   605
wenzelm@22718
   606
text {* These two rules ease the use of primitive recursion.
paulson@14341
   607
NOTE USE OF @{text "=="} *}
berghofe@13449
   608
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
nipkow@25162
   609
by simp
berghofe@13449
   610
berghofe@13449
   611
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
nipkow@25162
   612
by simp
berghofe@13449
   613
paulson@14267
   614
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   615
by (cases n) simp_all
nipkow@25162
   616
nipkow@25162
   617
lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   618
by (cases n) simp_all
berghofe@13449
   619
wenzelm@22718
   620
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"
nipkow@25162
   621
by (cases n) simp_all
berghofe@13449
   622
nipkow@25162
   623
lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"
nipkow@25162
   624
by (cases n) simp_all
nipkow@25140
   625
berghofe@13449
   626
text {* This theorem is useful with @{text blast} *}
berghofe@13449
   627
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
nipkow@25162
   628
by (rule neq0_conv[THEN iffD1], iprover)
berghofe@13449
   629
paulson@14267
   630
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
nipkow@25162
   631
by (fast intro: not0_implies_Suc)
berghofe@13449
   632
paulson@24286
   633
lemma not_gr0 [iff,noatp]: "!!n::nat. (~ (0 < n)) = (n = 0)"
nipkow@25134
   634
using neq0_conv by blast
berghofe@13449
   635
paulson@14267
   636
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
nipkow@25162
   637
by (induct m') simp_all
berghofe@13449
   638
berghofe@13449
   639
text {* Useful in certain inductive arguments *}
paulson@14267
   640
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
nipkow@25162
   641
by (cases m) simp_all
berghofe@13449
   642
berghofe@13449
   643
haftmann@26072
   644
subsubsection {* @{term min} and @{term max} *}
berghofe@13449
   645
haftmann@25076
   646
lemma mono_Suc: "mono Suc"
nipkow@25162
   647
by (rule monoI) simp
haftmann@25076
   648
berghofe@13449
   649
lemma min_0L [simp]: "min 0 n = (0::nat)"
nipkow@25162
   650
by (rule min_leastL) simp
berghofe@13449
   651
berghofe@13449
   652
lemma min_0R [simp]: "min n 0 = (0::nat)"
nipkow@25162
   653
by (rule min_leastR) simp
berghofe@13449
   654
berghofe@13449
   655
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
nipkow@25162
   656
by (simp add: mono_Suc min_of_mono)
berghofe@13449
   657
paulson@22191
   658
lemma min_Suc1:
paulson@22191
   659
   "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"
nipkow@25162
   660
by (simp split: nat.split)
paulson@22191
   661
paulson@22191
   662
lemma min_Suc2:
paulson@22191
   663
   "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"
nipkow@25162
   664
by (simp split: nat.split)
paulson@22191
   665
berghofe@13449
   666
lemma max_0L [simp]: "max 0 n = (n::nat)"
nipkow@25162
   667
by (rule max_leastL) simp
berghofe@13449
   668
berghofe@13449
   669
lemma max_0R [simp]: "max n 0 = (n::nat)"
nipkow@25162
   670
by (rule max_leastR) simp
berghofe@13449
   671
berghofe@13449
   672
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
nipkow@25162
   673
by (simp add: mono_Suc max_of_mono)
berghofe@13449
   674
paulson@22191
   675
lemma max_Suc1:
paulson@22191
   676
   "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"
nipkow@25162
   677
by (simp split: nat.split)
paulson@22191
   678
paulson@22191
   679
lemma max_Suc2:
paulson@22191
   680
   "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"
nipkow@25162
   681
by (simp split: nat.split)
paulson@22191
   682
berghofe@13449
   683
haftmann@26072
   684
subsubsection {* Monotonicity of Addition *}
berghofe@13449
   685
haftmann@26072
   686
lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n"
haftmann@26072
   687
by (simp add: diff_Suc split: nat.split)
berghofe@13449
   688
paulson@14331
   689
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
nipkow@25162
   690
by (induct k) simp_all
berghofe@13449
   691
paulson@14331
   692
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
nipkow@25162
   693
by (induct k) simp_all
berghofe@13449
   694
nipkow@25162
   695
lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)"
nipkow@25162
   696
by(auto dest:gr0_implies_Suc)
berghofe@13449
   697
paulson@14341
   698
text {* strict, in 1st argument *}
paulson@14341
   699
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
nipkow@25162
   700
by (induct k) simp_all
paulson@14341
   701
paulson@14341
   702
text {* strict, in both arguments *}
paulson@14341
   703
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
paulson@14341
   704
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
paulson@15251
   705
  apply (induct j, simp_all)
paulson@14341
   706
  done
paulson@14341
   707
paulson@14341
   708
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
paulson@14341
   709
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
paulson@14341
   710
  apply (induct n)
paulson@14341
   711
  apply (simp_all add: order_le_less)
wenzelm@22718
   712
  apply (blast elim!: less_SucE
paulson@14341
   713
               intro!: add_0_right [symmetric] add_Suc_right [symmetric])
paulson@14341
   714
  done
paulson@14341
   715
paulson@14341
   716
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
nipkow@25134
   717
lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j"
nipkow@25134
   718
apply(auto simp: gr0_conv_Suc)
nipkow@25134
   719
apply (induct_tac m)
nipkow@25134
   720
apply (simp_all add: add_less_mono)
nipkow@25134
   721
done
paulson@14341
   722
nipkow@14740
   723
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
obua@14738
   724
instance nat :: ordered_semidom
paulson@14341
   725
proof
paulson@14341
   726
  fix i j k :: nat
paulson@14348
   727
  show "0 < (1::nat)" by simp
paulson@14267
   728
  show "i \<le> j ==> k + i \<le> k + j" by simp
paulson@14267
   729
  show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
paulson@14267
   730
qed
paulson@14267
   731
paulson@14267
   732
lemma nat_mult_1: "(1::nat) * n = n"
nipkow@25162
   733
by simp
paulson@14267
   734
paulson@14267
   735
lemma nat_mult_1_right: "n * (1::nat) = n"
nipkow@25162
   736
by simp
paulson@14267
   737
paulson@14267
   738
krauss@26748
   739
subsubsection {* Additional theorems about @{term "op \<le>"} *}
krauss@26748
   740
krauss@26748
   741
text {* Complete induction, aka course-of-values induction *}
krauss@26748
   742
krauss@26748
   743
lemma less_induct [case_names less]:
krauss@26748
   744
  fixes P :: "nat \<Rightarrow> bool"
krauss@26748
   745
  assumes step: "\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x"
krauss@26748
   746
  shows "P a"
krauss@26748
   747
proof - 
krauss@26748
   748
  have "\<And>z. z\<le>a \<Longrightarrow> P z"
krauss@26748
   749
  proof (induct a)
krauss@26748
   750
    case (0 z)
krauss@26748
   751
    have "P 0" by (rule step) auto
krauss@26748
   752
    thus ?case using 0 by auto
krauss@26748
   753
  next
krauss@26748
   754
    case (Suc x z)
krauss@26748
   755
    then have "z \<le> x \<or> z = Suc x" by (simp add: le_Suc_eq)
krauss@26748
   756
    thus ?case
krauss@26748
   757
    proof
krauss@26748
   758
      assume "z \<le> x" thus "P z" by (rule Suc(1))
krauss@26748
   759
    next
krauss@26748
   760
      assume z: "z = Suc x"
krauss@26748
   761
      show "P z"
krauss@26748
   762
        by (rule step) (rule Suc(1), simp add: z le_simps)
krauss@26748
   763
    qed
krauss@26748
   764
  qed
krauss@26748
   765
  thus ?thesis by auto
krauss@26748
   766
qed
krauss@26748
   767
krauss@26748
   768
lemma nat_less_induct:
krauss@26748
   769
  assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
krauss@26748
   770
  using assms less_induct by blast
krauss@26748
   771
krauss@26748
   772
lemma measure_induct_rule [case_names less]:
krauss@26748
   773
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   774
  assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
krauss@26748
   775
  shows "P a"
krauss@26748
   776
by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step)
krauss@26748
   777
krauss@26748
   778
text {* old style induction rules: *}
krauss@26748
   779
lemma measure_induct:
krauss@26748
   780
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   781
  shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
krauss@26748
   782
  by (rule measure_induct_rule [of f P a]) iprover
krauss@26748
   783
krauss@26748
   784
lemma full_nat_induct:
krauss@26748
   785
  assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
krauss@26748
   786
  shows "P n"
krauss@26748
   787
  by (rule less_induct) (auto intro: step simp:le_simps)
paulson@14267
   788
paulson@19870
   789
text{*An induction rule for estabilishing binary relations*}
wenzelm@22718
   790
lemma less_Suc_induct:
paulson@19870
   791
  assumes less:  "i < j"
paulson@19870
   792
     and  step:  "!!i. P i (Suc i)"
paulson@19870
   793
     and  trans: "!!i j k. P i j ==> P j k ==> P i k"
paulson@19870
   794
  shows "P i j"
paulson@19870
   795
proof -
wenzelm@22718
   796
  from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add)
wenzelm@22718
   797
  have "P i (Suc (i + k))"
paulson@19870
   798
  proof (induct k)
wenzelm@22718
   799
    case 0
wenzelm@22718
   800
    show ?case by (simp add: step)
paulson@19870
   801
  next
paulson@19870
   802
    case (Suc k)
wenzelm@22718
   803
    thus ?case by (auto intro: assms)
paulson@19870
   804
  qed
wenzelm@22718
   805
  thus "P i j" by (simp add: j)
paulson@19870
   806
qed
paulson@19870
   807
krauss@26748
   808
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
krauss@26748
   809
  apply (rule nat_less_induct)
krauss@26748
   810
  apply (case_tac n)
krauss@26748
   811
  apply (case_tac [2] nat)
krauss@26748
   812
  apply (blast intro: less_trans)+
krauss@26748
   813
  done
krauss@26748
   814
krauss@26748
   815
text {* The method of infinite descent, frequently used in number theory.
krauss@26748
   816
Provided by Roelof Oosterhuis.
krauss@26748
   817
$P(n)$ is true for all $n\in\mathbb{N}$ if
krauss@26748
   818
\begin{itemize}
krauss@26748
   819
  \item case ``0'': given $n=0$ prove $P(n)$,
krauss@26748
   820
  \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists
krauss@26748
   821
        a smaller integer $m$ such that $\neg P(m)$.
krauss@26748
   822
\end{itemize} *}
krauss@26748
   823
krauss@26748
   824
text{* A compact version without explicit base case: *}
krauss@26748
   825
lemma infinite_descent:
krauss@26748
   826
  "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow>  \<exists>m<n. \<not>  P m \<rbrakk> \<Longrightarrow>  P n"
krauss@26748
   827
by (induct n rule: less_induct, auto)
krauss@26748
   828
krauss@26748
   829
lemma infinite_descent0[case_names 0 smaller]: 
krauss@26748
   830
  "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n"
krauss@26748
   831
by (rule infinite_descent) (case_tac "n>0", auto)
krauss@26748
   832
krauss@26748
   833
text {*
krauss@26748
   834
Infinite descent using a mapping to $\mathbb{N}$:
krauss@26748
   835
$P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
krauss@26748
   836
\begin{itemize}
krauss@26748
   837
\item case ``0'': given $V(x)=0$ prove $P(x)$,
krauss@26748
   838
\item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$.
krauss@26748
   839
\end{itemize}
krauss@26748
   840
NB: the proof also shows how to use the previous lemma. *}
krauss@26748
   841
krauss@26748
   842
corollary infinite_descent0_measure [case_names 0 smaller]:
krauss@26748
   843
  assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x"
krauss@26748
   844
    and   A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)"
krauss@26748
   845
  shows "P x"
krauss@26748
   846
proof -
krauss@26748
   847
  obtain n where "n = V x" by auto
krauss@26748
   848
  moreover have "\<And>x. V x = n \<Longrightarrow> P x"
krauss@26748
   849
  proof (induct n rule: infinite_descent0)
krauss@26748
   850
    case 0 -- "i.e. $V(x) = 0$"
krauss@26748
   851
    with A0 show "P x" by auto
krauss@26748
   852
  next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$"
krauss@26748
   853
    case (smaller n)
krauss@26748
   854
    then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
krauss@26748
   855
    with A1 obtain y where "V y < V x \<and> \<not> P y" by auto
krauss@26748
   856
    with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto
krauss@26748
   857
    then show ?case by auto
krauss@26748
   858
  qed
krauss@26748
   859
  ultimately show "P x" by auto
krauss@26748
   860
qed
krauss@26748
   861
krauss@26748
   862
text{* Again, without explicit base case: *}
krauss@26748
   863
lemma infinite_descent_measure:
krauss@26748
   864
assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x"
krauss@26748
   865
proof -
krauss@26748
   866
  from assms obtain n where "n = V x" by auto
krauss@26748
   867
  moreover have "!!x. V x = n \<Longrightarrow> P x"
krauss@26748
   868
  proof (induct n rule: infinite_descent, auto)
krauss@26748
   869
    fix x assume "\<not> P x"
krauss@26748
   870
    with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto
krauss@26748
   871
  qed
krauss@26748
   872
  ultimately show "P x" by auto
krauss@26748
   873
qed
krauss@26748
   874
paulson@14267
   875
text {* A [clumsy] way of lifting @{text "<"}
paulson@14267
   876
  monotonicity to @{text "\<le>"} monotonicity *}
paulson@14267
   877
lemma less_mono_imp_le_mono:
nipkow@24438
   878
  "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)"
nipkow@24438
   879
by (simp add: order_le_less) (blast)
nipkow@24438
   880
paulson@14267
   881
paulson@14267
   882
text {* non-strict, in 1st argument *}
paulson@14267
   883
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
nipkow@24438
   884
by (rule add_right_mono)
paulson@14267
   885
paulson@14267
   886
text {* non-strict, in both arguments *}
paulson@14267
   887
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
nipkow@24438
   888
by (rule add_mono)
paulson@14267
   889
paulson@14267
   890
lemma le_add2: "n \<le> ((m + n)::nat)"
nipkow@24438
   891
by (insert add_right_mono [of 0 m n], simp)
berghofe@13449
   892
paulson@14267
   893
lemma le_add1: "n \<le> ((n + m)::nat)"
nipkow@24438
   894
by (simp add: add_commute, rule le_add2)
berghofe@13449
   895
berghofe@13449
   896
lemma less_add_Suc1: "i < Suc (i + m)"
nipkow@24438
   897
by (rule le_less_trans, rule le_add1, rule lessI)
berghofe@13449
   898
berghofe@13449
   899
lemma less_add_Suc2: "i < Suc (m + i)"
nipkow@24438
   900
by (rule le_less_trans, rule le_add2, rule lessI)
berghofe@13449
   901
paulson@14267
   902
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
nipkow@24438
   903
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
berghofe@13449
   904
paulson@14267
   905
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
nipkow@24438
   906
by (rule le_trans, assumption, rule le_add1)
berghofe@13449
   907
paulson@14267
   908
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
nipkow@24438
   909
by (rule le_trans, assumption, rule le_add2)
berghofe@13449
   910
berghofe@13449
   911
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
nipkow@24438
   912
by (rule less_le_trans, assumption, rule le_add1)
berghofe@13449
   913
berghofe@13449
   914
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
nipkow@24438
   915
by (rule less_le_trans, assumption, rule le_add2)
berghofe@13449
   916
berghofe@13449
   917
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
nipkow@24438
   918
apply (rule le_less_trans [of _ "i+j"])
nipkow@24438
   919
apply (simp_all add: le_add1)
nipkow@24438
   920
done
berghofe@13449
   921
berghofe@13449
   922
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
nipkow@24438
   923
apply (rule notI)
wenzelm@26335
   924
apply (drule add_lessD1)
wenzelm@26335
   925
apply (erule less_irrefl [THEN notE])
nipkow@24438
   926
done
berghofe@13449
   927
berghofe@13449
   928
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
krauss@26748
   929
by (simp add: add_commute)
berghofe@13449
   930
paulson@14267
   931
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
nipkow@24438
   932
apply (rule order_trans [of _ "m+k"])
nipkow@24438
   933
apply (simp_all add: le_add1)
nipkow@24438
   934
done
berghofe@13449
   935
paulson@14267
   936
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
nipkow@24438
   937
apply (simp add: add_commute)
nipkow@24438
   938
apply (erule add_leD1)
nipkow@24438
   939
done
berghofe@13449
   940
paulson@14267
   941
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
nipkow@24438
   942
by (blast dest: add_leD1 add_leD2)
berghofe@13449
   943
berghofe@13449
   944
text {* needs @{text "!!k"} for @{text add_ac} to work *}
berghofe@13449
   945
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
nipkow@24438
   946
by (force simp del: add_Suc_right
berghofe@13449
   947
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
berghofe@13449
   948
berghofe@13449
   949
haftmann@26072
   950
subsubsection {* More results about difference *}
berghofe@13449
   951
berghofe@13449
   952
text {* Addition is the inverse of subtraction:
paulson@14267
   953
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
berghofe@13449
   954
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
nipkow@24438
   955
by (induct m n rule: diff_induct) simp_all
berghofe@13449
   956
paulson@14267
   957
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
nipkow@24438
   958
by (simp add: add_diff_inverse linorder_not_less)
berghofe@13449
   959
paulson@14267
   960
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
krauss@26748
   961
by (simp add: add_commute)
berghofe@13449
   962
paulson@14267
   963
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
nipkow@24438
   964
by (induct m n rule: diff_induct) simp_all
berghofe@13449
   965
berghofe@13449
   966
lemma diff_less_Suc: "m - n < Suc m"
nipkow@24438
   967
apply (induct m n rule: diff_induct)
nipkow@24438
   968
apply (erule_tac [3] less_SucE)
nipkow@24438
   969
apply (simp_all add: less_Suc_eq)
nipkow@24438
   970
done
berghofe@13449
   971
paulson@14267
   972
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
nipkow@24438
   973
by (induct m n rule: diff_induct) (simp_all add: le_SucI)
berghofe@13449
   974
haftmann@26072
   975
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
haftmann@26072
   976
  by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n])
haftmann@26072
   977
berghofe@13449
   978
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
nipkow@24438
   979
by (rule le_less_trans, rule diff_le_self)
berghofe@13449
   980
berghofe@13449
   981
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
nipkow@24438
   982
by (cases n) (auto simp add: le_simps)
berghofe@13449
   983
paulson@14267
   984
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
nipkow@24438
   985
by (induct j k rule: diff_induct) simp_all
berghofe@13449
   986
paulson@14267
   987
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
nipkow@24438
   988
by (simp add: add_commute diff_add_assoc)
berghofe@13449
   989
paulson@14267
   990
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
nipkow@24438
   991
by (auto simp add: diff_add_inverse2)
berghofe@13449
   992
paulson@14267
   993
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
nipkow@24438
   994
by (induct m n rule: diff_induct) simp_all
berghofe@13449
   995
paulson@14267
   996
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
nipkow@24438
   997
by (rule iffD2, rule diff_is_0_eq)
berghofe@13449
   998
berghofe@13449
   999
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
nipkow@24438
  1000
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1001
wenzelm@22718
  1002
lemma less_imp_add_positive:
wenzelm@22718
  1003
  assumes "i < j"
wenzelm@22718
  1004
  shows "\<exists>k::nat. 0 < k & i + k = j"
wenzelm@22718
  1005
proof
wenzelm@22718
  1006
  from assms show "0 < j - i & i + (j - i) = j"
huffman@23476
  1007
    by (simp add: order_less_imp_le)
wenzelm@22718
  1008
qed
wenzelm@9436
  1009
haftmann@26072
  1010
text {* a nice rewrite for bounded subtraction *}
haftmann@26072
  1011
lemma nat_minus_add_max:
haftmann@26072
  1012
  fixes n m :: nat
haftmann@26072
  1013
  shows "n - m + m = max n m"
haftmann@26072
  1014
    by (simp add: max_def not_le order_less_imp_le)
berghofe@13449
  1015
haftmann@26072
  1016
lemma nat_diff_split:
haftmann@26072
  1017
  "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
haftmann@26072
  1018
    -- {* elimination of @{text -} on @{text nat} *}
haftmann@26072
  1019
by (cases "a < b")
haftmann@26072
  1020
  (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse
haftmann@26072
  1021
    not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero)
berghofe@13449
  1022
haftmann@26072
  1023
lemma nat_diff_split_asm:
haftmann@26072
  1024
  "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
haftmann@26072
  1025
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
haftmann@26072
  1026
by (auto split: nat_diff_split)
berghofe@13449
  1027
berghofe@13449
  1028
haftmann@26072
  1029
subsubsection {* Monotonicity of Multiplication *}
berghofe@13449
  1030
paulson@14267
  1031
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
nipkow@24438
  1032
by (simp add: mult_right_mono)
berghofe@13449
  1033
paulson@14267
  1034
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
nipkow@24438
  1035
by (simp add: mult_left_mono)
berghofe@13449
  1036
paulson@14267
  1037
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
paulson@14267
  1038
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
nipkow@24438
  1039
by (simp add: mult_mono)
berghofe@13449
  1040
berghofe@13449
  1041
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
nipkow@24438
  1042
by (simp add: mult_strict_right_mono)
berghofe@13449
  1043
paulson@14266
  1044
text{*Differs from the standard @{text zero_less_mult_iff} in that
paulson@14266
  1045
      there are no negative numbers.*}
paulson@14266
  1046
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
berghofe@13449
  1047
  apply (induct m)
wenzelm@22718
  1048
   apply simp
wenzelm@22718
  1049
  apply (case_tac n)
wenzelm@22718
  1050
   apply simp_all
berghofe@13449
  1051
  done
berghofe@13449
  1052
paulson@14267
  1053
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"
berghofe@13449
  1054
  apply (induct m)
wenzelm@22718
  1055
   apply simp
wenzelm@22718
  1056
  apply (case_tac n)
wenzelm@22718
  1057
   apply simp_all
berghofe@13449
  1058
  done
berghofe@13449
  1059
paulson@14341
  1060
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
berghofe@13449
  1061
  apply (safe intro!: mult_less_mono1)
paulson@14208
  1062
  apply (case_tac k, auto)
berghofe@13449
  1063
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
berghofe@13449
  1064
  apply (blast intro: mult_le_mono1)
berghofe@13449
  1065
  done
berghofe@13449
  1066
berghofe@13449
  1067
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
nipkow@24438
  1068
by (simp add: mult_commute [of k])
berghofe@13449
  1069
paulson@14267
  1070
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
nipkow@24438
  1071
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1072
paulson@14267
  1073
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
nipkow@24438
  1074
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1075
berghofe@13449
  1076
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
nipkow@24438
  1077
by (subst mult_less_cancel1) simp
berghofe@13449
  1078
paulson@14267
  1079
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
nipkow@24438
  1080
by (subst mult_le_cancel1) simp
berghofe@13449
  1081
haftmann@26072
  1082
lemma le_square: "m \<le> m * (m::nat)"
haftmann@26072
  1083
  by (cases m) (auto intro: le_add1)
haftmann@26072
  1084
haftmann@26072
  1085
lemma le_cube: "(m::nat) \<le> m * (m * m)"
haftmann@26072
  1086
  by (cases m) (auto intro: le_add1)
berghofe@13449
  1087
berghofe@13449
  1088
text {* Lemma for @{text gcd} *}
berghofe@13449
  1089
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
berghofe@13449
  1090
  apply (drule sym)
berghofe@13449
  1091
  apply (rule disjCI)
berghofe@13449
  1092
  apply (rule nat_less_cases, erule_tac [2] _)
paulson@25157
  1093
   apply (drule_tac [2] mult_less_mono2)
nipkow@25162
  1094
    apply (auto)
berghofe@13449
  1095
  done
wenzelm@9436
  1096
haftmann@26072
  1097
text {* the lattice order on @{typ nat} *}
haftmann@24995
  1098
haftmann@26072
  1099
instantiation nat :: distrib_lattice
haftmann@26072
  1100
begin
haftmann@24995
  1101
haftmann@26072
  1102
definition
haftmann@26072
  1103
  "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min"
haftmann@24995
  1104
haftmann@26072
  1105
definition
haftmann@26072
  1106
  "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max"
haftmann@24995
  1107
haftmann@26072
  1108
instance by intro_classes
haftmann@26072
  1109
  (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def
haftmann@26072
  1110
    intro: order_less_imp_le antisym elim!: order_trans order_less_trans)
haftmann@24995
  1111
haftmann@26072
  1112
end
haftmann@24995
  1113
haftmann@24995
  1114
haftmann@25193
  1115
subsection {* Embedding of the Naturals into any
haftmann@25193
  1116
  @{text semiring_1}: @{term of_nat} *}
haftmann@24196
  1117
haftmann@24196
  1118
context semiring_1
haftmann@24196
  1119
begin
haftmann@24196
  1120
haftmann@25559
  1121
primrec
haftmann@25559
  1122
  of_nat :: "nat \<Rightarrow> 'a"
haftmann@25559
  1123
where
haftmann@25559
  1124
  of_nat_0:     "of_nat 0 = 0"
haftmann@25559
  1125
  | of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
haftmann@25193
  1126
haftmann@25193
  1127
lemma of_nat_1 [simp]: "of_nat 1 = 1"
haftmann@25193
  1128
  by simp
haftmann@25193
  1129
haftmann@25193
  1130
lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
haftmann@25193
  1131
  by (induct m) (simp_all add: add_ac)
haftmann@25193
  1132
haftmann@25193
  1133
lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n"
haftmann@25193
  1134
  by (induct m) (simp_all add: add_ac left_distrib)
haftmann@25193
  1135
haftmann@25928
  1136
definition
haftmann@25928
  1137
  of_nat_aux :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
haftmann@25928
  1138
where
haftmann@25928
  1139
  [code func del]: "of_nat_aux n i = of_nat n + i"
haftmann@25928
  1140
haftmann@25928
  1141
lemma of_nat_aux_code [code]:
haftmann@25928
  1142
  "of_nat_aux 0 i = i"
haftmann@25928
  1143
  "of_nat_aux (Suc n) i = of_nat_aux n (i + 1)" -- {* tail recursive *}
haftmann@25928
  1144
  by (simp_all add: of_nat_aux_def add_ac)
haftmann@25928
  1145
haftmann@25928
  1146
lemma of_nat_code [code]:
haftmann@25928
  1147
  "of_nat n = of_nat_aux n 0"
haftmann@25928
  1148
  by (simp add: of_nat_aux_def)
haftmann@25928
  1149
haftmann@24196
  1150
end
haftmann@24196
  1151
haftmann@26072
  1152
text{*Class for unital semirings with characteristic zero.
haftmann@26072
  1153
 Includes non-ordered rings like the complex numbers.*}
haftmann@26072
  1154
haftmann@26072
  1155
class semiring_char_0 = semiring_1 +
haftmann@26072
  1156
  assumes of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
haftmann@26072
  1157
begin
haftmann@26072
  1158
haftmann@26072
  1159
text{*Special cases where either operand is zero*}
haftmann@26072
  1160
haftmann@26072
  1161
lemma of_nat_0_eq_iff [simp, noatp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
haftmann@26072
  1162
  by (rule of_nat_eq_iff [of 0, simplified])
haftmann@26072
  1163
haftmann@26072
  1164
lemma of_nat_eq_0_iff [simp, noatp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
haftmann@26072
  1165
  by (rule of_nat_eq_iff [of _ 0, simplified])
haftmann@26072
  1166
haftmann@26072
  1167
lemma inj_of_nat: "inj of_nat"
haftmann@26072
  1168
  by (simp add: inj_on_def)
haftmann@26072
  1169
haftmann@26072
  1170
end
haftmann@26072
  1171
haftmann@25193
  1172
context ordered_semidom
haftmann@25193
  1173
begin
haftmann@25193
  1174
haftmann@25193
  1175
lemma zero_le_imp_of_nat: "0 \<le> of_nat m"
haftmann@25193
  1176
  apply (induct m, simp_all)
haftmann@25193
  1177
  apply (erule order_trans)
haftmann@25193
  1178
  apply (rule ord_le_eq_trans [OF _ add_commute])
haftmann@25193
  1179
  apply (rule less_add_one [THEN less_imp_le])
haftmann@25193
  1180
  done
haftmann@25193
  1181
haftmann@25193
  1182
lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
haftmann@25193
  1183
  apply (induct m n rule: diff_induct, simp_all)
haftmann@25193
  1184
  apply (insert add_less_le_mono [OF zero_less_one zero_le_imp_of_nat], force)
haftmann@25193
  1185
  done
haftmann@25193
  1186
haftmann@25193
  1187
lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
haftmann@25193
  1188
  apply (induct m n rule: diff_induct, simp_all)
haftmann@25193
  1189
  apply (insert zero_le_imp_of_nat)
haftmann@25193
  1190
  apply (force simp add: not_less [symmetric])
haftmann@25193
  1191
  done
haftmann@25193
  1192
haftmann@25193
  1193
lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
haftmann@25193
  1194
  by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
haftmann@25193
  1195
haftmann@26072
  1196
lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
haftmann@26072
  1197
  by (simp add: not_less [symmetric] linorder_not_less [symmetric])
haftmann@25193
  1198
haftmann@26072
  1199
text{*Every @{text ordered_semidom} has characteristic zero.*}
haftmann@25193
  1200
haftmann@26072
  1201
subclass semiring_char_0
haftmann@26072
  1202
  by unfold_locales (simp add: eq_iff order_eq_iff)
haftmann@25193
  1203
haftmann@25193
  1204
text{*Special cases where either operand is zero*}
haftmann@25193
  1205
haftmann@25193
  1206
lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
haftmann@25193
  1207
  by (rule of_nat_le_iff [of 0, simplified])
haftmann@25193
  1208
haftmann@25193
  1209
lemma of_nat_le_0_iff [simp, noatp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
haftmann@25193
  1210
  by (rule of_nat_le_iff [of _ 0, simplified])
haftmann@25193
  1211
haftmann@26072
  1212
lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
haftmann@26072
  1213
  by (rule of_nat_less_iff [of 0, simplified])
haftmann@26072
  1214
haftmann@26072
  1215
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
haftmann@26072
  1216
  by (rule of_nat_less_iff [of _ 0, simplified])
haftmann@26072
  1217
haftmann@26072
  1218
end
haftmann@26072
  1219
haftmann@26072
  1220
context ring_1
haftmann@26072
  1221
begin
haftmann@26072
  1222
haftmann@26072
  1223
lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
haftmann@26072
  1224
  by (simp add: compare_rls of_nat_add [symmetric])
haftmann@26072
  1225
haftmann@26072
  1226
end
haftmann@26072
  1227
haftmann@26072
  1228
context ordered_idom
haftmann@26072
  1229
begin
haftmann@26072
  1230
haftmann@26072
  1231
lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n"
haftmann@26072
  1232
  unfolding abs_if by auto
haftmann@26072
  1233
haftmann@25193
  1234
end
haftmann@25193
  1235
haftmann@25193
  1236
lemma of_nat_id [simp]: "of_nat n = n"
haftmann@25193
  1237
  by (induct n) auto
haftmann@25193
  1238
haftmann@25193
  1239
lemma of_nat_eq_id [simp]: "of_nat = id"
haftmann@25193
  1240
  by (auto simp add: expand_fun_eq)
haftmann@25193
  1241
haftmann@25193
  1242
haftmann@26149
  1243
subsection {* The Set of Natural Numbers *}
haftmann@25193
  1244
haftmann@26072
  1245
context semiring_1
haftmann@25193
  1246
begin
haftmann@25193
  1247
haftmann@26072
  1248
definition
haftmann@26072
  1249
  Nats  :: "'a set" where
haftmann@27104
  1250
  [code func del]: "Nats = range of_nat"
haftmann@26072
  1251
haftmann@26072
  1252
notation (xsymbols)
haftmann@26072
  1253
  Nats  ("\<nat>")
haftmann@25193
  1254
haftmann@26072
  1255
lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
haftmann@26072
  1256
  by (simp add: Nats_def)
haftmann@26072
  1257
haftmann@26072
  1258
lemma Nats_0 [simp]: "0 \<in> \<nat>"
haftmann@26072
  1259
apply (simp add: Nats_def)
haftmann@26072
  1260
apply (rule range_eqI)
haftmann@26072
  1261
apply (rule of_nat_0 [symmetric])
haftmann@26072
  1262
done
haftmann@25193
  1263
haftmann@26072
  1264
lemma Nats_1 [simp]: "1 \<in> \<nat>"
haftmann@26072
  1265
apply (simp add: Nats_def)
haftmann@26072
  1266
apply (rule range_eqI)
haftmann@26072
  1267
apply (rule of_nat_1 [symmetric])
haftmann@26072
  1268
done
haftmann@25193
  1269
haftmann@26072
  1270
lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
haftmann@26072
  1271
apply (auto simp add: Nats_def)
haftmann@26072
  1272
apply (rule range_eqI)
haftmann@26072
  1273
apply (rule of_nat_add [symmetric])
haftmann@26072
  1274
done
haftmann@26072
  1275
haftmann@26072
  1276
lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
haftmann@26072
  1277
apply (auto simp add: Nats_def)
haftmann@26072
  1278
apply (rule range_eqI)
haftmann@26072
  1279
apply (rule of_nat_mult [symmetric])
haftmann@26072
  1280
done
haftmann@25193
  1281
haftmann@25193
  1282
end
haftmann@25193
  1283
haftmann@25193
  1284
wenzelm@21243
  1285
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
wenzelm@21243
  1286
haftmann@22845
  1287
lemma subst_equals:
haftmann@22845
  1288
  assumes 1: "t = s" and 2: "u = t"
haftmann@22845
  1289
  shows "u = s"
haftmann@22845
  1290
  using 2 1 by (rule trans)
haftmann@22845
  1291
wenzelm@21243
  1292
use "arith_data.ML"
haftmann@26101
  1293
declaration {* K ArithData.setup *}
wenzelm@24091
  1294
wenzelm@24091
  1295
use "Tools/lin_arith.ML"
wenzelm@24091
  1296
declaration {* K LinArith.setup *}
wenzelm@24091
  1297
wenzelm@21243
  1298
lemmas [arith_split] = nat_diff_split split_min split_max
wenzelm@21243
  1299
nipkow@27625
  1300
nipkow@27625
  1301
context order
nipkow@27625
  1302
begin
nipkow@27625
  1303
nipkow@27625
  1304
lemma lift_Suc_mono_le:
nipkow@27625
  1305
  assumes mono: "!!n. f n \<le> f(Suc n)" shows "n\<le>n' \<Longrightarrow> f n \<le> f n'"
nipkow@27625
  1306
proof(induct k == "n'-n" arbitrary:n')
nipkow@27625
  1307
  case 0
nipkow@27625
  1308
  moreover hence "n' <= n" by simp
nipkow@27625
  1309
  ultimately have "n=n'" by(blast intro:order_antisym)
nipkow@27625
  1310
  thus ?case by simp
nipkow@27625
  1311
next
nipkow@27625
  1312
  case (Suc k)
nipkow@27625
  1313
  then obtain l where [simp]: "n' = Suc l"
nipkow@27625
  1314
  proof(cases n')
nipkow@27625
  1315
    case 0 thus ?thesis using Suc by simp
nipkow@27625
  1316
  next
nipkow@27625
  1317
    case Suc thus ?thesis using that by blast
nipkow@27625
  1318
  qed
nipkow@27625
  1319
  have "f n \<le> f l" using Suc by auto
nipkow@27625
  1320
  also have "\<dots> \<le> f n'" using mono by auto
nipkow@27625
  1321
  finally(order_trans) show ?case by auto
nipkow@27625
  1322
qed
nipkow@27625
  1323
nipkow@27625
  1324
lemma lift_Suc_mono_less:
nipkow@27625
  1325
  assumes mono: "!!n. f n < f(Suc n)" shows "n<n' \<Longrightarrow> f n < f n'"
nipkow@27625
  1326
proof(induct k == "n' - Suc n" arbitrary:n')
nipkow@27625
  1327
  case 0
nipkow@27625
  1328
  hence "~ n' <= n \<longrightarrow> n' = Suc n" by(simp add:le_Suc_eq)
nipkow@27625
  1329
  moreover have "~ n' <= n"
nipkow@27625
  1330
  proof
nipkow@27625
  1331
    assume "n' <= n" thus False using `n<n'` by(auto dest: le_less_trans)
nipkow@27625
  1332
  qed
nipkow@27625
  1333
  ultimately show ?case by(simp add:mono)
nipkow@27625
  1334
next
nipkow@27625
  1335
  case (Suc k)
nipkow@27625
  1336
  then obtain l where [simp]: "n' = Suc l"
nipkow@27625
  1337
  proof(cases n')
nipkow@27625
  1338
    case 0 thus ?thesis using Suc by simp
nipkow@27625
  1339
  next
nipkow@27625
  1340
    case Suc thus ?thesis using that by blast
nipkow@27625
  1341
  qed
nipkow@27625
  1342
  have "f n < f l" using Suc by auto
nipkow@27625
  1343
  also have "\<dots> < f n'" using mono by auto
nipkow@27625
  1344
  finally(less_trans) show ?case by auto
nipkow@27625
  1345
qed
nipkow@27625
  1346
nipkow@27625
  1347
end
nipkow@27625
  1348
nipkow@27625
  1349
wenzelm@21243
  1350
text{*Subtraction laws, mostly by Clemens Ballarin*}
wenzelm@21243
  1351
wenzelm@21243
  1352
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
nipkow@24438
  1353
by arith
wenzelm@21243
  1354
wenzelm@21243
  1355
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
nipkow@24438
  1356
by arith
wenzelm@21243
  1357
wenzelm@21243
  1358
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
nipkow@24438
  1359
by arith
wenzelm@21243
  1360
wenzelm@21243
  1361
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
nipkow@24438
  1362
by arith
wenzelm@21243
  1363
wenzelm@21243
  1364
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
nipkow@24438
  1365
by arith
wenzelm@21243
  1366
wenzelm@21243
  1367
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
nipkow@24438
  1368
by arith
wenzelm@21243
  1369
wenzelm@21243
  1370
(*Replaces the previous diff_less and le_diff_less, which had the stronger
wenzelm@21243
  1371
  second premise n\<le>m*)
wenzelm@21243
  1372
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
nipkow@24438
  1373
by arith
wenzelm@21243
  1374
haftmann@26072
  1375
text {* Simplification of relational expressions involving subtraction *}
wenzelm@21243
  1376
wenzelm@21243
  1377
lemma diff_diff_eq: "[| k \<le> m;  k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
nipkow@24438
  1378
by (simp split add: nat_diff_split)
wenzelm@21243
  1379
wenzelm@21243
  1380
lemma eq_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
nipkow@24438
  1381
by (auto split add: nat_diff_split)
wenzelm@21243
  1382
wenzelm@21243
  1383
lemma less_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
nipkow@24438
  1384
by (auto split add: nat_diff_split)
wenzelm@21243
  1385
wenzelm@21243
  1386
lemma le_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
nipkow@24438
  1387
by (auto split add: nat_diff_split)
wenzelm@21243
  1388
wenzelm@21243
  1389
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
wenzelm@21243
  1390
wenzelm@21243
  1391
(* Monotonicity of subtraction in first argument *)
wenzelm@21243
  1392
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
nipkow@24438
  1393
by (simp split add: nat_diff_split)
wenzelm@21243
  1394
wenzelm@21243
  1395
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
nipkow@24438
  1396
by (simp split add: nat_diff_split)
wenzelm@21243
  1397
wenzelm@21243
  1398
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
nipkow@24438
  1399
by (simp split add: nat_diff_split)
wenzelm@21243
  1400
wenzelm@21243
  1401
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==>  m=n"
nipkow@24438
  1402
by (simp split add: nat_diff_split)
wenzelm@21243
  1403
bulwahn@26143
  1404
lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i"
bulwahn@26143
  1405
unfolding min_def by auto
bulwahn@26143
  1406
bulwahn@26143
  1407
lemma inj_on_diff_nat: 
bulwahn@26143
  1408
  assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)"
bulwahn@26143
  1409
  shows "inj_on (\<lambda>n. n - k) N"
bulwahn@26143
  1410
proof (rule inj_onI)
bulwahn@26143
  1411
  fix x y
bulwahn@26143
  1412
  assume a: "x \<in> N" "y \<in> N" "x - k = y - k"
bulwahn@26143
  1413
  with k_le_n have "x - k + k = y - k + k" by auto
bulwahn@26143
  1414
  with a k_le_n show "x = y" by auto
bulwahn@26143
  1415
qed
bulwahn@26143
  1416
haftmann@26072
  1417
text{*Rewriting to pull differences out*}
haftmann@26072
  1418
haftmann@26072
  1419
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
haftmann@26072
  1420
by arith
haftmann@26072
  1421
haftmann@26072
  1422
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
haftmann@26072
  1423
by arith
haftmann@26072
  1424
haftmann@26072
  1425
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
haftmann@26072
  1426
by arith
haftmann@26072
  1427
wenzelm@21243
  1428
text{*Lemmas for ex/Factorization*}
wenzelm@21243
  1429
wenzelm@21243
  1430
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
nipkow@24438
  1431
by (cases m) auto
wenzelm@21243
  1432
wenzelm@21243
  1433
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
nipkow@24438
  1434
by (cases m) auto
wenzelm@21243
  1435
wenzelm@21243
  1436
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
nipkow@24438
  1437
by (cases m) auto
wenzelm@21243
  1438
krauss@23001
  1439
text {* Specialized induction principles that work "backwards": *}
krauss@23001
  1440
krauss@23001
  1441
lemma inc_induct[consumes 1, case_names base step]:
krauss@23001
  1442
  assumes less: "i <= j"
krauss@23001
  1443
  assumes base: "P j"
krauss@23001
  1444
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1445
  shows "P i"
krauss@23001
  1446
  using less
krauss@23001
  1447
proof (induct d=="j - i" arbitrary: i)
krauss@23001
  1448
  case (0 i)
krauss@23001
  1449
  hence "i = j" by simp
krauss@23001
  1450
  with base show ?case by simp
krauss@23001
  1451
next
krauss@23001
  1452
  case (Suc d i)
krauss@23001
  1453
  hence "i < j" "P (Suc i)"
krauss@23001
  1454
    by simp_all
krauss@23001
  1455
  thus "P i" by (rule step)
krauss@23001
  1456
qed
krauss@23001
  1457
krauss@23001
  1458
lemma strict_inc_induct[consumes 1, case_names base step]:
krauss@23001
  1459
  assumes less: "i < j"
krauss@23001
  1460
  assumes base: "!!i. j = Suc i ==> P i"
krauss@23001
  1461
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1462
  shows "P i"
krauss@23001
  1463
  using less
krauss@23001
  1464
proof (induct d=="j - i - 1" arbitrary: i)
krauss@23001
  1465
  case (0 i)
krauss@23001
  1466
  with `i < j` have "j = Suc i" by simp
krauss@23001
  1467
  with base show ?case by simp
krauss@23001
  1468
next
krauss@23001
  1469
  case (Suc d i)
krauss@23001
  1470
  hence "i < j" "P (Suc i)"
krauss@23001
  1471
    by simp_all
krauss@23001
  1472
  thus "P i" by (rule step)
krauss@23001
  1473
qed
krauss@23001
  1474
krauss@23001
  1475
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
krauss@23001
  1476
  using inc_induct[of "k - i" k P, simplified] by blast
krauss@23001
  1477
krauss@23001
  1478
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
krauss@23001
  1479
  using inc_induct[of 0 k P] by blast
wenzelm@21243
  1480
haftmann@26072
  1481
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"
haftmann@26072
  1482
  by auto
wenzelm@21243
  1483
wenzelm@21243
  1484
(*The others are
wenzelm@21243
  1485
      i - j - k = i - (j + k),
wenzelm@21243
  1486
      k \<le> j ==> j - k + i = j + i - k,
wenzelm@21243
  1487
      k \<le> j ==> i + (j - k) = i + j - k *)
wenzelm@21243
  1488
lemmas add_diff_assoc = diff_add_assoc [symmetric]
wenzelm@21243
  1489
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
haftmann@26072
  1490
declare diff_diff_left [simp]  add_diff_assoc [simp] add_diff_assoc2[simp]
wenzelm@21243
  1491
wenzelm@21243
  1492
text{*At present we prove no analogue of @{text not_less_Least} or @{text
wenzelm@21243
  1493
Least_Suc}, since there appears to be no need.*}
wenzelm@21243
  1494
nipkow@27625
  1495
haftmann@26072
  1496
subsection {* size of a datatype value *}
haftmann@25193
  1497
haftmann@26072
  1498
class size = type +
krauss@26748
  1499
  fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
haftmann@23852
  1500
haftmann@25193
  1501
end